Ultra-High Performance Concrete: a State-Of-The-Art Report for the Bridge Community
Total Page:16
File Type:pdf, Size:1020Kb
Ultra-High Performance Concrete: A State-of-the-Art Report for the Bridge Community PUBLICATION NO. FHWA-HRT-13-060 JUNE 2013 Research, Development, and Technology Turner-Fairbank Highway Research Center 6300 Georgetown Pike McLean, VA 22101-2296 Cover-HRT-13-060.indd 1 6/7/13 11:51 AM FOREWORD Ultra-high performance concrete (UHPC) is an advanced construction material that affords new opportunities for the future of the highway infrastructure. The Federal Highway Administration has been engaged in research on the optimal uses of UHPC in the highway bridge infrastructure since 2001 through its Bridge of the Future initiative. This report presents the state of the art in UHPC with regard to uses in the highway transportation infrastructure. Compiled from hundreds of references representing research, development, and deployment efforts around the world, this report provides a framework for gaining a deeper understanding of UHPC as well as a platform from which to increase the use of this class of advanced cementitious composite materials. This report will assist stakeholders, including State transportation departments, researchers, and design consultants, to grasp the capabilities of UHPC and thus use the material to address pressing needs in the highway transportation infrastructure. Jorge Pagán-Ortiz Director, Office of Infrastructure Research and Development Notice This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the use of the information contained in this document. The U.S. Government does not endorse products or manufacturers. Trademarks or manufacturers’ names appear in this report only because they are considered essential to the objective of the document. Quality Assurance Statement The Federal Highway Administration (FHWA) provides high-quality information to serve Government, industry, and the public in a manner that promotes public understanding. Standards and policies are used to ensure and maximize the quality, objectivity, utility, and integrity of its information. FHWA periodically reviews quality issues and adjusts its programs and processes to ensure continuous quality improvement. TECHNICAL REPORT DOCUMENTATION PAGE 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. FHWA-HRT-13-060 4. Title and Subtitle 5. Report Date Ultra-High Performance Concrete: June 2013 A State-of-the-Art Report for the Bridge Community 6. Performing Organization Code: 7. Author(s) 8. Performing Organization Report No. Henry G. Russell and Benjamin A. Graybeal 9. Performing Organization Name and Address 10. Work Unit No. Henry G. Russell, Inc. Engineering Consultant 720 Coronet Road 11. Contract or Grant No. Glenview, IL 60025-4457 DTFH61-10-D-00017 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Office of Infrastructure Research & Development Final: 2011-2012 Federal Highway Administration 14. Sponsoring Agency Code 6300 Georgetown Pike McLean, VA 22101-2296 HRDI-40 15. Supplementary Notes This report was developed by Henry G. Russell, Inc., under subcontract to Professional Service Industries, Inc., of Herndon, VA, as part of FHWA’s “Support Services for the Structures Laboratories” contract. Ben Graybeal (FHWA) provided technical oversight/assistance and drafted portions of the final report. 16. Abstract The term Ultra-High Performance Concrete (UHPC) refers to a relatively new class of advanced cementitious composite materials whose mechanical and durability properties far surpass those of conventional concrete. This class of concrete has been demonstrated to facilitate solutions that address specific problems in the U.S. highway bridge infrastructure. Initial material development research on UHPC began more than two decades ago. First structural deployments began in the late 1990s. First field deployments in the U.S. highway transportation infrastructure began in 2006. For this study, UHPC-class materials are defined as cementitious-based composite materials with discontinuous fiber reinforcement that exhibit compressive strength above 21.7 ksi (150 MPa), pre- and post-cracking tensile strength above 0.72 ksi (5 MPa), and enhanced durability via a discontinuous pore structure. The report documents the state of the art with regard to the research, development, and deployment of UHPC components within the U.S. highway transportation infrastructure. More than 600 technical articles and reports covering research and applications using UHPC have been published in English in the last 20 years, with many more published in other languages. The report includes information about materials and production, mechanical properties, structural design and structural testing, durability and durability testing, and actual and potential applications. The report concludes with recommendations for the future direction for UHPC applications in the United States. 17. Key Words 18. Distribution Statement UHPC, ultra-high performance concrete, No restrictions. This document is available through the fiber-reinforced concrete, bridges, structural National Technical Information Service, Springfield, VA performance, mechanical performance, durability, 22161. applications 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price Unclassified Unclassified 171 N/A Form DOT F 1700.7 (8-72) Reproduction of completed page authorized SI* (MODERN METRIC) CONVERSION FACTORS APPROXIMATE CONVERSIONS TO SI UNITS Symbol When You Know Multiply By To Find Symbol LENGTH in inches 25.4 millimeters mm ft feet 0.305 meters m yd yards 0.914 meters m mi miles 1.61 kilometers km AREA in2 square inches 645.2 square millimeters mm2 ft2 square feet 0.093 square meters m2 yd2 square yard 0.836 square meters m2 ac acres 0.405 hectares ha mi2 square miles 2.59 square kilometers km2 VOLUME fl oz fluid ounces 29.57 milliliters mL gal gallons 3.785 liters L ft3 cubic feet 0.028 cubic meters m3 yd3 cubic yards 0.765 cubic meters m3 NOTE: volumes greater than 1000 L shall be shown in m3 MASS oz ounces 28.35 grams g lb pounds 0.454 kilograms kg T short tons (2000 lb) 0.907 megagrams (or "metric ton") Mg (or "t") TEMPERATURE (exact degrees) oF Fahrenheit 5 (F-32)/9 Celsius oC or (F-32)/1.8 ILLUMINATION fc foot-candles 10.76 lux lx fl foot-Lamberts 3.426 candela/m2 cd/m2 FORCE and PRESSURE or STRESS lbf poundforce 4.45 newtons N lbf/in2 poundforce per square inch 6.89 kilopascals kPa APPROXIMATE CONVERSIONS FROM SI UNITS Symbol When You Know Multiply By To Find Symbol LENGTH mm millimeters 0.039 inches in m meters 3.28 feet ft m meters 1.09 yards yd km kilometers 0.621 miles mi AREA mm2 square millimeters 0.0016 square inches in2 m2 square meters 10.764 square feet ft2 m2 square meters 1.195 square yards yd2 ha hectares 2.47 acres ac km2 square kilometers 0.386 square miles mi2 VOLUME mL milliliters 0.034 fluid ounces fl oz L liters 0.264 gallons gal m3 cubic meters 35.314 cubic feet ft3 m3 cubic meters 1.307 cubic yards yd3 MASS g grams 0.035 ounces oz kg kilograms 2.202 pounds lb Mg (or "t") megagrams (or "metric ton") 1.103 short tons (2000 lb) T TEMPERATURE (exact degrees) oC Celsius 1.8C+32 Fahrenheit oF ILLUMINATION lx lux 0.0929 foot-candles fc cd/m2 candela/m2 0.2919 foot-Lamberts fl FORCE and PRESSURE or STRESS N newtons 0.225 poundforce lbf kPa kilopascals 0.145 poundforce per square inch lbf/in2 *SI is the symbol for the International System of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E380. (Revised March 2003) ii TABLE OF CONTENTS CHAPTER 1. INTRODUCTION ................................................................................................ 1 BACKGROUND ....................................................................................................................... 1 OBJECTIVE ............................................................................................................................. 2 SCOPE ....................................................................................................................................... 2 TERMINOLOGY ..................................................................................................................... 3 SUSTAINABILITY .................................................................................................................. 3 COSTS ....................................................................................................................................... 4 CHAPTER 2. MATERIALS AND PRODUCTION .................................................................. 5 CONSTITUENT MATERIALS AND MIX PROPORTIONS ............................................. 5 MIXING AND PLACING ........................................................................................................ 8 CURING .................................................................................................................................... 9 QUALITY CONTROL TESTING ........................................................................................ 11 SUMMARY OF MATERIALS AND PRODUCTION ....................................................... 12 CHAPTER 3. MECHANICAL PROPERTIES ....................................................................... 13 COMPRESSIVE STRENGTH .............................................................................................. 13 TENSILE STRENGTH .........................................................................................................