Chapter 12: Influenza; Epidemiology and Prevention of Vaccine

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 12: Influenza; Epidemiology and Prevention of Vaccine Influenza Elisha Hall, PhD, RD Influenza is an infectious viral illness. The name “influenza” originated in 15th century Italy, from an epidemic attributed Influenza to “influence of the stars.” The first documented pandemic, or ● Viral illness worldwide epidemic, that clearly fits the description of influenza ● First pandemic in 1580 was in 1580. At least four pandemics of influenza occurred in ● Estimated 21 million deaths the 19th century, three in the 20th century, and one thus far worldwide in pandemic in the 21st century. The pandemic of “Spanish” influenza in of 1918-1919 1918–1919 caused an estimated 21 million deaths worldwide. ● Influenza A and B viruses Wilson Smith, Christopher Andrewes, and Patrick Laidlaw isolated in the 1930s isolated influenza A virus in ferrets in 1933, and Thomas Francis ● Inactivated vaccines first Jr. isolated influenza B virus in 1936. Also in 1936, Macfarlane developed and used in the Burnet discovered that influenza virus could be grown in late 1930s and 1940s embryonated hens’ eggs. This led to the study of the virus’s characteristics and the development and use of inactivated vaccines in the late 1930s and 1940s. The protective efficacy of these inactivated vaccines was demonstrated in the 1950s. The first live, attenuated influenza vaccine was licensed in 2003. A non-live, recombinant influenza virus vaccine not requiring isolation or growth in hen’s eggs was licensed in 2013. 12 Influenza Virus Influenza Virus Influenza is a single-stranded, helically shaped, RNA virus of the ● Single-stranded RNA virus orthomyxovirus family. Three types of influenza virus are known to affect humans: A, B, and C. Type A influenza has subtypes ● Orthomyxovirus family determined by the surface antigens hemagglutinin (HA) and ● Three types affect humans: neuraminidase (NA). There are 18 different H subtypes and 11 A, B, C different N subtypes. Eight H subtypes (H1, H2, H3, H5, H6, H7, ● Infection can be asymptomatic H9, H10) and six N subtypes (N1, N2, N6, N7, N8, and N9) have or result in mild to severe disease been detected in humans. Type B influenza is classified into two lineages: B/Yamagata and B/Victoria. Infection with influenza viruses can be asymptomatic or result in disease that ranges from mild to severe. Influenza B more commonly affects children. Influenza C is rarely Antigenic Changes reported as a cause of human illness, probably because most ● Antigenic drift cases are subclinical. Influenza C has not been associated ■ Small mutations over time with epidemic disease. that result in novel strain ■ Primary reason people Antigenic Changes can get influenza more Virus surface antigens hemagglutinin and neuraminidase than once continually change. Changes in influenza viruses can take the ■ May result in annual form of antigenic drift or antigenic shift. influenza epidemic Antigenic drift involves small mutations in the genes of ● Antigenic influenza viruses that lead to changes in HA and NA that ■ Abrupt, major change in accumulate over time, resulting in the emergence of novel surface antigen(s) strains that the human immune system may not recognize. These novel strains are the influenza virus’s evolutionary ■ May lead to pandemic (rare) adaptations to a strong population-wide immune response. 179 https://www.cdc.gov/vaccines/pubs/pinkbook/flu.html Aug 2021 Influenza Antigenic drift is the primary reason people can get influenza more than once and why it is necessary to annually review and update the composition of influenza vaccines. Antigenic drift, along with waning immunity, results in annual influenza epidemics, since the protection that remains from past exposures to similar viruses is incomplete. Drift occurs in all three types of influenza virus (A, B, C). Antigenic shift involves an abrupt, major change in one or both surface antigens (H or H-N combination). Antigenic shifts are probably due to genetic recombination (an exchange of a gene segment) between influenza A viruses that affect humans and/or animals. An antigenic shift may result in a worldwide pandemic if the virus is efficiently transmitted from person to person. Pandemics are rare; since the late 19th century, five antigenic shifts have led to pandemics in 1889-1891, 1918-1920, 1957-1958, 1968-1969, and 2009-2010. Influenza Pathogenesis Pathogenesis Following respiratory transmission, the virus attaches to and 12 ● Respiratory transmission penetrates respiratory epithelial cells in the trachea and bronchi. ● Replication in respiratory Viral replication occurs, which results in the destruction of the epithelium with subsequent host cell. Regeneration of epithelium takes about 3 to 4 weeks. destruction of cells Viremia, or presence of virus in the blood, has rarely been ● Viremia rarely documented documented. Virus is shed in respiratory secretions for 5 to 10 days, with a peak of 1 to 3 days following illness onset. ● Virus shed in respiratory secretions for 5–10 days Clinical Features The incubation period for influenza is usually 2 days but Influenza Clinical Features can vary from 1 to 4 days. Influenza illness can range from ● Incubation period 2 days (range, asymptomatic to severe infection. On average, about 8% of the 1–4 days) U.S. population gets sick from influenza each season (range between 3% and 11%). ● About 8% of U.S. population gets sick each season Onset of influenza symptoms is sudden. Respiratory symptoms ● Sudden onset of symptoms include cough, sore throat, and runny or stuffy nose. Systemic symptoms generally include fever, chills, headache, malaise, ■ Respiratory: cough, sore throat, runny or stuffy nose and myalgia. Vomiting and diarrhea may also occur, especially in children. Recovery is rapid; fever usually resolves within 3 ■ Systemic: fever, chills, to 4 days and other symptoms within approximately 7 days. headache, malaise, myalgia Some patients may have lingering asthenia (lack of strength or ■ Gastrointestinal: vomiting, energy) for several weeks. More information can be found at: diarrhea www.cdc.gov/flu/symptoms/symptoms.htm. ● Rapid recovery Influenza symptoms (e.g., pain and fever) can be controlled with medications such as aspirin, ibuprofen, or acetaminophen. Aspirin and salicylate-containing products should not be used for children or adolescents because it may increase the risk for developing Reye syndrome. 180 Influenza Complications Influenza Complications People most at risk of developing serious influenza-related complications include people age 65 years and older, people ● Secondary bacterial pneumonia with chronic medical conditions (e.g., heart disease or diabetes), ● Exacerbations of underlying pregnant women, and young children, especially those younger respiratory conditions than age 2 years. More common complications of influenza ● Otitis media include secondary bacterial pneumonia (e.g., Streptococcus pneumoniae, Haemophilus influenzae, or Staphylococcus aureus), ● Laryngotracheobronchitis exacerbations of underlying respiratory conditions, otitis media, ● Bronchitis laryngotracheobronchitis, and bronchitis. ● Other less common complications may occur Other complications may include primary pneumonia, encephalitis, aseptic meningitis, transverse myelitis, myocarditis, pericarditis, Guillain-Barré syndrome, and Reye Syndrome. Reye syndrome is a complication that occurs almost exclusively in children taking aspirin, primarily in association with influenza B virus (or varicella zoster virus), and presents with severe vomiting and confusion, which may progress to coma due to swelling of the brain. Most deaths due to influenza typically occur among persons 12 age 65 years and older. Laboratory Testing Influenza is usually suspected based on characteristic clinical findings, particularly if influenza has been reported in the community. Influenza virus testing is not required to make a clinical diagnosis but can inform clinical management when results may influence decisions to initiate antiviral treatment, perform other diagnostic testing, or implement infection and prevention control measures. Diagnostic tests include: • Molecular assays (i.e., rapid molecular assays, reverse transcription polymerase chain reaction (RT-PCR), and other nucleic acid amplification tests) • Antigen detection tests (i.e., rapid influenza diagnostic tests and immunofluorescence assays) Approved respiratory tract specimens differ among the FDA-cleared influenza tests, so clinicians should refer to the specific test’s package insert for approved respiratory specimens. In addition to diagnostic testing for only influenza virus, the Flu SC2 Multiplex Assay is a real-time RT-PCR test that detects and differentiates RNA from SARS-CoV2, influenza A virus, and influenza B virus in upper or lower respiratory specimens. Serology testing is no longer used for clinical diagnosis of influenza but is still used for research studies. 181 Influenza Information for health care providers on influenza virus testing can be found at www.cdc.gov/flu/professionals/diagnosis/index. htm. Details about the laboratory diagnosis of influenza are available at www.cdc.gov/flu/symptoms/testing.htm. Medical Management Vaccination is the principal means for preventing influenza- related morbidity and mortality, however antiviral agents may be indicated in some situations for preventing and/or treating influenza. Current recommendations and a decision tree for clinicians is available for making antiviral decisions: https://www.cdc.gov/flu/professionals/antivirals/summary- clinicians.htm Influenza Epidemiology ● Reservoir Epidemiology
Recommended publications
  • Influenza Virus Infections in Humans October 2018
    Influenza virus infections in humans October 2018 This note is provided in order to clarify the differences among seasonal influenza, pandemic influenza, and zoonotic or variant influenza. Seasonal influenza Seasonal influenza viruses circulate and cause disease in humans every year. In temperate climates, disease tends to occur seasonally in the winter months, spreading from person-to- person through sneezing, coughing, or touching contaminated surfaces. Seasonal influenza viruses can cause mild to severe illness and even death, particularly in some high-risk individuals. Persons at increased risk for severe disease include pregnant women, the very young and very old, immune-compromised people, and people with chronic underlying medical conditions. Seasonal influenza viruses evolve continuously, which means that people can get infected multiple times throughout their lives. Therefore the components of seasonal influenza vaccines are reviewed frequently (currently biannually) and updated periodically to ensure continued effectiveness of the vaccines. There are three large groupings or types of seasonal influenza viruses, labeled A, B, and C. Type A influenza viruses are further divided into subtypes according to the specific variety and combinations of two proteins that occur on the surface of the virus, the hemagglutinin or “H” protein and the neuraminidase or “N” protein. Currently, influenza A(H1N1) and A(H3N2) are the circulating seasonal influenza A virus subtypes. This seasonal A(H1N1) virus is the same virus that caused the 2009 influenza pandemic, as it is now circulating seasonally. In addition, there are two type B viruses that are also circulating as seasonal influenza viruses, which are named after the areas where they were first identified, Victoria lineage and Yamagata lineage.
    [Show full text]
  • Technical Glossary
    WBVGL 6/28/03 12:00 AM Page 409 Technical Glossary abortive infection: Infection of a cell where there is no net increase in the production of infectious virus. abortive transformation: See transitory (transient or abortive) transformation. acid blob activator: A regulatory protein that acts in trans to alter gene expression and whose activity depends on a region of an amino acid sequence containing acidic or phosphorylated residues. acquired immune deficiency syndrome (AIDS): A disease characterized by loss of cell-mediated and humoral immunity as the result of infection with human immunodeficiency virus (HIV). acute infection: An infection marked by a sudden onset of detectable symptoms usually followed by complete or apparent recovery. adaptive immunity (acquired immunity): See immunity. adjuvant: Something added to a drug to increase the effectiveness of that drug. With respect to the immune system, an adjuvant increases the response of the system to a particular antigen. agnogene: A region of a genome that contains an open reading frame of unknown function; origi- nally used to describe a 67- to 71-amino acid product from the late region of SV40. AIDS: See acquired immune deficiency syndrome. aliquot: One of a number of replicate samples of known size. a-TIF: The alpha trans-inducing factor protein of HSV; a structural (virion) protein that functions as an acid blob transcriptional activator. Its specificity requires interaction with certain host cel- lular proteins (such as Oct1) that bind to immediate-early promoter enhancers. ambisense genome: An RNA genome that contains sequence information in both the positive and negative senses. The S genomic segment of the Arenaviridae and of certain genera of the Bunyaviridae have this characteristic.
    [Show full text]
  • (RSV) Infection? an Analysis Using the Pediatric Investigators Collaborative Network on Infections in Canada (PICNIC) RSV Database
    Does Ribavirin Impact on the Hospital Course of Children With Respiratory Syncytial Virus (RSV) Infection? An Analysis Using the Pediatric Investigators Collaborative Network on Infections in Canada (PICNIC) RSV Database Barbara J. Law, MD*; Elaine E. L. Wang, MDCM‡; Noni MacDonald, MD§; Jane McDonald, MDi; Simon Dobson, MD¶; Francois Boucher, MD#; Joanne Langley, MD**; Joan Robinson, MD‡‡; Ian Mitchell, MD§§; and Derek Stephens MSc‡ ABSTRACT. Objectives. To determine the relation- 20.6%, 20.9%, 15.5%, 15.2%, and 13.3%, respectively. ship between receipt of aerosolized ribavirin and the Across the subsets ribavirin use ranged from 36% to 57% hospital course of high-risk infants and children with of ventilated patients and 6% to 39% of nonventilated respiratory syncytial virus (RSV) lower respiratory infec- patients. For nonventilated patients in each subset the tion (LRI). median RSV-attributable hospital length of stay (RSV- Methods. The 1993–1994 Pediatric Investigators Col- LOS) was 2 to 3 days longer for ribavirin recipients and laborative Network on Infections in Canada (PICNIC) the duration of hypoxia was significantly increased. Du- RSV database consists of prospectively enrolled children ration of intensive care unit (ICU) stay was also increased with acute RSV LRI, admitted to nine Canadian pediatric for all ribavirin-treated subgroups except those with tertiary care centers. After excluding cases with compro- CHD. In contrast, for ventilated patients, ribavirin ther- mised immunity and/or nosocomial infection, subsets apy was
    [Show full text]
  • Anorexia/Cachexia Heart Failure Symptom Management Guideline for Adults, Age 19 and Older in British Columbia
    Anorexia/Cachexia Heart Failure Symptom Management Guideline For adults, age 19 and older in British Columbia What is anorexia? Anorexia is a syndrome characterized by some or all of the following symptoms: loss of appetite, nausea, early satiety, weakness, fatigue, food aversion, and significant physical and/or psychological symptoms. Causes of anorexia are multifactorial and include fatigue, dyspnea, medication side-effects, nausea, depression, anxiety and sodium restricted diets, which may all be found in patients with heart failure. What is cachexia? Cachexia is a syndrome characterized by severe body weight, fat and muscle loss and increased protein catabolism due to underlying disease. The prevalence of cachexia is 16–42% in the heart failure population and is associated with a 50%, 18 month mortality risk independent of variables such as ejection fraction, age and functional ability. How is cachexia diagnosed? Chronic condition with >5% weight loss in <12 months; or body mass index (BMI) <20kg/m2; and 3 out of 5 additional criteria: 1) Fatigue, 2) Decreased muscle strength, 3) Anorexia, 4) Low muscle mass, 5) Abnormal biochemistry *Blood testing to diagnose cachexia in advanced stages of disease is not advocated. Reminder: Malnutrition also affects prognosis in patients with heart failure and is often found in early transitions of the disease. However this symptom management guideline will focus on the assessment and treatment of anorexia and cachexia. Approach to Managing Anorexia/Cachexia Assessment History: When did weight loss begin? How much weight was lost? Obtain baseline (dry) weight. How is [the patients] appetite? What do they eat or drink on a typical day? How has weight loss affected mood? Ask about: nausea, early satiety, dyspnea, poor oral hygiene, dysphagia, malabsorption, bowel habits.
    [Show full text]
  • Current and Novel Approaches in Influenza Management
    Review Current and Novel Approaches in Influenza Management Erasmus Kotey 1,2,3 , Deimante Lukosaityte 4,5, Osbourne Quaye 1,2 , William Ampofo 3 , Gordon Awandare 1,2 and Munir Iqbal 4,* 1 West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Legon, Accra P.O. Box LG 54, Ghana; [email protected] (E.K.); [email protected] (O.Q.); [email protected] (G.A.) 2 Department of Biochemistry, Cell & Molecular Biology, University of Ghana, Legon, Accra P.O. Box LG 54, Ghana 3 Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra P.O. Box LG 581, Ghana; [email protected] 4 The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK; [email protected] 5 The University of Edinburgh, Edinburgh, Scotland EH25 9RG, UK * Correspondence: [email protected] Received: 20 May 2019; Accepted: 17 June 2019; Published: 18 June 2019 Abstract: Influenza is a disease that poses a significant health burden worldwide. Vaccination is the best way to prevent influenza virus infections. However, conventional vaccines are only effective for a short period of time due to the propensity of influenza viruses to undergo antigenic drift and antigenic shift. The efficacy of these vaccines is uncertain from year-to-year due to potential mismatch between the circulating viruses and vaccine strains, and mutations arising due to egg adaptation. Subsequently, the inability to store these vaccines long-term and vaccine shortages are challenges that need to be overcome. Conventional vaccines also have variable efficacies for certain populations, including the young, old, and immunocompromised.
    [Show full text]
  • Adenoviral Vector-Based Vaccine Platforms for Developing the Next Generation of Influenza Vaccines
    Review Adenoviral Vector-Based Vaccine Platforms for Developing the Next Generation of Influenza Vaccines Ekramy E. Sayedahmed 1 , Ahmed Elkashif 1, Marwa Alhashimi 1, Suryaprakash Sambhara 2,* and Suresh K. Mittal 1,* 1 Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease, Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; [email protected] (E.E.S.); [email protected] (A.E.); [email protected] (M.A.) 2 Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA * Correspondence: [email protected] (S.S.); [email protected] (S.K.M.) Received: 2 August 2020; Accepted: 17 September 2020; Published: 1 October 2020 Abstract: Ever since the discovery of vaccines, many deadly diseases have been contained worldwide, ultimately culminating in the eradication of smallpox and polio, which represented significant medical achievements in human health. However, this does not account for the threat influenza poses on public health. The currently licensed seasonal influenza vaccines primarily confer excellent strain-specific protection. In addition to the seasonal influenza viruses, the emergence and spread of avian influenza pandemic viruses such as H5N1, H7N9, H7N7, and H9N2 to humans have highlighted the urgent need to adopt a new global preparedness for an influenza pandemic. It is vital to explore new strategies for the development of effective vaccines for pandemic and seasonal influenza viruses. The new vaccine approaches should provide durable and broad protection with the capability of large-scale vaccine production within a short time. The adenoviral (Ad) vector-based vaccine platform offers a robust egg-independent production system for manufacturing large numbers of influenza vaccines inexpensively in a short timeframe.
    [Show full text]
  • Detection of Influenza a Viruses from Environmental Lake and Pond Ice
    TITLE “DETECTION OF INFLUENZA A VIRUSES FROM ENVIRONMENTAL LAKE AND POND ICE” Zeynep A. Koçer A Dissertation Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY August 2010 Committee: Scott O. Rogers, Advisor W. Robert Midden Graduate Faculty Representative John Castello George Bullerjahn Paul Morris ii ABSTRACT Scott O. Rogers, Advisor Environmental ice is an ideal matrix for the long-term protection of organisms due to the limitation of degradative processes. As a result of global climate change, some glaciers and polar ice fields are melting at rapid rates. This process releases viable microorganisms that have been embedded in the ice, sometimes for millions of years. We propose that viral pathogens have adapted to being entrapped in ice, such that they are capable of infecting naïve hosts after melting from the ice. Temporal gene flow, which has been termed genome recycling (Rogers et al., 2004), may allow pathogens to infect large host populations rapidly. Accordingly, we hypothesize that viable influenza A virions are preserved in lake and pond ice. Our main objective was to identify influenza A (H1-H16) from the ice of a few lakes and ponds in Ohio that have high numbers of migratory and local waterfowl visiting the sites. We developed a set of hemagglutinin subtype-specific primers for use in four multiplex RT-PCR reactions. Model studies were developed by seeding environmental lake water samples in vitro with influenza A viruses and subjecting the seeded water to five freeze-thaw cycles at -20oC and -80oC.
    [Show full text]
  • Cold and Flu Fact Sheet
    Cold and Flu Fact Sheet The common cold, including chest colds, head colds, and the seasonal flu are caused by viruses that can put a damper on your holiday spirit. While Cold and Flu season can start as early as October and can last as late as May, activity peaks during Christmas time and will want to make you say Bah-Humbug! General Information Virology Clinical manifestations Cold - The common cold is a viral infection of the upper Cold - Symptoms of a common cold usually appear about respiratory tract. The most commonly implicated virus is a one to three days after exposure to a cold-causing virus. rhinovirus. Other commonly implicated viruses include Signs and symptoms typically include a runny/stuffy nose, human coronavirus, influenza viruses, and adenovirus. itchy/sore throat, cough, congestion, slight body aches and Frequently, more than one virus is present. The difficultly mild headache, sneezing, water eyes, and mild fatigue. with pathogens associated with the common cold is that some viruses are enveloped, meaning they are easy to kill Flu - Symptoms of seasonal influenza are very similar to (such as influenza) while others are non-enveloped, those of the common cold, except the flu can be meaning they are harder to kill (such as rhinovirus). This distinguished by a high fever and more severe symptoms emphasizes the importance of choosing disinfectant of the common cold. products with the ability to kill both enveloped and non- enveloped viruses. Pandemics and Outbreaks A pandemic is a global disease outbreak. It is determined Flu - Influenza (commonly known as the flu) are influenza by how the disease spreads, not by how many deaths it viruses which are enveloped, RNA viruses that make up causes.
    [Show full text]
  • Evolution and Adaptation of the Avian H7N9 Virus Into the Human Host
    microorganisms Review Evolution and Adaptation of the Avian H7N9 Virus into the Human Host Andrew T. Bisset 1,* and Gerard F. Hoyne 1,2,3,4 1 School of Health Sciences, University of Notre Dame Australia, Fremantle WA 6160, Australia; [email protected] 2 Institute for Health Research, University of Notre Dame Australia, Fremantle WA 6160, Australia 3 Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, The University of Western Australia, Nedlands WA 6009, Australia 4 School of Medical and Health Sciences, Edith Cowan University, Joondalup WA 6027, Australia * Correspondence: [email protected] Received: 19 April 2020; Accepted: 19 May 2020; Published: 21 May 2020 Abstract: Influenza viruses arise from animal reservoirs, and have the potential to cause pandemics. In 2013, low pathogenic novel avian influenza A(H7N9) viruses emerged in China, resulting from the reassortment of avian-origin viruses. Following evolutionary changes, highly pathogenic strains of avian influenza A(H7N9) viruses emerged in late 2016. Changes in pathogenicity and virulence of H7N9 viruses have been linked to potential mutations in the viral glycoproteins hemagglutinin (HA) and neuraminidase (NA), as well as the viral polymerase basic protein 2 (PB2). Recognizing that effective viral transmission of the influenza A virus (IAV) between humans requires efficient attachment to the upper respiratory tract and replication through the viral polymerase complex, experimental evidence demonstrates the potential H7N9 has for increased binding affinity and replication, following specific amino acid substitutions in HA and PB2. Additionally, the deletion of extended amino acid sequences in the NA stalk length was shown to produce a significant increase in pathogenicity in mice.
    [Show full text]
  • Myalgia As the Revealing Symptom of Multicore Disease and Fibre Type Disproportion Myopathy C Sobreira*, W Marques Jr, a a Barreira
    1317 J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.74.9.1317 on 21 August 2003. Downloaded from SHORT REPORT Myalgia as the revealing symptom of multicore disease and fibre type disproportion myopathy C Sobreira*, W Marques Jr, A A Barreira ............................................................................................................................. J Neurol Neurosurg Psychiatry 2003;74:1317–1319 toms of CFTDM are more uniform. However, some patients Background: Multicore disease and congenital fibre type exhibit unusual phenotypes such as rigid spine syndrome,10 11 disproportion myopathy are diseases assigned to the significant dysmorphic features,12 or very mild symptoms.13 heterogeneous group of congenital myopathies. Although Cramps are uncommon complaints in patients with multi- hypotonia and muscle weakness appearing in early life core disease or CFTDM and exercise related muscle pain has are the commonest manifestations of these diseases, not been associated with multicore disease. Aimed at contrib- distinct phenotypes and late onset cases have been uting to better delineating the phenotypic expression of these described. myopathies, we present the clinical cases of patients suffering Objective: To report the occurrence of myalgia as the late onset, generalised muscle pain, whose muscle biopsies revealing symptom of multicore disease and fibre type dis- revealed the distinguishing features of either multicore proportion myopathy. disease or CFTDM. Methods: The clinical cases of three patients with fibre type disproportion myopathy and one with multicore CASE REPORTS disease are described. Skeletal muscle biopsies were Patient 1 processed for routine histological and histochemical A 24 year old man was referred to a neurologist owing to studies. exercise related myalgia involving both the upper and lower Results: The clinical picture was unusual in that the symp- limbs.
    [Show full text]
  • Perspectives
    PERSPECTIVES in humans. In the 1957 H2N2-SUBTYPE pan- OPINION demic virus, both influenza surface proteins, HA and neuraminidase (NA), and one inter- nal protein, polymerase B1 (PB1), were Evidence of an absence: closely related to Eurasian wild waterfowl influenza proteins6,7.In 1968, the H3N2 pan- the genetic origins of the 1918 demic virus contained novel HA and PB1 proteins, also apparently of Eurasian wild waterfowl origin7,8.Although it is not known pandemic influenza virus exactly how these reassortant viruses were generated, pigs can be infected with both Ann H. Reid, Jeffery K. Taubenberger and Thomas G. Fanning avian and human influenza strains and this species has been suggested as a potential ‘mix- Abstract | Annual outbreaks of influenza A (HA) protein on the virus surface can greatly ing vessel’ for the generation of pandemic infection are an ongoing public health threat reduce the effectiveness of existing antibodies, viruses2,9. and novel influenza strains can periodically leaving people vulnerable to repeated influenza In 1918, the most devastating influenza emerge to which humans have little immunity, infections throughout their lives. In addition pandemic in history killed at least 40 million resulting in devastating pandemics. The 1918 to this gradual change in the influenza virus, people10,11.In addition to a death toll that is pandemic killed at least 40 million people which is known as ANTIGENIC DRIFT, influenza A several times higher than that of other worldwide and pandemics in 1957 and 1968 viruses can acquire novel surface proteins influenza pandemics, the 1918 H1N1 virus caused hundreds of thousands of deaths.
    [Show full text]
  • Avian Influenza Importance Avian Influenza Viruses Are Highly Contagious, Extremely Variable Viruses That Are Widespread in Birds
    Avian Influenza Importance Avian influenza viruses are highly contagious, extremely variable viruses that are widespread in birds. Wild birds in aquatic habitats, particularly waterfowl and Fowl Plague, Grippe Aviaire shorebirds, are thought to be their natural reservoir hosts, but domesticated poultry can also be infected.1-9 Most of these viruses cause only mild disease in poultry, and are called low pathogenic avian influenza (LPAI) viruses. Highly pathogenic avian Last Updated: September 2014 influenza (HPAI) viruses can develop from certain LPAI viruses, usually while they are circulating in poultry flocks.10 HPAI viruses can kill up to 90-100% of the flock, and cause epidemics that may spread rapidly, devastate the poultry industry and result 2,11,12 in severe trade restrictions. In poultry, the presence of LPAI viruses capable of 11 evolving into HPAI viruses can also affect international trade. Avian influenza viruses can occasionally affect mammals, including humans, usually after close contact with infected poultry. While infections in people are often limited to conjunctivitis or mild respiratory disease, some viruses can cause severe illness. In particular, Asian lineage H5N1 HPAI viruses have caused rare but life- threatening infections, now totaling more than 650 laboratory-confirmed cases since 1997,13 while more than 400 serious illnesses were caused by an H7N9 LPAI virus in China during 2013-2014 alone.14,15 H5N1 HPAI viruses can also infect other species of mammals, in some cases fatally.12,16-35 In rare cases, avian influenza viruses can become adapted to circulate in a mammalian species, and these viruses have caused or contributed to at least three past pandemics in humans.
    [Show full text]