Mass Releases of Genetically Modified Insects in Area-Wide Pest

Total Page:16

File Type:pdf, Size:1020Kb

Mass Releases of Genetically Modified Insects in Area-Wide Pest sustainability Article Mass Releases of Genetically Modified Insects in Area-Wide Pest Control Programs and Their Impact on Organic Farmers R. Guy Reeves 1,* and Martin Phillipson 2 1 Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany 2 College of Law, University of Saskatchewan, Saskatoon, SK S7N 5A6, Canada; [email protected] * Correspondence: [email protected]; Tel.: +49-4522-763-376 Academic Editor: Gerhart U. Ryffel Received: 22 October 2016; Accepted: 22 December 2016; Published: 1 January 2017 Abstract: The mass release of irradiated insects to reduce the size of agricultural pest populations of the same species has a more than 50-year record of success. Using these techniques, insect pests can be suppressed without necessarily dispersing chemical insecticides into the environment. Ongoing release programs include the suppression of medfly at numerous locations around the globe (e.g., California, Chile and Israel) and the pink bollworm eradication program across the southern USA and northern Mexico. These, and other successful area-wide programs, encompass a large number of diverse organic farms without incident. More recently, mass release techniques have been proposed that involve the release of genetically modified insects. Given that the intentional use of genetically modified organisms by farmers will in many jurisdictions preclude organic certification, this prohibits the deliberate use of this technology by organic farmers. However, mass releases of flying insects are not generally conducted by individual farmers but are done on a regional basis, often without the explicit consent of all situated farms (frequently under the auspices of government agencies or growers’ collectives). Consequently, there exists the realistic prospect of organic farms becoming involved in genetically modified insect releases as part of area-wide programs or experiments. Herein, we describe genetically modified insects engineered for mass release and examine their potential impacts on organic farmers, both intended and unintended. This is done both generally and also focusing on a hypothetical organic farm located near an approved experimental release of genetically modified (GM) diamondback moths in New York State (USA). Keywords: organic certification; sterile insect technique; genetically modified insects; diamondback moth; Plutella xylostella; law; regulation; coexistence; GM-SIT; biotechnology 1. Introduction The intentional release of sterile or partially sterile insects as a means of reducing the size of reproductive populations of the same species acting as agricultural pests has been practiced for over 50 years (Chapter 1 in [1]). While large numbers of farmers throughout the globe continue to benefit from successful historical pest eradication programs or ongoing pest suppression programs, current awareness of this approach is often limited. We aim to briefly describe the principles and practices of the conventional sterile insect technique (SIT) and then discuss the implications for certified organic farmers of proposed elaborations of SIT that incorporate the mass release of genetically modified insects (GM-SIT). This includes discussion of not only intended biological outcomes [2], but also a holistic consideration of other likely impacts on farmers. In doing so it is important to emphasize that for many producers and consumers organic farming is much more than adherence to standards or certification regimes and encompasses principles of health, ecology, fairness and Sustainability 2017, 9, 59; doi:10.3390/su9010059 www.mdpi.com/journal/sustainability Sustainability 2017, 9, 59 2 of 24 Sustainability 2017, 9, 59 2 of 24 stewardshipThis is in addition [3]. This to is emphasizing in addition to the emphasizing importance the of importance farmer autonomy of farmer and autonomy genuine and choice genuine for choiceconsumers, for consumers, both of which both remain of which at the remain core of at athe global core industry of a global estimated industry to be estimated worth US$ to be80 b worthillion US$80in 2015billion [4]. While in 2015 the [above4]. While principles the above do not principles appear doto have not appear been breached to have been and breachedhave not adversely and have notimpacted adversely organic impacted farmers organic operating farmers in operating areas where in areas conventional where conventional (non-GM) (non-GM) SIT releases SIT releases have haveoccurred occurred (Figure (Figure 1), the1), theproposed proposed incorporation incorporation of ofGM GM technologies technologies in in future programsprograms stillstill warrants careful consideration. Failure to do so could expose farmers to unnecessary and potentially harmful economiceconomic uncertainty. uncertainty. From From the the perspective perspective of organic of organic farmers, farmers the fact, the that fact insect that pestinsect control pest programscontrol programs are generally are generally conducted conducted on an area-wide on an area basis-wide is ofbasis particular is of particular concern, concern as well, asas thewell fact as thatthe fact historically that historically they have they involved have someinvolved degree some of compulsorydegree of compulsory participation. participation. It is this compulsion It is this thatcompulsion appears that to run appears counter to to run efforts counter towards to efforts coexistence towards [5], andcoexistence the likely [5], negative and the perception likely negative of the useperception of this technologyof the use byof consumersthis technology warrants by consumers responsible warrant discussion,s responsible ideally before discussion, releases ideally of GM insectsbefore intoreleases the environment of GM insects occur. into Furthermore, the environment most current occur. measuresFurthermore, aimed most at fostering current coexistence measures throughaimed at limiting fostering cross-contamination coexistence through of cropslimiting in fieldscross-contamination rely on promoting of crops particular in fields agricultural rely on practices,promoting often particular the use agricultural of buffer zones, practices, to limit often the the flow use of of GM buffer materials zones, between to limit fields.the flow However, of GM inmaterials SIT of allbetween types, fields. the movement However of, in sterile SIT of (or all partially types, the sterile) movement insects of between sterile (or fields partially and farms sterile) is generallyinsects between a necessary fields prerequisite and farms is for generally successfully a necessary suppressing prerequisite pest populations for successfully below economically suppressing significantpest populations thresholds. below This economically is because significant the infestation thresholds. of crops This from is because untreated the areas infestation is a more of rapidcrops processfrom untreated (occurring areas in is as a little more time rapid as process it takes a(occurring mated female in as tolittle fly time into anas it area) takes than a mated is suppression female to byfly SITinto (which an area) takes than generations). is suppression The by need SIT (which to suppress takes insects generations). on a suitably The need scaled to suppress area-wide insects basis alsoon a frequentlysuitably scaled dictates area that-wide control basis programs also frequently are undertaken dictatesnot that only control on agricultural programs are land undertaken but also in urbannot only and on suburban agricultural areas. land but also in urban and suburban areas. Figure 1. A wide variety of U.S.U.S. farmers have reducedreduced their reliance on chemical pest control due to the success of past andand ongoingongoing area-widearea-wide pest controlcontrol programs.programs. Locations of some of the major conventional SIT control programs in the USA areare shown.shown. Gr Grayay states represent those with active medflymedfly (an exotic pest ofof manymany fruitfruit crops)crops) suppressionsuppression programs.programs. Dotted states represent those involved in the pink bollworm (an exotic pest of cottoncotton andand okra)okra) eradicationeradication program inin Southern U.S.U.S. states andand NorthernNorthern Mexico.Mexico.The The thick thick black black line line represents represents the the approximate approximate maximum maximum extent extent of screwwormof screwworm before before its its eradication eradication using using SIT. SIT. None None of theseof these programs programs utilized utilized GM-SIT. GM-SIT. 1.1. What Is Conventional (Non-GM)(Non-GM) Sterile Insect Technique andand HowHow IsIs ItIt Used?Used? The releaserelease of of sterile sterile (or (or partially partially sterile) sterile) individuals individuals as a as means a means to reduce to reduce the reproductive the reproductive size of asize pest of population a pest population dates back dates to theback 1930s to the and 1930s was firstand formulatedwas first formulated by the Russian by the scientist Russian Alexander scientist SerebrovskyAlexander Serebrovsky (Chapter 1 in(C [hapter1]). The 1 basic in [1]). principle The basic of the principle approach of is the described approach in Figureis described2a. To bein successfulFigure 2a. inTo reducing be successful target in pest reducing population target sizes, pest it ispopulation generally essentialsizes, it is that generally releases essential be conducted that releases be conducted on an area-wide basis without leaving any populations from which pests could readily re-establish themselves. Typically,
Recommended publications
  • Twenty-Five Pests You Don't Want in Your Garden
    Twenty-five Pests You Don’t Want in Your Garden Prepared by the PA IPM Program J. Kenneth Long, Jr. PA IPM Program Assistant (717) 772-5227 [email protected] Pest Pest Sheet Aphid 1 Asparagus Beetle 2 Bean Leaf Beetle 3 Cabbage Looper 4 Cabbage Maggot 5 Colorado Potato Beetle 6 Corn Earworm (Tomato Fruitworm) 7 Cutworm 8 Diamondback Moth 9 European Corn Borer 10 Flea Beetle 11 Imported Cabbageworm 12 Japanese Beetle 13 Mexican Bean Beetle 14 Northern Corn Rootworm 15 Potato Leafhopper 16 Slug 17 Spotted Cucumber Beetle (Southern Corn Rootworm) 18 Squash Bug 19 Squash Vine Borer 20 Stink Bug 21 Striped Cucumber Beetle 22 Tarnished Plant Bug 23 Tomato Hornworm 24 Wireworm 25 PA IPM Program Pest Sheet 1 Aphids Many species (Homoptera: Aphididae) (Origin: Native) Insect Description: 1 Adults: About /8” long; soft-bodied; light to dark green; may be winged or wingless. Cornicles, paired tubular structures on abdomen, are helpful in identification. Nymph: Daughters are born alive contain- ing partly formed daughters inside their bodies. (See life history below). Soybean Aphids Eggs: Laid in protected places only near the end of the growing season. Primary Host: Many vegetable crops. Life History: Females lay eggs near the end Damage: Adults and immatures suck sap from of the growing season in protected places on plants, reducing vigor and growth of plant. host plants. In spring, plump “stem Produce “honeydew” (sticky liquid) on which a mothers” emerge from these eggs, and give black fungus can grow. live birth to daughters, and theygive birth Management: Hide under leaves.
    [Show full text]
  • Seasonal Abundance of Adult Pink Bollworm Pectinophora Gossypiella (Saunders) at Tandojam, Pakistan
    Pakistan J. Zool., pp 1-4, 2021. DOI: https://dx.doi.org/10.17582/journal.pjz/20200115100130 Short Communication Seasonal Abundance of Adult Pink Bollworm Pectinophora gossypiella (Saunders) at Tandojam, Pakistan Muhammad Usman Asif*, Raza Muhammad, Waseem Akbar, Mubasshir Sohail, Muhammad Awais and Javed Asgher Tariq Nuclear Institute of Agriculture, Tandojam-70060 Article Information ABSTRACT Received 15 January 2020 Revised 29 May 2020 The seasonal abundance of the pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Accepted 03 September 2020 Gelechiidae), was investigated from January 2016 to December 2018 in Tandojam, Pakistan, through Available online 28 January 2021 pheromone trapping. Results showed that adult moths were present throughout the year in Tandojam. Authors’ Contribution Moth abundance varied among months due to differences in weather conditions and host availability. MUA and RM designed the study. The greatest moth populations were observed from August to November. Peak abundance occurred in MUA, WA and MA conducted the September 2016 and 2017 (103.8 and 95.8 moths/trap, respectively), and in October 2018 (156.6 moths/ study. MUA and MS analyzed the trap). The lowest populations were recorded in June 2016 and 2018 (4.3 and 2.3 moths/trap, respectively), data. MUA, RM and JAT wrote the and in February 2017 (1.5 moths/trap). Trap catches were positively correlated with temperature and manuscript. relative humidity, but negatively correlated with sunshine, in all three years. Rainfall was positively Key words correlated with trap catches in 2016 and 2017, but negatively correlated in 2018. Multiple regression Abiotic factors, Delta traps, analysis was used to estimate the combined effect of all weather factors on population fluctuation of pink Gossyplure, Multiple regression.
    [Show full text]
  • Chrysoperla Carnea by Chemical Cues from Cole Crops
    Biological Control 29 (2004) 270–277 www.elsevier.com/locate/ybcon Mediation of host selection and oviposition behavior in the diamondback moth Plutella xylostella and its predator Chrysoperla carnea by chemical cues from cole crops G.V.P. Reddy,a,* E. Tabone,b and M.T. Smithc a Agricultural Experiment Station, College of Agriculture and Life Sciences, University of Guam, Mangilao, GU 96923, USA b INRA, Entomologie et Lutte Biologique, 37 Bd du Cap, Antibes F-06606, France c USDA, ARS, Beneficial Insect Introduction Research Unit, University of Delaware, 501 S. Chapel, St. Newark, DE 19713-3814, USA Received 28 January 2003; accepted 15 July 2003 Abstract Host plant-mediated orientation and oviposition by diamondback moth (DBM) Plutella xylostella (L.) (Lepidoptera: Ypo- nomeutidae) and its predator Chrysoperla carnea Stephens (Neuroptera: Chrysopidae) were studied in response to four different brassica host plants: cabbage, (Brassica oleracea L. subsp. capitata), cauliflower (B. oleracea L. subsp. botrytis), kohlrabi (B. oleracea L. subsp. gongylodes), and broccoli (B. oleracea L. subsp. italica). Results from laboratory wind tunnel studies indicated that orientation of female DBM and C. carnea females towards cabbage and cauliflower was significantly greater than towards either broccoli or kohlrabi plants. However, DBM and C. carnea males did not orient towards any of the host plants. In no-choice tests, oviposition by DBM did not differ significantly among the test plants, while C. carnea layed significantly more eggs on cabbage, cauliflower, and broccoli than on kohlrabi. However, in free-choice tests, oviposition by DBM was significantly greater on cabbage, followed by cauliflower, broccoli, and kohlrabi, while C.
    [Show full text]
  • Vegetable Insects Department of Entomology
    E-99-W Vegetable Insects Department of Entomology MANAGING INSECT PESTS OF COMMERCIALLY GROWN CRUCIFERS Ricky E. Foster, Extension Entomologist The crucifers include cabbage, caulifl ower, broccoli, The following practices will reduce cabbage maggot injury. Brussels sprouts, turnips, radishes, kale, rutabaga, mustard, • Disk crop residues immediately after harvest to reduce collards, horseradish, and other crucifers. All of the crucifers overwintering populations. are subject to attack by insects. Some, such as radishes, can • Plant in well-drained soils when soil temperatures exceed usually be grown without insect damage and others, such as 50°F. cabbage, must be managed carefully to avoid serious insect • Do not plant in fi elds to which animal manure has been damage. recently applied or in which a cover crop has been plowed down within 3-4 weeks of planting. CABBAGE MAGGOTS • Use the soil insecticides diazinon, Lorsban, or Capture LFR in the seed furrow or as transplant drenches. The fi rst insect of concern on crucifers is usually the cab- bage maggot. Cabbage maggot overwinters as pupae in the FLEA BEETLES soil. The fl ies, slightly smaller than a housefl y, emerge from the soil in late April or early May and lay white eggs at the Flea beetles are almost always a pest of crucifers, es- bases of newly set plants. Emergence usually coincides with pecially early in the growing season. Flea beetles are small, the time when yellow rocket, a common weed, is in full bloom. hard-shelled insects, so named because their enlarged hind Larvae from this fi rst generation tunnel in the roots of legs allow them to jump like fl eas when disturbed.
    [Show full text]
  • Developing IPM Packages for Vegetable Crops in West Africa and South Asia
    Developing IPM Packages for Vegetable Crops in West Africa and South Asia Douglas G. Pfeiffer Dept. of Entomology Countries in West African IPM CRSP Senegal, Mali, Ghana West African team Senegal, Mali, Ghana US: Doug Pfeiffer, Don Mullins, Carlyle Brewster, Jim Westwood, Pat Hipkins, Bob Gilbertson, Sally Miller, George Mbata Mali: Kadiatou Toure Gamby, Moussa Noussourou, Aminata Dolo, Sidiki Traore, Issa Sidibe Senegal: Emile Coly, Dienaba Sall Ghana: Michael Osei, Brandford Mochiah, Eric Cornelius Initial planning Initial planning Dogon Country Dogon Country Field visits in Senegal, Mali Obstacles Extension resources Obstacles Extension resources Pesticides readily available – insufficient knowledge Obstacles Extension resources Pesticides readily available – insufficient knowledge Obstacles Extension resources Pesticides readily available – insufficient knowledge In one field, containers for: lamba cyhalothrin/acetamiprid deltamethrin methomyl cartap abamectin Bt West Africa IPM Packages •Objective 1: Develop and implement an IPM package for tomato in Ghana, Mali and Senegal. •Objective 2: Develop and implement potato IPM packages in Mali and Senegal •Objective 3: Develop and implement IPM packages for cabbage in Mali, Senegal, with new addition of Ghana What is an IPM Package •Essentially the same as an IPM program •A set of practices to present to farmer, that address pest management issues from site selection through harvest, that when followed, assure a crop produced in a sustainable fashion West Africa IPM Packages •Objective
    [Show full text]
  • Diamondback Moth
    FS232 Fact sheet For a comprehensive list of our publications visit Insect Pests of the Home Garden Series www.rcre.rutgers.edu Diamondback Moth Gerald M. Ghidiu, Ph.D., Extension Specialist in Vegetable Entomology Adult (moth) Larva and damage Pupa Injury: spots down the back (hence the name, “diamondback moth”). The female’s wings are uniformly brownish. Diamondback moth larvae are usually minor pests of Larvae are yellowish-green in color, small (up to 1/3 cabbage and related plants in New Jersey. When the inch long), tapered at both ends, have very fine erect population is low, feeding damage appears as small black hairs scattered over their body, and display holes from beneath the leaf but not completely nervous, wriggling movements when disturbed. If through to the upper surface of the leaf, or as very touched, they often wriggle backwards over the leaf small, numerous pinholes, generally to older leaves on edge and hang by a silk-like thread. the outer portion of the plant. In cooler weather, young larvae mine within the leaf. When the larval population is high, plants may become riddled with Life History: holes, resulting in poor quality or unmarketable Diamondback moths, Plutella xylostella (Linnaeus), heads. Damage is generally more severe during dry overwinter in cabbage residues or crop debris, weather conditions. emerging in late spring. Females deposit small, round, yellowish-white eggs on the underside of leaves. Description: Young larvae can become fully grown in 20–25 days and attach themselves to the underside of the leaf in The adult diamondback moths are small, grayish- a small, delicate-appearing, lace-like cocoon which brown moths, about 3/5 inch across, with white loosely covers the pupa.
    [Show full text]
  • The Pathogens of Diamondback Moth and Their Potential for Its Control A
    The Pathogens of Diamondback Moth and Their Potential for its Control a Review Neil Wilding Rothamsted Experimental Station, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom Abstract The larvae and less frequently the pupae of Plutella xylostella (L) are sometimes attacked naturally by pathogens, particularly two fungi of the family Entomophthoraceae, Erynia blunckii and Zoophthora radicans. Other pathogens recorded include one other entomophthoraceous fungus, a granulosis virus, one or possibly two nucleopolyhedrosis viruses and Bacillus thuringiensis var kurstaki. In the laboratory, larvae were also susceptible to strains of several deuteromycete fungi, other nucleopolyhedrosis viruses and several varieties of B. thuringiensis. Of these pathogens, only B. thuringiensis is produced commercially and the derived products are used to control P. xylostella in the field. The bacterium, however, spreads inefficiently between host individuals and for effective control, as with chemical insecticides, repeated applications are necessary. Laboratory tests indicate that E. blunckii, Z. radicans, some of the deuteromycetes and certain viruses, all of which spread readily between individuals, may have potential as control agents. While none of these is produced commercially, methods for their mass cultivation are available though they need development. For each of these pathogens further laboratory and field trials are needed to select the most infective strains and to test application methods and formulations. Introduction The diamondback moth (DBM), Plutella xylostella (L) (Lepidoptera: Ypono- meutidae), occurs throughout the world wherever crucifers are grown. Its recorded distribution has been mapped (CIE 1967). In many areas DBM causes little damage, probably because its numbers are held in check by natural enemies (Hardy 1938). In the UK the insect is widespread but causes only sporadic damage chiefly in the east.
    [Show full text]
  • Biopesticides Fact Sheet for Bacillus Thuringiensis Vip3aa19 (OECD
    Bacillus thuringiensis Vip3Aa19 (OECD Unique Identifier SYN-IR102-7) and modified Cry1Ab (OECD Unique Identifier SYN-IR67B-1) insecticidal proteins and the genetic material necessary for their production in COT102 X COT67B cotton (006499 and 006529) Fact Sheet Summary EPA has conditionally registered a new pesticide product containing Syngenta Seeds Inc.’s new active ingredients, Bacillus thuringiensis Vip3Aa19 (OECD Unique Identifier SYN-IR102-7) and modified Cry1Ab (OECD Unique Identifier SYN-IR67B-1) insecticidal proteins and the genetic material necessary for their production in COT102 X COT67B cotton. Syngenta has trademarked this product as VipCot -- the trademark name of VipCot will be used in this document to describe COT102 X COT67B cotton. The Agency has determined that the use of this pesticide is in the public interest and that it will not cause any unreasonable adverse effects on the environment during the time of conditional registration. The new cotton plant-incorporated protectant, VipCot, produces its own insecticidal proteins within the cotton plant. These proteins were derived from Bacillus thuringiensis (Bt), a naturally occurring soil bacterium. The modified Cry1Ab and Vip3Aa19 proteins used in this product control lepidopteran pests of cotton. On June 26, 2008, tolerance exemptions under 40 CFR Part 174 were approved for Bacillus thuringiensis modified Cry1Ab protein as identified under OECD Unique Identifier SYN-IR67B-1 in cotton (40 CFR 174.529) and Vip3Aa proteins in corn and cotton (40 CFR 174.501). The exemption
    [Show full text]
  • Diamondback Moth and Its Natural Enemies in Jamaica and Some Other Caribbean Islands M
    26 Diamondback Moth and its Natural Enemies in Jamaica and Some Other Caribbean Islands M. M. Alam CARDI, University of the West Indies, Mona Campus, Kingston 7, Jamaica, W.I. Abstract Diamondback moth (Plutella xylostella (L.)) is widely distributed in the Caribbean. In Jamaica, amongst 14 pest species feeding on cabbage, cauliflower and other crucifers, diamondback moth, cabbage white butterfly and armyworms inflict the highest damage. The combined crop damage from these pests ranges from 74 to 100%, averaging 79%. Of these, diamondback moth alone represents over 75% of the pest populations, causing up to 90% crop loss. The highest (February 1989) and lowest (August 1989) populations per plant were 43 and 1 larvae in Douglas Castle and 63 and 2 larvae, respectively, in Castle Kelly areas. In Jamaica, five parasite species, viz. Trichogramma sp., Diadegma insulare, Cotesia ( = Apanteles) sp. (glomeratus group), Oomyzus ( = Tetrastichus) sokolowskii and Trichospilus diatraeae were found parasitizing different developmental stages of the pest. Additionally, Coleomegilla maculata, Cycloneda sanguinea, Toxomerus dispar, Toxomerus watsoni and Pseudodorus clavatus; Ceraeochrysa claveri, and Belonuchus gagates were preying upon them. The fungi Beauveria bassiana, Hirsutella sp. and Paecylomyces sp. were found infecting larvae and pupae in the plains and sub-mountain areas. During March 1989, a larval parasite Cotesia plutellae was introduced from Barbados. Soon after its release at the University of the West lndies Mona Campus and Bodles Agricultural Experimental Station, it was recovered. Between March 1989 and July 1990, the levels of parasitism at Bodles, ranged from 5.4 to 88.7% (average 51%). As a result of high mortality caused by C.
    [Show full text]
  • Pectinophora Gossypiella (Saunders)
    Keys About Fact Sheets Glossary Larval Morphology References << Previous fact sheet Next fact sheet >> GELECHIIDAE - Pectinophora gossypiella (Saunders) Taxonomy Click here to download this Fact Sheet as a printable PDF Gelechioidea: Gelechiidae: Pexicopiinae: Pectinophora gossypiella (Saunders) Common names: pink bollworm Synonyms: Gelechia umbripennis Larval diagnosis (Summary) Fig. 1: Late instar, lateral view Adfrontal setae are widely separated and AF2 is at the apex of the front Mandible with four teeth, the last one smaller than the others Crescent shaped marking often present on the prothoracic shield Abdominal prolegs with crochets in a uniordinal penellipse Anal crochets in a single uninterrupted band SD1 on A9 is setaform, not hairlike Fig. 2: Late instar, lateral view SD1 on A8 is dorsad to the spiracle Host/origin information The pink bollworm is most commonly intercepted on okra (Abelmoschus esculentus) originating from the Caribbean. More than 89% of all interceptions are from Haiti. Origin Host(s) Haiti Abelmoschus esculentus Fig. 3: T1 shield Recorded distribution Pectinophora gossypiella is distributed in scattered locations throughout southern Europe, Africa, the Middle East, Asia, and Australia. In the New World it occurs from the southern U.S. to Argentina, including the Caribbean (Gall 1966, Hill 1975). Identifcation authority (Summary) It is important to restrict identifications of P. gossypiella to the proper hosts and known distribution. Pectinophora gossypiella feeds on Malvaceae and has been recorded from the Fig. 4: Abd. crochets Fig. 5: Anal crochets locations listed above. Many of the exotic species related to the pink bollworm, although not common at ports, represent a serious threat to North American agriculture.
    [Show full text]
  • Pink Bollworm
    Authors Crop Protection Folder Series: 7 of 11 Prediction Criteria: insecticidal spray is arrived at using the male catches in English Version 0 Dr. S. Vennila Maximum temperature greater than 33 C, morning the traps. If the moth catches exceed eight per trap for Dr. V. K. Biradar relative humidity less than 70 %, evening relative three consecutive days an insecticidal spray in the field is Division of Crop Protection humidity greater than 40 % during the standard weeks of desired. When much of the bolls on the plants are 20-25 Central Institute for Cotton Research 40, 41 and 43, and less than 12°C minimum temperature days old during October end and November insecticidal Nagpur Mr. M. Sabesh between 48 and 49, respectively result in P. gossypiella protection is a must. In the absence of pheromone traps, Central Institute for Cotton Research (R. S.) severity. assessment of pink bollworm damage should be based on Coimbatore Pest Management Options: destructive sampling (boll cracking method) and & Know Your Cotton Insect Pest Cultural control plays a key role in keeping down the chemical spray should be taken up when two live larvae Dr. O. M. Bambawale PINK BOLLWORM number of pink bollworm carry-over between cotton National Centre for Integrated Pest Management are found in 20 medium sized green bolls sampled per New Delhi crops. Maintenance of host free period during off-season acre. Pyrethroids can be used against pink bollworm Common Name : Pink bollworm is a must to ensure a pink boll worm free next season. during this period. The open bolls on the plants should be Local Name : Gulabi/Shendri bond ali Therefore, effective measures of prevention of pink harvested before the spray, as there is likelihood of aphid Scientific Name : Pectinophora gossypiella Saund.
    [Show full text]
  • Diamondback Moth in North America A
    50 Insecticide Resistance of Diamondback Moth in North America A. M. Shelton and J. A. Wyman¹ New York State Agricultural Experiment Station. Geneva. New York 14456. USA 'University of Wisconsin,. Madison, Wisconsin, 53706, USA Abstract The extent and geographic distribution of resistance to methomyl, permethrin and methamidophos in 44 populations of diamondback moth, Plutella xylostella (L.) from 19 states within the U.S., Mexico, Canada and Belize was determined in 1988. Widespread resistance to all three insecticides was confirmed. Resistance was generally highest in populations originating from southern states but scattered populations with high levels of resistance were also detected in northern states. In most instances where resistance was detected to one insecticide, there was also resistance to the other two. Highest levels of resistance were detected for methomyl. During 1989, diamondback moth was imported into New York on southern cabbage transplants (seedlings). During June, when most transplants arrived in New York, DBM infestations were as high as 12.8 insects per 100 transplants on an individual shipment. Compared to a standard susceptible field population, the diamondback moth which were collected from transplants had moderate to high (> 100-fold in one case) levels of resistance to permethrin and methomyl. In 1990, eleven diamondback moth populations were surveyed for susceptibility to two commercial formulations of Bacillus thuringiensis. High levels of resistance (in some cases > 200-fold) were found in populations which originated from Florida. Introduction The diamondback moth (DBM) Plutella xylostella (L.) (Lepidoptera:Yponomeutidae)is a key pest of cruciferous crops throughout the world. In tropical and subtropical areas, crucifer production has been seriously affected in recent years by DBM which has developed resistance to a wide range of insecticides (Sun et al.
    [Show full text]