Methods of Quantum Information Processing

Total Page:16

File Type:pdf, Size:1020Kb

Methods of Quantum Information Processing 1 Methods of Quantum Information Processing (with an emphasis on optical implementations) Adam Miranowicz e-mail: [email protected] http://zon8.physd.amu.edu.pl/»miran summer semester 2008 2 Keywords ² quantum logic gates ² quantum entanglement ² quantum cryptography ² quantum teleportation ² quantum algorithms ² quantum error correction ² quantum tomography ² solid-state implementations of quantum computing 3 Basic textbook: 1. Quantum Computation and Quantum Information by Michael A. Nielsen and Isaac L. Chuang (Cambridge, 2000) Review articles on quantum-optical computing: 1. Linear optical quantum computing, P. Kok, W.J. Munro, K. Nemoto, T.C. Ralph, J. P. Dowling, G.J. Milburn, free downloads at http://arxiv.org/quant-ph/0512071. 2. Linear optics quantum computation: an overview, C.R. Myers, R. Laflamme, free downloads at http://arxiv.org/quant-ph/0512104. 3. Quantum optical systems for the implementation of quantum information processing, T.C. Ralph, free downloads at http://arxiv.org/quant-ph/0609038. 4. Quantum mechanical description of linear optics J. Skaar, J.C.G. Escartin, H. Landro, Am. J. Phys. 72, 1385-1391 (2005). 4 Other Textbooks on Quantum Computing 1. Quantum Computing by Joachim Stolze, Dieter Suter 2. Approaching Quantum Computing by Dan C. Marinescu, Gabriela M. Marinescu 3. Introduction to Quantum Computation and Information edited by Hoi-Kwong Lo, Tim Spiller, Sandu Popescu 4. Quantum Computing by Mika Hirvensalo 5. Explorations in Quantum Computing by Colin P. Williams, Scott H. Clearwater 6. Quantum Information Processing edited by Gerd Leuchs, Thomas Beth 7. Quantum Computing by Josef Gruska 8. Quantum Computing and Communications by Sandor Imre, Ferenc Balazs 5 9. An Introduction to Quantum Computing Algorithms by Arthur O. Pittenger 10. Quantum Computing by M. Nakahara, Tetsuo Ohmi 11. Principles of Quantum Computation and Information - Vol.1 by Giuliano Benenti, Giulio Casati, Giuliano Strini 12. Principles of Quantum Computation And Information: Basic Tools And Special Topics by Giuliano Benenti 13. Quantum Optics for Quantum Information Processing edited by Paolo Mataloni 14. Lectures on Quantum Information edited by Dagmar Bruß, Gerd Leuchs 15. A Short Introduction to Quantum Information and Quantum Computation by Michel Le Bellac 16. Quantum Computation and Quantum Communication by Mladen Pavicic 17. Scalable Quantum Computers: Paving the Way to Realization edited by Samuel L. Braunstein, Hoi-Kwong Lo 6 18. Fundamentals of Quantum Information edited by Dieter Heiss 19. Experimental Aspects of Quantum Computing edited by Henry O. Everitt 20. Quantum Computing: Where Do We Want to Go Tomorrow edited by Samuel L. Braunstein 21. Quantum Information by Gernot Alber et al. 22. The Physics of Quantum Information edited by Dirk Bouwmeester, Artur K. Ekert, Anton Zeilinger 23. Temple of Quantum Computing by Riley T. Perry (free downloads at www.toqc.com) 24. Quantum Computation edited by Samuel J. Lomonaco, Jr. (free downloads at www.cs.umbc.edu/»lomonaco) 25. Lecture Notes for Physics: Quantum Information and Computation by John Preskill (free downloads at www.theory.caltech.edu/people/preskill/ph229). 7 a two-level atom/system jgi - ground state jei - excited state – physical notation · ¸ · ¸ 0 1 jgi = ; jei = 1 0 – information notation · ¸ · ¸ 1 0 jgi = ; jei = 0 1 ² Pauli matrices· ¸ · ¸ · ¸ 0 1 0 ¡i 1 0 σ^ ´ ; σ^ ´ ; σ^ ´ : x 1 0 y i 0 z 0 ¡1 ² rasing (σ^y) and lowering (σ^) energy operators, = atomic-transition operators σ^ + iσ^ σ^ ¡ iσ^ σ^y = x y = jeihgj; σ^ = x y = jgihej; σ^ =σ ^yσ^¡σ^σ^y = jeihej¡jgihgj 2 2 z 8 qubit = quantum bit ² the smallest unit of quantum information ² physically realized by a 2-level quantum system whose two basic states are conventionally labelled j0i and j1i ² By contrast to classical bits, a qubit can be in an arbitrary superposition of ’0’ and ’1’: jÃi = ®j0i + ¯j1i with normalization condition j®j2 + j¯j2 = 1: ² matrix representation of qubit states: · ¸ · ¸ 1 0 j0i = ; j1i = 0 1 · ¸ · ¸ · ¸ 1 0 ® jÃi = ®j0i + ¯j1i = ® + ¯ = 0 1 ¯ 9 qudits = qunits d-dimensional quantum states, generalized qubits dX¡1 jÃid = cnjni n=0 with normalization condition Xd¡1 2 jcnj = 1 n=0 special cases 2D qudit = qubit 3D qudit = qutrit 4D qudit = (qu)quartit = ququart 5D qudit = (qu)quintit ... optical qudits are spanned in d-dimensional Fock space 10 quantum (logic) gates basic quantum circuits operating on a small number of qubits they are for quantum computers what classical logic gates are in conventional computers Pauli X^ gate = quantum NOT gate = bit flip · ¸ 0 1 X^ ´ σ^ = x 1 0 X^ jki = j1 © ki; k = 0; 1 examples · ¸ · ¸ 0 1 X^ j1i = X^ = = j0i 1 0 · ¸· ¸ · ¸ 0 1 ® ¯ X^ (®j0i + ¯j1i) = = = ¯j0i + ®j1i 1 0 ¯ ® 11 Pauli Z^ gate = phase flip · ¸ 1 0 Z^ ´ σ^ = z 0 ¡1 Z^jki = (¡1)kjki; k = 0; 1 example · ¸· ¸ · ¸ 1 0 ® ® Z^(®j0i + ¯j1i) = = = ®j0i ¡ ¯j1i 0 ¡1 ¯ ¡¯ Pauli Y^ gate = phase flip + bit flip · ¸ 0 ¡i Y^ ´ σ^ = X i 0 Y^ jki = i(¡1)kj1 © ki; k = 0; 1 example · ¸· ¸ · ¸ 0 ¡i ® ¡¯ Y^ (®j0i + ¯j1i) = = i = ¡i¯j0i + i®j1i i 0 ¯ ® 12 phase gate · ¸ 1 0 S^ = 0 i Hadamard gate · ¸ 1 1 H^ = p1 2 1 ¡1 examples · ¸· ¸ · ¸ 1 1 1 1 H^ j0i = p1 = p1 = p1 (j0i + j1i) ´ j+i 2 1 ¡1 0 2 1 2 · ¸· ¸ · ¸ 1 1 0 1 H^ j1i = p1 = p1 = p1 (j0i ¡ j1i) ´ j¡i 2 1 ¡1 1 2 ¡1 2 · ¸ · ¸ · ¸ · ¸ 1 1 1 2 1 H^ j+i = p1 p1 = 1 = = j0i 2 1 ¡1 2 1 2 0 0 H^ j¡i = j1i 13 Bloch representation/sphere z |0 θ |ψ |0 + i |1 y 2 φ |0 + |1 x 2 |1 µ ¶ µ ¶ θ θ jÃi = cos j0i + eiÁ sin j1i 2 2 14 qubit rotations ² rotations on Bloch sphere R^n(2θ) ´ exp (¡iθn ¢ σ^ ) =σ ^I cos θ ¡ in ¢ σ^ sin θ =σ ^I cos θ ¡ i(nxσ^x + nyσ^y + nzσ^z) sin θ; ² Pauli matrices (and identity matrix) · ¸ 0 1 σ^ ´ = j0ih1j + j1ih0j; x 1 0 · ¸ 0 ¡i σ^ ´ = ¡ij0ih1j + ij1ih0j; y i 0 · ¸ 1 0 σ^ ´ = j0ih0j ¡ j1ih1j; z 0 ¡1 · ¸ 1 0 σ^ ´ I^ = = j0ih0j + j1ih1j I 0 1 σ^ = (^σx; σ^y; σ^z) 15 ² rotations about k = x; y; z axes – special cases of R^n(θ) ¡ ¢ ^ θ θ θ Rk(θ) = exp ¡i2σ^k =σ ^I cos 2 ¡ iσ^k sin 2 or explicitly · ¸ cos θ ¡i sin θ X^ (θ) ´ R^ (θ) = 2 2 x ¡i sin θ cos θ · 2 ¸2 cos θ ¡ sin θ Y^ (θ) ´ R^ (θ) = 2 2 y sin θ cos θ · 2 2 ¸ e¡iθ=2 0 Z^(θ) ´ R^ (θ) = z 0 eiθ=2 ² Do we need all XYZ-rotations? No! e.g. we can omit Z-rotation as ^ ^ ¼ ^ ^ ¼ ^ ¼ ^ ^ ¼ Z(θ) = X( 2 )Y (θ)X(¡ 2 ) = Y ( 2 )X(¡θ)Y (¡ 2 ): ² any single-qubit gate can be written as a decomposition ZY (or, equivalently, XY or XZ) i® i® U^ = e R^n(θ) = e Z^(θ1)Y^ (θ2)Z^(θ3) 16 Bloch vector (Pauli vector) for a qubit ² in any pure state µ ¶ µ ¶ θ θ jÃi = cos j0i + eiÁ sin j1i 2 2 we have rBloch ´ (rx; ry; rz) = (sin θ cos Á; sin θ sin Á; cos θ) ² in any mixed state · ¸ ½ ½ ½^ = 11 12 ½21 ½22 1 = 2(^σI + rBloch ¢ σ^ ) (so-called Pauli basis) 1 = 2(^σI + rxσ^x + ryσ^y + rzσ^z) we get rBloch = hσ^ i = Tr[^½σ^ ] = (Tr[^½σ^x]; Tr[^½σ^y]; Tr[^½σ^z]) = (2Re½21; 2Im½21; ½11 ¡ ½22) 17 ² Exemplary proof: 1 Tr[^½σ^x] = Tr[2(^σI + rxσ^x + ryσ^y + rzσ^z)^σx] 1 = 2Tr[^σIσ^x + rxσ^xσ^x + ryσ^yσ^x + rzσ^zσ^x] 1 = 2(Tr[^σIσ^x] + rxTr[^σxσ^x] + ryTr[^σyσ^x] + rzTr[^σzσ^x]) 1 = 2(Tr[^σx] + rxTr[^σI] + ryTr[¡iσ^z] + rzTr[iσ^y]) 1 = 2(0 + 2rx + 0 + 0) = rx moreover µ· ¸ · ¸¶ ½11 ½12 0 1 Tr[^½σ^x] = Tr ¢ ½21 ½22 1 0 · ¸ ½ ½ = Tr 12 11 ½22 ½21 ¤ = ½12 + ½21 = ½21 + ½21 = 2Re ½21 = 2Re ½12 ² Properties: jrBlochj = 1 – for pure state, jrBlochj < 1 – for mixed state 18 Kronecker tensor product let · ¸ · ¸ a a b b A = 11 12 ;B = 11 12 a21 a22 b21 b22 then · ¸ · ¸ a a b b A ­ B = 11 12 ­ 11 12 a21 a22 b21 b22 2 · ¸ · ¸ 3 b b b b a 11 12 ; a 11 12 6 11 b b 12 b b 7 = 6 · 21 22 ¸ · 21 22 ¸ 7 4 b11 b12 b11 b12 5 a21 ; a22 b21 b22 b21 b22 2 3 a11b11 a11b12 a12b11 a12b12 6 a b a b a b a b 7 = 6 11 21 11 22 12 21 12 22 7 4 a21b11 a11b12 a22b11 a12b12 5 a21b21 a11b22 a22b21 a12b22 19 two-qubit pure states jÃi = ®j00i + ¯j01i + γj10i + ±j11i notation of two-mode states 0 00 0 00 0 00 0 00 jÃi = jà iA ­ jà iB ´ jà iAjà iB ´ jà à iAB ´ jà à i matrix representation 2 3 · ¸ · ¸ 1 1 1 6 0 7 j00i = ­ = 6 7, 0 0 4 0 5 0 2 3 2 3 2 3 0 0 0 6 1 7 6 0 7 6 0 7 j01i = 6 7, j10i = 6 7, j11i = 6 7, 4 0 5 4 1 5 4 0 5 0 0 1 20 matrix representation jÃi = ®j00i + ¯j01i + γj10i + ±j11i · ¸ · ¸ · ¸ · ¸ · ¸ · ¸ · ¸ · ¸ 1 1 1 0 0 1 0 0 = ® ­ + ¯ ­ + γ ­ + ± ­ 0 0 0 1 1 0 1 1 2 3 2 3 2 3 2 3 1 0 0 0 6 0 7 6 1 7 6 0 7 6 0 7 = ®6 7 + ¯6 7 + γ6 7 + ±6 7 4 0 5 4 0 5 4 1 5 4 0 5 0 0 0 1 2 3 ® 6 ¯ 7 = 6 7 4 γ 5 ± 21 Universal set of gates for quantum computing ² rotations of single qubits ² any nontrivial two-qubit gate (e.g., CNOT, NS, CZ) CZ and CNOT gates CZ = controlled phase gate (CPhase) = controlled sign gate (CSign) control bit target bit CZ CNOT j0i j0i j0; 0i j0; 0i j0i j1i j0; 1i j0; 1i j1i j0i j1; 0i j1; 1i j1i j1i ¡j1; 1i j1; 0i or equivalently q1q2 CZ :jq1; q2i ! (¡1) jq1; q2i CNOT : jq1; q2i ! jq1; q1 © q2i where qk = 0; 1 and q1 © q2 = mod (q1 + q2; 2).
Recommended publications
  • 16 Multi-Photon Entanglement and Quantum Non-Locality
    16 Multi-Photon Entanglement and Quantum Non-Locality Jian-Wei Pan and Anton Zeilinger We review recent experiments concerning multi-photon Greenberger–Horne– Zeilinger (GHZ) entanglement. We have experimentally demonstrated GHZ entanglement of up to four photons by making use of pulsed parametric down- conversion. On the basis of measurements on three-photon entanglement, we have realized the first experimental test of quantum non-locality following from the GHZ argument. Not only does multi-particle entanglement enable various fundamental tests of quantum mechanics versus local realism, but it also plays a crucial role in many quantum-communication and quantum- computation schemes. 16.1 Introduction Ever since its introduction in 1935 by Schr¨odinger [1] entanglement has occupied a central position in the discussion of the non-locality of quantum mechanics. Originally the discussion focused on the proposal by Einstein, Podolsky and Rosen (EPR) of measurements performed on two spatially sep- arated entangled particles [2]. Most significantly John Bell then showed that certain statistical correlations predicted by quantum physics for measure- ments on such two-particle systems cannot be understood within a realistic picture based on local properties of each individual particle – even if the two particles are separated by large distances [3]. An increasing number of experiments on entangled particle pairs having confirmed the statistical predictions of quantum mechanics [4–6] and have thus provided increasing evidence against local realistic theories. However, one might find some comfort in the fact that such a realistic and thus classical picture can explain perfect correlations and is only in conflict with statistical predictions of the theory.
    [Show full text]
  • Experimental Quantum Teleportation
    Experimental quantum teleportation Dirk Bouwmeester, Jian‐Wei Pan, Klaus Mattle, Manfred Eibl, Harald Weinfurter & Anton Zeilinger NATURE | VOL 390 | 11 DECEMBER 1997 Overview • Motivation • General theory behind teleportation • Experimental setup • Applications of teleportation • New research from this study Relaying quantum information is difficult Sending directly can take a lot of time Coherence can be lost in the transfer We can’t just measure a particle’s state and then reconstruct, because‐‐ Each state is a superposition of many states. Once we measure the particle, it will collapse into only one state, and all the other information is lost For example, a photon can be polarized or in a superposition of polarized states. Beam Splitter: horizontally polarized photons are reflected, vertically polarized photons are transmitted The measurement projects the photon onto one polarization or the other, and we lose information about the original state So, if we want to replicate the state, we can’t just measure and reconstruct… But we can use entanglement to replicate the state by quantum teleportation. We have Alice, with a particle in state <ψ1|. She wants to transfer it to Bob. Bob and Alice also have particles 2 and 3, which are entangled. …if Alice can entangle particle 1 and particle 2, …then particle 3 should be in the same state as the original particle 1. But how can we do this experimentally? Experimental verification of teleportation theory ‐1993: Bennett et al. suggest it is possible to transfer the state of one particle to another using entanglement Meanwhile: Quantum computing and cryptography develop ‐1995: Kwiat et al.
    [Show full text]
  • The Physics of Quantum Information
    The Physics of Quantum Information Quantum Cryptography, Quantum Teleportation, Quantum Computation Bearbeitet von Dirk Bouwmeester, Artur K Ekert, Anton Zeilinger 1. Auflage 2000. Buch. xvi, 315 S. Hardcover ISBN 978 3 540 66778 0 Format (B x L): 15,5 x 23,5 cm Gewicht: 1440 g Weitere Fachgebiete > EDV, Informatik > Datenbanken, Informationssicherheit, Geschäftssoftware > Zeichen- und Zahlendarstellungen schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Contents 1. The Physics of Quantum Information: Basic Concepts ::::::::::::::::::::::::::::::::::::::::::: 1 1.1 Quantum Superposition ................................. 1 1.2 Qubits ................................................ 3 1.3 Single-Qubit Transformations ............................ 4 1.4 Entanglement .......................................... 7 1.5 Entanglement and Quantum Indistinguishability............ 9 1.6 The Controlled NOT Gate ............................... 11 1.7 The EPR Argument and Bell’s Inequality ................. 12 1.8 Comments ............................................. 14 2. Quantum Cryptography :::::::::::::::::::::::::::::::::: 15 2.1 What is Wrong with Classical Cryptography? .............
    [Show full text]
  • Nonclassical States of Light and Mechanics
    Nonclassical States of Light and Mechanics Klemens Hammerer, Claudiu Genes, David Vitali, Paolo Tombesi, Gerard Milburn, Christoph Simon, Dirk Bouwmeester Abstract This chapter reports on theoretical protocols for generating nonclassical states of light and mechanics. Nonclassical states are understood as squeezed states, entangled states or states with negative Wigner function, and the nonclassicality can refer either to light, to mechanics, or to both, light and mechanics. In all protocols nonclassicallity arises from a strong optomechanical coupling. Some protocols rely in addition on homodyne detection or photon counting of light. 1 Introduction An outstanding goal in the field of optomechanics is to go beyond the regime of classical physics, and to generate nonclassical states, either in light, the mechanical oscillator, or involving both systems, mechanics and light. The states in which light and mechanical oscillators are found naturally are those with Gaussian statistics Klemens Hammerer Leibniz University Hanover, e-mail: [email protected] Claudiu Genes Univerity of Innsbruck, e-mail: [email protected] David Vitali University of Camerino, e-mail: [email protected] Paolo Tombesi University of Camerino, e-mail: [email protected] arXiv:1211.2594v1 [quant-ph] 12 Nov 2012 Gerard Milburn University of Queensland, e-mail: [email protected] Christoph Simon University of Calgary, e-mail: Dirk Bouwmeester University of California, e-mail: [email protected] 1 2 Authors Suppressed Due to Excessive Length with respect to measurements of position and momentum (or field quadratures in the case of light). The class of Gaussian states include for example thermal states of the mechanical mode, as well as its ground state, and on the side of light coherent states and vacuum.
    [Show full text]