Brewing Process Optimization: Mash Efficiency

Total Page:16

File Type:pdf, Size:1020Kb

Brewing Process Optimization: Mash Efficiency Brewing Process Optimization: Mash Efficiency A Major Qualifying Project Report Submitted to the Faculty of Worcester Polytechnic Institute In partial fulfillment of the requirements for the Chemical Engineering Bachelor of Science Degree Sponsored by: Purgatory Beer Company 670 Linwood Ave. Whitinsville, MA 01588 Written by: Guillaume Poisson Nicholas Fleury Jakob Field Hunter Kortz Advised by: Professor Stephen J. Kmiotek This report represents work of WPI undergraduate students submitted to the faculty as evidence of a degree requirement. WPI routinely publishes these reports on its web site without editorial or peer review. For more information about the projects program at WPI, see http://www.wpi.edu/Academics/Projects. i Abstract: With microbreweries popping up just about everywhere in the world, innovation and efficiency is key to stay competitive. Working in conjunction with Purgatory Beer Company, this project seeks to investigate areas of improvement for the mash phase of the brewing process. The team established a variety of parameters that literature suggests affect the overall yield of the mash and began replicating these scenarios with a homebrew kit. Additionally, the team planned on cross referencing hydrometer data and HPLC data to detect changes in both the overall sugar yield and the specific sugar yields of relevant fermentable sugars, such as maltose, sucrose, glucose, and fructose. However, due to the unfortunate circumstances of the COVID-19 outbreak, these goals were not fulfilled. Therefore, the focal point of the paper falls upon the findings in the Background section. The team suggests that the full methodology as described in this paper be conducted, followed by a results-guided additional literature review, before any claims can be made on which method(s) increase mash yield. ii Acknowledgements: The completion of this project could not have been possible without assistance by our peers, mentors, and friends. Some aided us by providing guidance, while others gave us the resources required to complete this project. Our team would like to thank: • Professor Stephen Kmiotek for his guidance and knowledge while advising this project. • Brian Distefano and Kevin Mulvehill for sponsoring our project and allowing us to use material from Purgatory Beer Company. • Professor Michael Timko to let us use his HPLCC. • Geoffrey Tompsett and Ziyang Zhang to run many samples for our team through the HPLC • Tom Partington and Douglas White for allowing us to use equipment from the unit operations laboratory. • Tiffany Royal to help us order the material needed for our project. iii Table of Contents: Cover Page ..................................................................................................................................................... i Abstract ........................................................................................................................................................ ii Acknowledgements ..................................................................................................................................... iii Authorship Table ......................................................................................................................................... vi Introduction .................................................................................................................................................. 1 Background ................................................................................................................................................... 2 The Brewing Process ................................................................................................................................. 2 Sugar Chemistry ........................................................................................................................................ 3 Sugars in Brewing ............................................................................................................................. 4 Yeast and Sugar ................................................................................................................................ 4 The Mash Process: A Chemical Analysis .................................................................................................... 4 Mash Enzymes ................................................................................................................................. 5 Starch Conversion Enzymes ............................................................................................................. 6 Adjustable Parameters for Starch Conversion ................................................................................. 7 Factors Influencing Mash Sugar Yield ....................................................................................................... 8 Mash Temperatures ......................................................................................................................... 8 Sparge Temperatures ....................................................................................................................... 9 Grain Size ......................................................................................................................................... 9 Vorlauf Technique .......................................................................................................................... 10 Continuous Mixing ......................................................................................................................... 11 Continuous Whirlpool .................................................................................................................... 11 Mash Time ..................................................................................................................................... 11 Methodology .............................................................................................................................................. 13 Mash Parameters .................................................................................................................................... 13 Mash Experiment .................................................................................................................................... 13 Calibration Curve of Fermentable Sugars ............................................................................................... 14 Analyzing Wort using HPLC ..................................................................................................................... 14 iv Total Sugars Calculation.......................................................................................................................... 15 Results & Discussion ................................................................................................................................... 18 Conclusions & Recommendations ............................................................................................................. 20 References .................................................................................................................................................. 21 Appendix ..................................................................................................................................................... 24 Additional Information: Water Treatment .............................................................................................. 24 v Authorship Table: Cover Page ..................................................................................................................................... Guillaume Abstract ............................................................................................................................................ Nicholas Acknowledgements ....................................................................................................................... Guillaume Authorship Table .............................................................................................................................. Nicholas Introduction ................................................................................................................................... Guillaume Background ............................................................................................................................................ Team The Brewing Process .......................................................................................................................... Jakob Sugar Chemistry ............................................................................................................................ Nicholas The Mash Process: A Chemical Analysis ........................................................................................ Nicholas Factors Influencing Mash Sugar Yield ................................................................................ Jakob & Hunter Methodology ................................................................................................................... Jakob & Guillaume Mash Parameters ............................................................................................................................... Jakob Mash Experiment ............................................................................................................................... Jakob Calibration Curve of Fermentable Sugars ..................................................................................
Recommended publications
  • METACYC ID Description A0AR23 GO:0004842 (Ubiquitin-Protein Ligase
    Electronic Supplementary Material (ESI) for Integrative Biology This journal is © The Royal Society of Chemistry 2012 Heat Stress Responsive Zostera marina Genes, Southern Population (α=0.
    [Show full text]
  • Increasing the Amylose Content of Durum Wheat Through Silencing of the Sbeiia Genes
    Sestili et al. BMC Plant Biology 2010, 10:144 http://www.biomedcentral.com/1471-2229/10/144 RESEARCH ARTICLE Open Access IncreasingResearch article the amylose content of durum wheat through silencing of the SBEIIa genes Francesco Sestili1, Michela Janni1, Angela Doherty2, Ermelinda Botticella1, Renato D'Ovidio1, Stefania Masci1, Huw D Jones2 and Domenico Lafiandra*1 Abstract Background: High amylose starch has attracted particular interest because of its correlation with the amount of Resistant Starch (RS) in food. RS plays a role similar to fibre with beneficial effects for human health, providing protection from several diseases such as colon cancer, diabetes, obesity, osteoporosis and cardiovascular diseases. Amylose content can be modified by a targeted manipulation of the starch biosynthetic pathway. In particular, the inactivation of the enzymes involved in amylopectin synthesis can lead to the increase of amylose content. In this work, genes encoding starch branching enzymes of class II (SBEIIa) were silenced using the RNA interference (RNAi) technique in two cultivars of durum wheat, using two different methods of transformation (biolistic and Agrobacterium). Expression of RNAi transcripts was targeted to the seed endosperm using a tissue-specific promoter. Results: Amylose content was markedly increased in the durum wheat transgenic lines exhibiting SBEIIa gene silencing. Moreover the starch granules in these lines were deformed, possessing an irregular and deflated shape and being smaller than those present in the untransformed controls. Two novel granule bound proteins, identified by SDS- PAGE in SBEIIa RNAi lines, were investigated by mass spectrometry and shown to have strong homologies to the waxy proteins. RVA analysis showed new pasting properties associated with high amylose lines in comparison with untransformed controls.
    [Show full text]
  • Product Guide
    www.megazyme.com es at dr hy o rb a C • s e t a r t s b u S e m y z n E • s e m y z n E • s t i K y a s s A Plant Cell Wall & Biofuels Product Guide 1 Megazyme Test Kits and Reagents Purity. Quality. Innovation. Barry V. McCleary, PhD, DScAgr Innovative test methods with exceptional technical support and customer service. The Megazyme Promise. Megazyme was founded in 1988 with the We demonstrate this through the services specific aim of developing and supplying we offer, above and beyond the products we innovative test kits and reagents for supply. We offer worldwide express delivery the cereals, food, feed and fermentation on all our shipments. In general, technical industries. There is a clear need for good, queries are answered within 48 hours. To validated methods for the measurement of make information immediately available to the polysaccharides and enzymes that affect our customers, we established a website in the quality of plant products from the farm 1994, and this is continually updated. Today, it gate to the final food. acts as the source of a wealth of information on Megazyme products, but also is the hub The commitment of Megazyme to “Setting of our commercial activities. It offers the New Standards in Test Technology” has been possibility to purchase and pay on-line, to continually recognised over the years, with view order history, to track shipments, and Megazyme and myself receiving a number many other features to support customer of business and scientific awards.
    [Show full text]
  • The Alcohol Textbook 4Th Edition
    TTHEHE AALCOHOLLCOHOL TEXTBOOKEXTBOOK T TH 44TH EEDITIONDITION A reference for the beverage, fuel and industrial alcohol industries Edited by KA Jacques, TP Lyons and DR Kelsall Foreword iii The Alcohol Textbook 4th Edition A reference for the beverage, fuel and industrial alcohol industries K.A. Jacques, PhD T.P. Lyons, PhD D.R. Kelsall iv T.P. Lyons Nottingham University Press Manor Farm, Main Street, Thrumpton Nottingham, NG11 0AX, United Kingdom NOTTINGHAM Published by Nottingham University Press (2nd Edition) 1995 Third edition published 1999 Fourth edition published 2003 © Alltech Inc 2003 All rights reserved. No part of this publication may be reproduced in any material form (including photocopying or storing in any medium by electronic means and whether or not transiently or incidentally to some other use of this publication) without the written permission of the copyright holder except in accordance with the provisions of the Copyright, Designs and Patents Act 1988. Applications for the copyright holder’s written permission to reproduce any part of this publication should be addressed to the publishers. ISBN 1-897676-13-1 Page layout and design by Nottingham University Press, Nottingham Printed and bound by Bath Press, Bath, England Foreword v Contents Foreword ix T. Pearse Lyons Presient, Alltech Inc., Nicholasville, Kentucky, USA Ethanol industry today 1 Ethanol around the world: rapid growth in policies, technology and production 1 T. Pearse Lyons Alltech Inc., Nicholasville, Kentucky, USA Raw material handling and processing 2 Grain dry milling and cooking procedures: extracting sugars in preparation for fermentation 9 Dave R. Kelsall and T. Pearse Lyons Alltech Inc., Nicholasville, Kentucky, USA 3 Enzymatic conversion of starch to fermentable sugars 23 Ronan F.
    [Show full text]
  • Autochthonous Biological Resources for the Production of Regional Craft Beers: Exploring Possible Contributions of Cereals, Hops, Microbes, and Other Ingredients
    foods Review Autochthonous Biological Resources for the Production of Regional Craft Beers: Exploring Possible Contributions of Cereals, Hops, Microbes, and Other Ingredients Nicola De Simone 1 , Pasquale Russo 1, Maria Tufariello 2 , Mariagiovanna Fragasso 1, Michele Solimando 3, Vittorio Capozzi 4,* , Francesco Grieco 2,† and Giuseppe Spano 1,† 1 Department of Agriculture, Food, Natural Science, Engineering, University of Foggia, Via Napoli 25, 71122 Foggia, Italy; [email protected] (N.D.S.); [email protected] (P.R.); [email protected] (M.F.); [email protected] (G.S.) 2 Institute of Sciences of Food Production, National Research Council of Italy (CNR), Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy; [email protected] (M.T.); [email protected] (F.G.) 3 Rebeers, Microbrewery, Viale degli Artigiani 30, 71121 Foggia, Italy; [email protected] 4 Institute of Sciences of Food Production, National Research Council (CNR), c/o CS-DAT, Via Michele Protano, 71121 Foggia, Italy * Correspondence: [email protected] † Both authors contributed equally to this work. Abstract: Selected biological resources used as raw materials in beer production are important Citation: De Simone, N.; Russo, P.; drivers of innovation and segmentation in the dynamic market of craft beers. Among these resources, Tufariello, M.; Fragasso, M.; local/regional ingredients have several benefits, such as strengthening the connection with territories, Solimando, M.; Capozzi, V.; Grieco, F.; enhancing the added value of the final products, and reducing supply costs and environmental Spano, G. Autochthonous Biological impacts. It is assumed that specific ingredients provide differences in flavours, aromas, and, more Resources for the Production of generally, sensory attributes of the final products.
    [Show full text]
  • BJCP Exam Study Guide
    BJCP BEER EXAM STUDY GUIDE Last Revised: December, 2017 Contributing Authors: Original document by Edward Wolfe, Scott Bickham, David Houseman, Ginger Wotring, Dave Sapsis, Peter Garofalo, Chuck Hanning. Revised 2006 by Gordon Strong and Steve Piatz. Revised 2012 by Scott Bickham and Steve Piatz. Revised 2014 by Steve Piatz Revised 2015 by Steve Piatz Revised 2017 by Scott Bickham Copyright © 1998-2017 by the authors and the BJCP CHANGE LOG January-March, 2012: revised to reflect new exam structure, no longer interim May 1, 2012: revised yeast section, corrected T/F question 99 August, 2012: removed redundant styles for question S0, revised the additional readings list, updated the judging procedure to encompass the checkboxes on the score sheet. October 2012: reworded true/false questions 2, 4, 6, 8, 13, 26, 33, 38, 39, 42, and 118. Reworded essay question T15. March 2014: removed the Exam Program description from the document, clarified the wording on question T13. October 2015: revised for the 2015 BJCP Style Guidelines. February, 2016: revised the table for the S0 question to fix typos, removed untested styles. September-October, 2017 (Scott Bickham): moved the BJCP references in Section II.B. to Section I; incorporated a study guide for the online Entrance exam in Section II; amended the rubric for written questions S0, T1, T3, T13 and T15; rewrote the Water question and converted the rubrics for each of the Technical and Brewing Process questions to have three components; simplified the wording of the written exam questions’ added
    [Show full text]
  • Lipid-Protein Interactions in Beer and Beer Foam Brewed with Wheat
    Lipid-Protein Interactions in Beer and Beer Foam Brewed with Wheat Flour1 Keith S. Morris, Pall Europe Ltd., Europa House, Havant Street, Portsmouth, POl 3PD England, and James S. Hough, British School of Malting and Brewing, Birmingham University, P.O. Box 363, Birmingham B15 2TT England ABSTRACT under an atmosphere of nitrogen gas there is a significant increase in the extractable bound lipid fraction, which has been shown to be Use of wheat flour as a brewing adjunct has been shown to enhance beer mainly caused by the nonselective binding of triglycerides by foam stability, as measured by the Rudin method, and also to give gluten proteins (1). Subsequent work by Frazier et al (2) involved protection against the adverse effects of added triolein on foam stability. The efficiency of this protective action is dependent on the contact time using radiolabeled triolein to follow the fate of triglycerides during between the lipid and the beer and is specific to triolein. The addition of dough development under nitrogen. A significant proportion of palmitic acid showed different effects on the foam stability of beer brewed the lipid was found to be stably bound to a protein derived from the using wheat flour. This effect was postulated to be caused by the specific acetic acid-soluble fraction of dough. The protein, named ligolin, binding of triolein to proteins derived from wheat flour. Interaction has a molecular weight of approximately 9,000-11,000 daltons and between triolein and beer proteins was identified by precipitation of is speculated to be of fundamental importance in the formation of radiolabeled lipid with trichloroacetic acid.
    [Show full text]
  • Science of Smoke Studio Notes
    9/15/18 SCIENCE OF SMOKE Dave Broom WELCOME Dave Broom was born in Glasgow and has spent his whole working life in the world of drink – from bottling line, to wine merchant, to real ale pub, to off licence, to Aussie wineries, to specialist spirits writing! Since then, Dave has written regularly about all spirit categories. Of his twelve books, two: ‘Drink: Never Mind the Peanuts’ and ‘Rum’ won the Glenfiddich award. His Whisky: The Manual was awarded Best Spirits Book at the Spirited Awards in 2015 and the ‘World Atlas of Whisky’ has been called “a landmark publication”. His most recent book, “The Way of Whisky: A Journey into Japanese Whisky’ appeared in 2017 and won the Andre Simon, John Avery Award. He is chief engineer for the go-to online site scotchwhisky.com, and writes for a large number of international titles. Dave has been involved with World Class since 2013, judging the Global Finals on a number of occasions as part of the World Class ‘gurus’ team’. JOHNNIE WALKER BLACK LABEL Johnnie Walker Black Label is the ‘Gold Standard’ of Blended Scotch Whisky. -Dave Broom 1 9/15/18 ORKNEY SKYE FOUR SPEYSIDE CORNERS HIGHLAND OF SCOTLAND • Diageo has over 10 million casks in storage • The largest holding of Scotch whisky in the world ISLAY LOWLAND • The only company to truly say they have whiskies from the four corners of Scotland CAMPBELTOWN MEET THE MAKERS Dr Jim Beveridge and the Whisky Masters Grain Milling Mashing Fermentation Distillation Maturation Blending WHISKY 2 9/15/18 THE PERFECT BLEND • Understanding how all liquids work in harmony • Balancing & matching flavors TASTING CAOL ILA GLENKINCHIE LAGAVULIN CARDHU TALISKER EARTHY FRESH CLYNELISH Iodine SMOKE FRUITS Fresh Apples Peat Smoke Pear Drops Kippers Cut Grass Bonfire Cinders Bubble Gum BENRINNES CAMERONBRIDGE ROYAL LOCHNAGAR PORT DUNDAS MORTLACH TROPICAL CREAMY Créme Caramel & RICH VANILLA Mango FRUITS Malted Milk Raisins Custard Figs Demerara Sugar SMOKE Smoke is the thread that runs through the fabric of Johnnie Walker whiskies.
    [Show full text]
  • Studies of Barley Limit Dextrinase I I
    b ¡\il i: ilq.5l¡Tt-!iÈ' ta. S.S LIBRARY STUDIES OF BARLEY LIMIT DEXTRINASE I I I I by I l I ¡ I Michael John Sissons ì B.Ag.Sc. (University of Adelaide)' I I M.Ag.Sc. (La Trobe UniversitY) i l A thesis submitted to the University of Adelaide for the degree of Doctor of Philosophy Departnent of Plant Science, Waite Agricultural Resea¡ch Institute, Glen Osmond, South Australia October, 1991 LIST OF CONTENTS Contents Page No. Summary i-ü Statement of originality and consent for photocopy or loan lU Acknowledgements iv List of publications v Chapter 1: LITERATURE REVIEW 1.1 Introduction I 1.2 Properties of limit dextrinase 2 t.2.r Purification 2 1.2.2 Enzyme properties 3 t.2.3 Effect of inhibitors 3 r.2.4 Polymorphism 7 t.2.5 Substrate specificity 7 1.2.5.1 Action of limit dextrinase on oligosaccharides 7 t.2.5.2 Polysaccharides 7 1.3 Methods of Assay 9 1.3.1 Detection of Limit Dextrinase Activity in Electrophoretic Gels 10 t.4 Synthesis of limit dextrinase t2 1.4.1 Mechanism of Increase in Limit Dextrinase Activity during Germination 13 1.5 Effect of Barley Genotype and Environment on Limit Dextrinase ActivitY 15 1.6 Limit dextrinase - Role in Malting and Brewing 16 1.6.1 Effect of Kilning on Limit Dextrinase Activity 18 r.6.2 Effect of Mashing on Limit Dextrinase Activity 18 1.6.3 Limit 0extrinase-Role in Speciality Brewing, Distiling and Related Iridustries 2l 1.6.4 Relationship beween Limit Dextrinase Activity, Wort Fermentability and Alcohol Production 22 r.7 Role of Limit Dextrinase in Starch Degradation 23 1.8 Conclusions 24 Chapter
    [Show full text]
  • (Ka Potheen, Potcheen, Poiteen Või Poitín) – Vis, Dst Samakas
    TARTU ÜLIKOOL FILOSOOFIATEADUSKOND GERMAANI, ROMAANI JA SLAAVI FILOLOOGIA INSTITUUT VÄIKE INGLISE-EESTI SELETAV VISKISÕNASTIK MAGISTRITÖÖ Tõnu Soots Juhendaja: Krista Kallis TARTU 2013 Sisukord Sissejuhatus ....................................................................................................................... 3 Terminoloogia valik ja allikad .......................................................................................... 5 Terminoloogilised probleemid ja terminiloome................................................................ 6 Lühidalt viskist ................................................................................................................ 11 Inglise-eesti seletav viskisõnastik ................................................................................... 13 Märgendid ja lühendid ................................................................................................ 13 Kokkuvõte ....................................................................................................................... 75 Kasutatud materjalid ....................................................................................................... 76 Raamatud..................................................................................................................... 76 Veebilehed, artiklid, videod, arutelud, arvutisõnastikud............................................. 77 Summary ........................................................................................................................
    [Show full text]
  • Evaluation of Saccharifying Methods for Alcoholic Fermentation of Starchy Substrates Alice Lee Iowa State College
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1955 Evaluation of saccharifying methods for alcoholic fermentation of starchy substrates Alice Lee Iowa State College Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Biochemistry Commons Recommended Citation Lee, Alice, "Evaluation of saccharifying methods for alcoholic fermentation of starchy substrates " (1955). Retrospective Theses and Dissertations. 13626. https://lib.dr.iastate.edu/rtd/13626 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. NOTE TO USERS This reproduction is the best copy available. ® UMI EVALUATION OF SACCHARIFYING METHODS FOR ALCOHOLIC FERMENTATION OF STARCHY SUBSTRATES by Alice Lee A Dlseertatlon Submitted to the Graduate Faculty In Partial Fulfillment of The RequirementB for the Degree of DOCTOR OF PHILOSOPHY Major Subjects Blochensletry Approved: Signature was redacted for privacy. In Charge of Major Work Signature was redacted for privacy. Head of Major Department Signature was redacted for privacy. Dean of Graduate College Iowa State College 1955 UMI Number: DP12815 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted.
    [Show full text]
  • Improving Brewhouse Efficiency for Small Brewers
    Improving Brewhouse Efficiency for Small Brewers Van Havig I brew on a 7 BBL system, why should I care? • Improving from 82% to 90% efficiency can result in 45 lbs less malt used per brew • Being inefficient is NOT artisanal • It’s easy to do • The methods for improving brewhouse efficiency can also improve your beer Brewhouse Efficiency • Brewhouse Efficiency is a measure of the amount of extract recovered in the wort compared to the amount of extract available in the malt. • It is a measure of how efficient your mashing and lautering procedures are but does not take into account the boil or anything thereafter Calculating Brewhouse Efficiency • Number of pounds of each malt used • Coarse grind as is extract % for each malt • Gravity of wort in degrees Plato (P) - must be at 200 C (680 F) • Volume of Wort - must be at 200 C (680 F) What is the Coarse Grind as is %? • Percentage by weight of extract obtained from the malt with a coarse grind in a laboratory mash • Typically in the 75%-80% range for base malts • Found on the malt analysis sheet available from your maltster Accurately Determining the Volume of Wort • Interior diameter of kettle in inches (often in 3” increments from 48” up) (ID) • Volume of liquid in bottom “non-cylindrical” section of kettle in gallons(B) • Sidewall height in inches (H) • Volume measurement in inches from kettle man way (V) Note: V is easiest to measure at end of boil, but the wort is at ≈ 1000C Wort Volume Calculation Wort Volume Calculation • Gallons per inch of sidewall = π(ID/24)2*7.48/12 = (GPI) • Volume of hot wort (at end of boil ≈ 1000C) = (((H-V)GPI) + B)/31 • Volume of wort at 200C (W) = .96*volume of hot wort W = .96*((((H-V)GPI) + B)/31) Calculating Brewhouse Efficiency • Extract / BBL = ((259+P)*P)/100 • Total extract = (Extract / BBL)*W = (TE) i.e.
    [Show full text]