Optimality Theory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Paul Smolensky
Vita PAUL SMOLENSKY Department of Cognitive Science 11824 Mays Chapel Road 239A Krieger Hall Timonium, MD 21093-1821 Johns Hopkins University (667) 229-9509 Baltimore, MD 21218-2685 May 5, 1955 (410) 516-5331 Citizenship: USA [email protected] cogsci.jhu.edu/directory/paul-smolensky/ DEGREES Ph.D. in mathematical physics, Indiana University, 1981. M.S. in physics, Indiana University, 1977. A.B. summa cum laude in physics, Harvard University, 1976. PROFESSIONAL POSITIONS Partner Researcher, Microsoft Research Artificial Intelligence, Redmond WA, Dec. 2016−present. Krieger-Eisenhower Professor of Cognitive Science, Johns Hopkins University, 2006–present. Full Professor, Department of Cognitive Science, Johns Hopkins University, 1994–2006. Chair, Department of Cognitive Science, Johns Hopkins University, Jan. 1997−June 1998 (Acting), July 1998−June 2000 Professor, Department of Computer Science, University of Colorado at Boulder, Full Professor, 1994–95 (on leave, 1994–95). Associate Professor, 1990–94. Assistant Professor, 1985–90. Assistant Research Cognitive Scientist (Assistant Professor – Research), Institute for Cognitive Science, University of California at San Diego, 1982–85. Visiting Scholar, Program in Cognitive Science, University of California at San Diego, 1981–82. Adjunct Professor, Department of Linguistics, University of Maryland at College Park, 1994–2010. Assistant Director, Center for Language and Speech Processing, Johns Hopkins University, 1995–2008. Director, NSF IGERT Training Program, Unifying the Science of Language, 2006−2015. Director, NSF IGERT Training Program in the Cognitive Science of Language, 1999−2006. International Chair, Inria Paris (National Institute for Research in Computer Science and Automation), 2017−2021. Visiting Scientist, Inserm-CEA Cognitive Neuroimaging Unit, NeuroSpin Center, Paris, France, 2016. -
University of Groningen Finding the Right Words Bíró, Tamás Sándor
University of Groningen Finding the right words Bíró, Tamás Sándor IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2006 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Bíró, T. S. (2006). Finding the right words: implementing optimality theory with simulated annealing. s.n. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 29-09-2021 Bibliography Arto Anttila. Morphologically conditioned phonological alternations. Natural Language and Linguistic Theory, 20:1{42, 2002. Also: ROA-425. -
A View from Gradient Harmonic Grammar
Asymmetries in Long-Distance Dependencies: A View from Gradient Harmonic Grammar constituent class membership to a degree, and presupposes that instead of standard category symbols like [X], there are weighted category symbols like [αX] (where α ranges over the real numbers in Hyunjung Lee & Gereon M¨uller (Universit¨at Leipzig) [0,1]). Rules, filters, and other syntactic building blocks are given upper and lower threshold values WorkshoponLong-DistanceDependencies,HUBerlin October 4-5, 2018 of α between which they operate. 1. Introduction Note: This way, the concept of varying strength of syntactic categories (see Chomsky (2015) for a recent Claim: reappraisal) can be formally implemented in the grammar. Gradient Harmonic Grammar (Smolensky & Goldrick (2016)) offers a new perspective on how to derive three different types of asymmetries as they can be observed with long-distance dependencies Observation: in the world’s languages: So far, most of the work on GHG has been in phonology (e.g., Zimmermann (2017), Faust & Smo- • asymmetries between movement types lensky (2017), Kushnir (2018)); but cf. Smolensky (2017), M¨uller (2017b), Lee (2018) for syntactic applications. • asymmetries between types of moved items • asymmetries between types of local domain 1.3. Harmonic Serialism Background assumptions: Note: (i) Harmonic Grammar Harmonic serialism is a strictly derivational version of optimality theory. (ii) Gradient Representations (3) Harmonic serialism (McCarthy (2008), Heck & M¨uller (2013)): (iii) Harmonic Serialism a. GivensomeinputIi, the candidate set CSi = {Oi1,Oi2, ...Oin} is generated by applying at 1.1. Harmonic Grammar most one operation to Ii. Harmonic Grammar (Smolensky & Legendre (2006), Pater (2016)): A version of optimality theory b. -
Inflectional Morphology in Optimality Theory
Inflectional Morphology in Optimality Theory A Dissertation Presented by Zheng Xu to The Graduate School in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Linguistics Stony Brook University August 2007 Copyright by Zheng Xu August 2007 Stony Brook University The Graduate School Zheng Xu We, the dissertation committee for the above candidate for the Doctor of Philosophy degree, hereby recommend acceptance of this dissertation Mark Aronoff, Professor of Linguistics Robert D. Hoberman, Professor of Linguistics Alice C. Harris, Professor of Linguistics James P. Blevins, Assistant Director of Research Research Center for English and Applied Linguistics University of Cambridge This dissertation is accepted by the Graduate School Lawrence Martin Dean of the Graduate School ii Abstract of the Dissertation Inflectional Morphology in Optimality Theory by Zheng Xu Doctor of Philosophy in Linguistics Stony Brook University 2007 This dissertation proposes an inferential-realizational model of inflectional morphology (Matthews 1972, Zwicky 1985, Anderson 1992, Aronoff 1994, Stump 2001) within the framework of Optimality Theory (Prince and Smolensky 1993). Following Russell 1995, Yip 1998, Hyman 2003, MacBride 2004, I assume that the phonological information of inflectional affixes is introduced through realization constraints (RC) which associate abstract morphosyntactic or semantic feature values with phonological forms. I propose that rankings of realization constraints conform to the specificity condition, i.e. a constraint realizing a more specific morphosyntactic feature value set outranks a less specific realization constraint. I also propose that the unmarked situation in which one feature value is realized by one form (Wurzel 1989) is encoded in two universal and violable markedness constraints, *FEATURE SPLIT which bans the realization of a feature value by more than one form and *FEATURE FUSION which bans a form realizing more than one feature value. -
Generalized Alignment John J
University of Massachusetts Amherst ScholarWorks@UMass Amherst Linguistics Department Faculty Publication Series Linguistics January 1993 Generalized alignment John J. McCarthy University of Massachusetts, Amherst, [email protected] Alan Prince Follow this and additional works at: https://scholarworks.umass.edu/linguist_faculty_pubs Part of the Morphology Commons, Near Eastern Languages and Societies Commons, and the Phonetics and Phonology Commons Recommended Citation McCarthy, John J. and Prince, Alan, "Generalized alignment" (1993). Yearbook of Morphology. 12. Retrieved from https://scholarworks.umass.edu/linguist_faculty_pubs/12 This Article is brought to you for free and open access by the Linguistics at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Linguistics Department Faculty Publication Series by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. Generalized Alignment* John J. McCarthy Alan S. Prince University of Massachusetts, Amherst Rutgers University §1. Introduction Overt or covert reference to the edges of constituents is a commonplace throughout phonology and morphology. Some examples include: •In English, Garawa, Indonesian and a number of other languages, the normal right-to-left alternation of stress is interrupted word-initially: (1) Initial Secondary Stress in English (Tàta)ma(góuchee) *Ta(tàma)(góuchee) (Lùxi)pa(lílla) *Lu(xìpa)(lílla) As the foot-brackets ( ) indicate, the favored outcome is one in which -
Harmonic Grammar with Linear Programming
To appear in Phonology 27(1):1–41 February 18, 2010 Harmonic grammar with linear programming: From linear systems to linguistic typology∗ Christopher Potts Joe Pater Stanford University UMass Amherst Karen Jesney Rajesh Bhatt UMass Amherst UMass Amherst Michael Becker Harvard University Abstract Harmonic Grammar (HG) is a model of linguistic constraint interac- tion in which well-formedness is calculated in terms of the sum of weighted constraint violations. We show how linear programming algorithms can be used to determine whether there is a weighting for a set of constraints that fits a set of linguistic data. The associated software package OT-Help provides a practical tool for studying large and complex linguistic systems in the HG framework and comparing the results with those of OT. We first describe the translation from harmonic grammars to systems solvable by linear programming algorithms. We then develop an HG analysis of ATR harmony in Lango that is, we argue, superior to the existing OT and rule-based treatments. We further highlight the usefulness of OT-Help, and the analytic power of HG, with a set of studies of the predictions HG makes for phonological typology. Keywords: Harmonic Grammar, Optimality Theory, linear programming, typology, Lango, ATR harmony, positional markedness, positional faithfulness 1 Introduction We examine a model of grammar that is identical to the standard version of Optimality Theory (OT: Prince & Smolensky 1993/2004), except that the optimal Our thanks to Ash Asudeh, Tim Beechey, Maitine Bergonioux, Paul Boersma, John Colby, Kathryn ∗ Flack, Edward Flemming, Bob Frank, John Goldmsith, Maria Gouskova, Bruce Hayes, René Kager, Shigeto Kawahara, John Kingston, John McCarthy, Andrew McKenzie, Ramgopal Mettu, Alan Prince, Kathryn Pruitt, Jason Riggle, Jim Smith, and Paul Smolensky, and other participants in conferences and courses where this material was presented. -
An Introduction to Optimality Theory
9781405151368_4_001.qxd 11/30/07 5:01 PM Page 1 1 An Introduction to Optimality Theory 1.1 How OT Began Around 1990, Alan Prince and Paul Smolensky began collaborating on a new theory of human language. This collaboration led in fairly short order to a book-length manuscript, Optimality Theory: Constraint Interaction in Generative Grammar. Photocopies of the manuscript were widely distributed and had a terrific impact on the field of linguistics, even though it wasn’t formally published until more than a decade later (as Prince and Smolensky 1993/2004). OT had and continues to have its greatest effect on phonology, but it has also led to important work in syntax, semantics, sociolinguistics, historical linguistics, and other areas. OT belongs on anyone’s list of the top three developments in the history of generative grammar. One of Prince and Smolensky’s goals for OT was to solve a long- standing problem in phonology. Phonological theory in the tradition of Chomsky and Halle’s (1968) The Sound Pattern of English (SPE) was based on rewrite rules. The rewrite rule A → B/C___D describes an input configuration CAD and an A → B transformation that applies to it. Rewrite rules can describe lots of phenomena, but they do a poor job of explaining how phonological systems fit together. (For a brief explanation of SPE’s main assumptions, see the boxed text at the end of this section.) To illustrate, we’ll look at some data from Yawelmani, a nearly extinct dialect of the California Penutian language Yokuts (Newman 1944).1 In this language, syllables cannot be bigger than CVC (consonant- vowel-consonant). -
Ranking and Necessity
Ranking and Necessity Part I: The Fusional Reduction Algorithm ● 12-16-2005 ● Adrian Brasoveanu and Alan Prince Department of Linguistics Rutgers Center for Cognitive Science Rutgers University, New Brunswick ABSTRACT Understanding a linguistic theory within OT requires an exact characterization of the ranking conditions necessitated by data. We describe (Part I) and justify (Part II) an algorithm which calculates the necessary and sufficient ranking conditions inherent in any collection of candidates and presents them in a maximally concise and informative way. The algorithm, stemming from the original proposal of Brasoveanu 2003, develops in the setting of the fusional ERC theory of Prince 2002. ACKNOWLEDGMENTS The authors, whose names are arranged alphabetically, would like to thank Jane Grimshaw, Naz Merchant, Paul Smolensky, and Bruce Tesar for useful discussion; and, for helpful comments, audiences at the Rutgers Optimality Research Group (April 2004, Nov. 2005), HUMDRUM (May 2004), and the LSA 2005 Summer Institute. For support during aspects of the investigation, we thank the John Simon Guggenheim Memorial Foundation, the National Science Foundation (Grant No. BCS-0083101), and the National Institutes of Health (NRSA Training Grant No. 1-T32-MH-19975-05). The opinions, findings, conclusions, and recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation or of the National Institutes of Health. The authors also claim responsibility for any errors, omissions, misprisions, or infelicities that may have crept into the text. Ranking and Necessity Part I 1. Beyond the Sufficient………………………………………………………………..3 2. The Consequences of Comparison………………………………………………..6 2.1 The Elementary Ranking Condition……………………………………..6 2.2 Informativeness……………………………………………………………9 2.3 ERCs and Consequences………………………………………………12 2.4 Remark on the Logical Background…………………………………...23 3. -
Phonetically Driven Phonology: the Role of Optimality Theory and Inductive Grounding1
Phonetically Driven Phonology: The Role of Optimality Theory and Inductive Grounding1 Bruce P. Hayes UCLA Final version: August 1997 Written for the proceedings volume of the 1996 Milwaukee Conference on Formalism and Functionalism in Linguistics Abstract Functionalist phonetic literature has shown how the phonologies of human languages are arranged to facilitate ease of articulation and perception. The explanatory force of phonological theory is greatly increased if it can directly access these research results. There are two formal mechanisms that together can facilitate the link-up of formal to functional work. As others have noted, Optimality Theory, with its emphasis on directly incorporating principles of markedness, can serve as part of the bridge. Another mechanism is proposed here: an algorithm for inductive grounding permits the language learner to access the knowledge gained from experience in articulation and perception, and form from it the appropriate set of formal phonological constraints. 1 I would like to thank Marco Baroni, Patricia Keating, Donca Steriade, and members of talk audiences at MIT, Arizona, Tilburg, Utrecht, Cornell, UC Santa Cruz, UCLA, and the Formalism/Functionalism conference for helpful input in the preparation of this paper. Phonetically-Driven Phonology p. 2 1. Phonological Functionalism The difference between formalist and functionalist approaches in linguistics has taken different forms in different areas. For phonology, and particularly for the study of fully- productive sound patterns, the functionalist approach has traditionally been phonetic in character. For some time, work in the phonetic literature, such as Ohala (1974, 1978, 1981, 1983), Ohala and OHALA (1993), Liljencrants and Lindblom (1972), Lindblom (1983, 1990), and Westbury and Keating (1986), has argued that the sound patterns of languages are effectively arranged to facilitate ease of articulation and distinctness of contrasting forms in perception. -
Generative Linguistics and Neural Networks at 60: Foundation, Friction, and Fusion*
Generative linguistics and neural networks at 60: foundation, friction, and fusion* Joe Pater, University of Massachusetts Amherst October 3, 2018. Abstract. The birthdate of both generative linguistics and neural networks can be taken as 1957, the year of the publication of foundational work by both Noam Chomsky and Frank Rosenblatt. This paper traces the development of these two approaches to cognitive science, from their largely autonomous early development in their first thirty years, through their collision in the 1980s around the past tense debate (Rumelhart and McClelland 1986, Pinker and Prince 1988), and their integration in much subsequent work up to the present. Although this integration has produced a considerable body of results, the continued general gulf between these two lines of research is likely impeding progress in both: on learning in generative linguistics, and on the representation of language in neural modeling. The paper concludes with a brief argument that generative linguistics is unlikely to fulfill its promise of accounting for language learning if it continues to maintain its distance from neural and statistical approaches to learning. 1. Introduction At the beginning of 1957, two men nearing their 29th birthdays published work that laid the foundation for two radically different approaches to cognitive science. One of these men, Noam Chomsky, continues to contribute sixty years later to the field that he founded, generative linguistics. The book he published in 1957, Syntactic Structures, has been ranked as the most influential work in cognitive science from the 20th century.1 The other one, Frank Rosenblatt, had by the late 1960s largely moved on from his research on perceptrons – now called neural networks – and died tragically young in 1971. -
Speakers Treat Transparent and Opaque Alternation Patterns Differently — Evidence from Chinese Tone Sandhi*
This is a printout of the final PDF file and has been approved by me, the author. Any mistakes in this printout will not be fixed by the publisher. Here is my signature and the date 06/10/2018 Speakers Treat Transparent and Opaque Alternation Patterns Differently — Evidence from Chinese Tone Sandhi* Jie Zhang 1. Introduction 1.1 Opacity The study of opacity has had a long tradition in generative phonology. Kiparsky (1973: p.79) defined two types of opacity for a phonological rule, as in (1). The first type is also known as underapplication opacity, and the opaque rule is non-surface-true; the second type is also known as overapplication opacity, and the opaque rule is non-surface-apparent (e.g., Bakovic 2007). (1) Opacity: A phonological rule P of the form A → B / C __ D is opaque if there are surface structures with any of the following characteristics: (a) Instance of A in the environment C __ D; (b) Instance of B derived by P in environments other than C __ D. In the rule-based framework, opacity can generally be derived by ordering the opaque rule before another rule that could either set up or destroy the application of the opaque rule (but see Bakovic 2007, 2011, who advocates the decoupling of opacity and rule ordering). In a surface-oriented theory like Optimality Theory (OT; Prince and Smolensky 1993/2004), however, opacity poses significant challenges. Without modification to the theory, neither underapplication nor overapplication opacity can be straightforwardly derived. A number of general solutions for opacity have been proposed within OT, including the Sympathy Theory (McCarthy 1999), Stratal OT (Kiparsky 2000, Nazarov and Pater 2017), OT with Candidate Chains (OT-CC; McCarthy 2007), and Serial Markedness Reduction (Jarosz 2014, 2016). -
Optimality Theory
This page intentionally left blank This page intentionally left blank Optimality Theory This is an introduction to Optimality Theory, the central idea of which is that surface forms of language reflect resolutions of conflicts be- tween competing constraints. A surface form is ‘optimal’ if it incurs the least serious violations of a set of constraints, taking into account their hierarchical ranking. Languages differ in the ranking of con- straints; and any violations must be minimal. The book does not limit its empirical scope to phonological phenomena, but also contains chapters on the learnability of OT grammars; OT’s implications for syntax; and other issues such as opacity. It also reviews in detail a selection of the considerable research output which OT has already produced. Exercises accompany chapters 1–7, and there are sections on further reading. Optimality Theory will be welcomed by any lin- guist with a basic knowledge of derivational Generative Phonology. RENÉ KAGER teaches linguistics at Utrecht University, the Netherlands. CAMBRIDGE TEXTBOOKS IN LINGUISTICS General editors: s. r. anderson, j. bresnan, b. comrie, w. dressler, c. ewen, r. huddleston, r. lass, d. lightfoot, j. lyons, p. h. matthews, r. posner, s. romaine, n. v. smith, n. vincent OPTIMALITY THEORY In this series p. h. matthews Morphology Second edition b. comrie Aspect r. m. kempson Semantic Theory t. bynon Historical Linguistics j. allwood, l.-g. anderson and ö . dahl Logic in Linguistics d. b. fry The Physics of Speech r. a. hudson Sociolinguistics Second edition a. j. elliott Child Language p. h. matthews Syntax a. radford Transformational Syntax l.