~~~~~(22) M Where A,." Is the Einstein Coefficient of Spontaneous Transition to the Lower State, M
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
February 14, 2015 7:00Pm at the Herrett Center for Arts & Science Colleagues, College of Southern Idaho
Snake River Skies The Newsletter of the Magic Valley Astronomical Society www.mvastro.org Membership Meeting President’s Message Saturday, February 14, 2015 7:00pm at the Herrett Center for Arts & Science Colleagues, College of Southern Idaho. Public Star Party Follows at the It’s that time of year when obstacles appear in the sky. In particular, this year is Centennial Obs. loaded with fog. It got in the way of letting us see the dance of the Jovian moons late last month, and it’s hindered our views of other unique shows. Still, members Club Officers reported finding enough of a clear sky to let us see Comet Lovejoy, and some great photos by members are popping up on the Facebook page. Robert Mayer, President This month, however, is a great opportunity to see the benefit of something [email protected] getting in the way. Our own Chris Anderson of the Herrett Center has been using 208-312-1203 the Centennial Observatory’s scope to do work on occultation’s, particularly with asteroids. This month’s MVAS meeting on Feb. 14th will give him the stage to Terry Wofford, Vice President show us just how this all works. [email protected] The following weekend may also be the time the weather allows us to resume 208-308-1821 MVAS-only star parties. Feb. 21 is a great window for a possible star party; we’ll announce the location if the weather permits. However, if we don’t get that Gary Leavitt, Secretary window, we’ll fall back on what has become a MVAS tradition: Planetarium night [email protected] at the Herrett Center. -
Download This Article in PDF Format
A&A 587, A30 (2016) Astronomy DOI: 10.1051/0004-6361/201526623 & c ESO 2016 Astrophysics Search for systemic mass loss in Algols with bow shocks A. Mayer1, R. Deschamps2,3, and A. Jorissen2 1 University of Vienna, Department of Astrophysics, Sternwartestraße 77, 1180 Wien, Austria e-mail: [email protected] 2 Institut d’Astronomie et d’Astrophysique, Université Libre de Bruxelles, CP 226, Av. F. Roosevelt 50, 1050 Brussels, Belgium 3 European Southern Observatory, Alonso de Cordova 3107, 19001 Casilla, Santiago, Chile Received 28 May 2015 / Accepted 24 December 2015 ABSTRACT Aims. Various studies indicate that interacting binary stars of Algol type evolve non-conservatively. However, direct detections of systemic mass loss in Algols have been scarce so far. We study the systemic mass loss in Algols by looking for the presence of infrared excesses originating from the thermal emission of dust grains, which is linked to the presence of a stellar wind. Methods. In contrast to previous studies, we make use of the fact that stellar and interstellar material is piled up at the edge of the astrosphere where the stellar wind interacts with the interstellar medium. We analyse WISE W3 12 μm and WISE W4 22 μmdataof Algol-type binary Be and B[e] stars and the properties of their bow shocks. From the stand-off distance of the bow shock we are able to determine the mass-loss rate of the binary system. Results. Although the velocities of the stars with respect to the interstellar medium are quite low, we find bow shocks present in two systems, namely π Aqr, and ϕ Per; a third system, CX Dra, shows a more irregular circumstellar environment morphology which might somehow be related to systemic mass loss. -
Planets and Exoplanets
NASE Publications Planets and exoplanets Planets and exoplanets Rosa M. Ros, Hans Deeg International Astronomical Union, Technical University of Catalonia (Spain), Instituto de Astrofísica de Canarias and University of La Laguna (Spain) Summary This workshop provides a series of activities to compare the many observed properties (such as size, distances, orbital speeds and escape velocities) of the planets in our Solar System. Each section provides context to various planetary data tables by providing demonstrations or calculations to contrast the properties of the planets, giving the students a concrete sense for what the data mean. At present, several methods are used to find exoplanets, more or less indirectly. It has been possible to detect nearly 4000 planets, and about 500 systems with multiple planets. Objetives - Understand what the numerical values in the Solar Sytem summary data table mean. - Understand the main characteristics of extrasolar planetary systems by comparing their properties to the orbital system of Jupiter and its Galilean satellites. The Solar System By creating scale models of the Solar System, the students will compare the different planetary parameters. To perform these activities, we will use the data in Table 1. Planets Diameter (km) Distance to Sun (km) Sun 1 392 000 Mercury 4 878 57.9 106 Venus 12 180 108.3 106 Earth 12 756 149.7 106 Marte 6 760 228.1 106 Jupiter 142 800 778.7 106 Saturn 120 000 1 430.1 106 Uranus 50 000 2 876.5 106 Neptune 49 000 4 506.6 106 Table 1: Data of the Solar System bodies In all cases, the main goal of the model is to make the data understandable. -
Doppler Tomography of the Circumstellar Disk of Π Aquarii⋆⋆⋆
A&A 560, A30 (2013) Astronomy DOI: 10.1051/0004-6361/201322114 & c ESO 2013 Astrophysics Doppler tomography of the circumstellar disk of π Aquarii, S. V. Zharikov1, A. S. Miroshnichenko2 , E. Pollmann3, S. Danford2,K.S.Bjorkman4, N. D. Morrison4,A.Favaro5, J. Guarro Fló6,J.N.Terry7, V. Desnoux8, T. Garrel9, G. Martineau10, Y. Buchet10, S. Ubaud11, B. Mauclaire12, H. Kalbermatten13,C.Buil14,C.J.Sawicki15,T.Blank16, and O. Garde17 1 Observatorio Astronomico Nacional, Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, 22800 Ensenada, BC, Mexico e-mail: [email protected] 2 University of North Carolina at Greensboro, Greensboro, NC 27402, USA e-mail: [email protected] 3 Emil-Nolde-Str. 12, 51375 Leverkusen, Germany 4 Ritter Observatory, University of Toledo, Toledo, OH 43606, USA 5 19 Boulevard Carnot, 21000 Dijon, France 6 Balmes, 2, 08784 Piera (Barcelona), Spain 7 6 rue Virgile, 42100 Saint-Etienne, France 8 ARAS, Astronomical Ring for Access to Spectroscopy, France 9 Observatoire de Juvignac, 19 avenue du Hameau du Golf, 34990 Juvignac, France 10 SAPP, CSC des Trois Cités, Le Clos Gaultier, 86000 Poitiers, France 11 16 Calade, St. Roch, 06410 Biot, France 12 Observatoire du Val de l’Arc, route de Peynier, 13530 Trets, France 13 Ebnetstrasse 12, Bitsch, Switzerland 14 Castanet Tolosan Observatory, 6 place Clémence Isaure, 31320 Castanet Tolosan, France 15 Alpha Observatory, Alpine, Texas 79830, USA 16 Dorfstrasse 3f, 8603 Schwerzenbach, Switzerland 17 Observatoire de la Tourbiére, 38690 Chabons, France Received 21 June 2013 / Accepted 23 October 2013 ABSTRACT Aims. The work is aimed at studying the circumstellar disk of the bright classical binary Be star π Aqr. -
00E the Construction of the Universe Symphony
The basic construction of the Universe Symphony. There are 30 asterisms (Suites) in the Universe Symphony. I divided the asterisms into 15 groups. The asterisms in the same group, lay close to each other. Asterisms!! in Constellation!Stars!Objects nearby 01 The W!!!Cassiopeia!!Segin !!!!!!!Ruchbah !!!!!!!Marj !!!!!!!Schedar !!!!!!!Caph !!!!!!!!!Sailboat Cluster !!!!!!!!!Gamma Cassiopeia Nebula !!!!!!!!!NGC 129 !!!!!!!!!M 103 !!!!!!!!!NGC 637 !!!!!!!!!NGC 654 !!!!!!!!!NGC 659 !!!!!!!!!PacMan Nebula !!!!!!!!!Owl Cluster !!!!!!!!!NGC 663 Asterisms!! in Constellation!Stars!!Objects nearby 02 Northern Fly!!Aries!!!41 Arietis !!!!!!!39 Arietis!!! !!!!!!!35 Arietis !!!!!!!!!!NGC 1056 02 Whale’s Head!!Cetus!! ! Menkar !!!!!!!Lambda Ceti! !!!!!!!Mu Ceti !!!!!!!Xi2 Ceti !!!!!!!Kaffalijidhma !!!!!!!!!!IC 302 !!!!!!!!!!NGC 990 !!!!!!!!!!NGC 1024 !!!!!!!!!!NGC 1026 !!!!!!!!!!NGC 1070 !!!!!!!!!!NGC 1085 !!!!!!!!!!NGC 1107 !!!!!!!!!!NGC 1137 !!!!!!!!!!NGC 1143 !!!!!!!!!!NGC 1144 !!!!!!!!!!NGC 1153 Asterisms!! in Constellation Stars!!Objects nearby 03 Hyades!!!Taurus! Aldebaran !!!!!! Theta 2 Tauri !!!!!! Gamma Tauri !!!!!! Delta 1 Tauri !!!!!! Epsilon Tauri !!!!!!!!!Struve’s Lost Nebula !!!!!!!!!Hind’s Variable Nebula !!!!!!!!!IC 374 03 Kids!!!Auriga! Almaaz !!!!!! Hoedus II !!!!!! Hoedus I !!!!!!!!!The Kite Cluster !!!!!!!!!IC 397 03 Pleiades!! ! Taurus! Pleione (Seven Sisters)!! ! ! Atlas !!!!!! Alcyone !!!!!! Merope !!!!!! Electra !!!!!! Celaeno !!!!!! Taygeta !!!!!! Asterope !!!!!! Maia !!!!!!!!!Maia Nebula !!!!!!!!!Merope Nebula !!!!!!!!!Merope -
December 2019 BRAS Newsletter
A Monthly Meeting December 11th at 7PM at HRPO (Monthly meetings are on 2nd Mondays, Highland Road Park Observatory). Annual Christmas Potluck, and election of officers. What's In This Issue? President’s Message Secretary's Summary Outreach Report Asteroid and Comet News Light Pollution Committee Report Globe at Night Member’s Corner – The Green Odyssey Messages from the HRPO Friday Night Lecture Series Science Academy Solar Viewing Stem Expansion Transit of Murcury Edge of Night Natural Sky Conference Observing Notes: Perseus – Rescuer Of Andromeda, or the Hero & Mythology Like this newsletter? See PAST ISSUES online back to 2009 Visit us on Facebook – Baton Rouge Astronomical Society Baton Rouge Astronomical Society Newsletter, Night Visions Page 2 of 25 December 2019 President’s Message I would like to thank everyone for having me as your president for the last two years . I hope you have enjoyed the past two year as much as I did. We had our first Members Only Observing Night (MOON) at HRPO on Sunday, 29 November,. New officers nominated for next year: Scott Cadwallader for President, Coy Wagoner for Vice- President, Thomas Halligan for Secretary, and Trey Anding for Treasurer. Of course, the nominations are still open. If you wish to be an officer or know of a fellow member who would make a good officer contact John Nagle, Merrill Hess, or Craig Brenden. We will hold our annual Baton Rouge “Gastronomical” Society Christmas holiday feast potluck and officer elections on Monday, December 9th at 7PM at HRPO. I look forward to seeing you all there. ALCon 2022 Bid Preparation and Planning Committee: We’ll meet again on December 14 at 3:00.pm at Coffee Call, 3132 College Dr F, Baton Rouge, LA 70808, UPCOMING BRAS MEETINGS: Light Pollution Committee - HRPO, Wednesday December 4th, 6:15 P.M. -
Arxiv:1402.5240V1 [Astro-Ph.SR]
Accepted in ApJ A Preprint typeset using LTEX style emulateapj v. 04/17/13 DISK-LOSS AND DISK-RENEWAL PHASES IN CLASSICAL BE STARS. II. CONTRASTING WITH STABLE AND VARIABLE DISKS Zachary H. Draper1,2, John P. Wisniewski3, Karen S. Bjorkman4, Marilyn R. Meade5, Xavier Haubois6,7, Bruno C. Mota6, Alex C. Carciofi6, Jon E. Bjorkman4 Accepted in ApJ ABSTRACT Recent observational and theoretical studies of classical Be stars have established the utility of polarization color diagrams (PCD) in helping to constrain the time-dependent mass decretion rates of these systems. We expand on our pilot observational study of this phenomenon, and report the detailed analysis of a long-term (1989-2004) spectropolarimetric survey of 9 additional classical Be stars, including systems exhibiting evidence of partial disk-loss/disk-growth episodes as well as sys- tems exhibiting long-term stable disks. After carefully characterizing and removing the interstellar polarization along the line of sight to each of these targets, we analyze their intrinsic polarization be- havior. We find that many steady-state Be disks pause at the top of the PCD, as predicted by theory. We also observe sharp declines in the Balmer jump polarization for later spectral type, near edge-on steady-state disks, again as recently predicted by theory, likely caused when the base density of the disk is very high, and the outer region of the edge-on disk starts to self absorb a significant number of Balmer jump photons. The intrinsic V -band polarization and polarization position angle of γ Cas exhibits variations that seem to phase with the orbital period of a known one-armed density structure in this disk, similar to the theoretical predictions of Halonen & Jones. -
108 Afocal Procedure, 105 Age of Globular Clusters, 25, 28–29 O
Index Index Achromats, 70, 73, 79 Apochromats (APO), 70, Averted vision Adhafera, 44 73, 79 technique, 96, 98, Adobe Photoshop Aquarius, 43, 99 112 (software), 108 Aquila, 10, 36, 45, 65 Afocal procedure, 105 Arches cluster, 23 B1620-26, 37 Age Archinal, Brent, 63, 64, Barkhatova (Bar) of globular clusters, 89, 195 catalogue, 196 25, 28–29 Arcturus, 43 Barlow lens, 78–79, 110 of open clusters, Aricebo radio telescope, Barnard’s Galaxy, 49 15–16 33 Basel (Bas) catalogue, 196 of star complexes, 41 Aries, 45 Bayer classification of stellar associations, Arp 2, 51 system, 93 39, 41–42 Arp catalogue, 197 Be16, 63 of the universe, 28 Arp-Madore (AM)-1, 33 Beehive Cluster, 13, 60, Aldebaran, 43 Arp-Madore (AM)-2, 148 Alessi, 22, 61 48, 65 Bergeron 1, 22 Alessi catalogue, 196 Arp-Madore (AM) Bergeron, J., 22 Algenubi, 44 catalogue, 197 Berkeley 11, 124f, 125 Algieba, 44 Asterisms, 43–45, Berkeley 17, 15 Algol (Demon Star), 65, 94 Berkeley 19, 130 21 Astronomy (magazine), Berkeley 29, 18 Alnilam, 5–6 89 Berkeley 42, 171–173 Alnitak, 5–6 Astronomy Now Berkeley (Be) catalogue, Alpha Centauri, 25 (magazine), 89 196 Alpha Orionis, 93 Astrophotography, 94, Beta Pictoris, 42 Alpha Persei, 40 101, 102–103 Beta Piscium, 44 Altair, 44 Astroplanner (software), Betelgeuse, 93 Alterf, 44 90 Big Bang, 5, 29 Altitude-Azimuth Astro-Snap (software), Big Dipper, 19, 43 (Alt-Az) mount, 107 Binary millisecond 75–76 AstroStack (software), pulsars, 30 Andromeda Galaxy, 36, 108 Binary stars, 8, 52 39, 41, 48, 52, 61 AstroVideo (software), in globular clusters, ANR 1947 -
The Comet's Tale and (Spacewatch), 1998 M5 Need of Observation
THE COMET’S TALE Newsletter of the Comet Section of the British Astronomical Association Volume 6, No 2 (Issue 12), 1999 October THE SECOND INTERNATIONAL WORKSHOP ON COMETARY ASTRONOMY New Hall, Cambridge, 1999 August 14 - 16 After months of planning and much hard work the participants for the second International Workshop on Cometary Astronomy began to assemble at New Hall, Cambridge on the afternoon and evening of Friday, August 13th. New Hall is one of the more recent Cambridge colleges and includes a centre built for Japanese students as well as accommodation for the graduate and undergraduate students. It is a women’s college and a few participants were later disturbed by the night porter doing his rounds and making sure that all ground floor windows were closed. A hearty dinner was provided, but afterwards I had to leave to continue last minute preparations for the morning. He had searched 1000 hours since Most discoveries were from On Saturday morning, Dan Green 1994 without a discovery. If the Japan, USA and Australia. and Jon Shanklin made a few Edgar Wilson award had been in Southern Hemisphere observers opening announcements. We had operation he would have netted an only discover southern declination nine comet discoverers present average of $4000 a year, though comets, however northern and five continents were some years would be more hemisphere observers find them in represented. The next meeting rewarding and others less. His both hemispheres. There is no would take place in 4 – 5 years search technique is to scan significant trend in discovery time, possibly in America. -
Publications of the Astronomical Society of the Pacific 105: 281-286, 1993 March
Publications of the Astronomical Society of the Pacific 105: 281-286, 1993 March The He I /16678 Emission Line of Phi Persei: New Evidence of the Companion Star Douglas R. Gibs, Chilinda Y. Willis, and Laura R. Penny Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303-3083 Electronic mail: [email protected], [email protected] David McDavid Division of Earth and Physical Sciences, University of Texas at San Antonio, 6900 North Loop 1604 West, San Antonio, Texas 78249-0663 Electronic mail: [email protected] Received 1992 November 2; accepted 1992 December 9 ABSTRACT. We present Ha and He I /16678 emission profiles for the Be binary system φ Persei. Both lines display orbital phase-related variations in radial velocity and equivalent width that can be used to associate the lines with emitting gas surrounding the Be star primary or undetected secondary. We find that one component of He I /16678 emission follows the He π /14686 radial-velocity curve given by Poeckert (1981) which indicates an origin in the circumstellar gas near the secondary. A second emission component probably forms between the stars in a gas flow directed toward the high-density portion of the primary's circumstellar disk that faces the secondary. 1. INTRODUCTION kms-1), double-peaked Hell /14686 emission line which displays anti-phase motion and is probably formed in a The Be star φ Persei is the more massive member of a disk surrounding the secondary, and (5) generally weak binary system in which the photosphere of the companion shell lines (seen in He I A/L4026, 4471) that follow the has yet to be detected. -
Polarimetry of Early Emission Line Stars
UvA-DARE (Digital Academic Repository) Polarimetry of Early Emission Line Stars. McDavid, D. Publication date 2001 Link to publication Citation for published version (APA): McDavid, D. (2001). Polarimetry of Early Emission Line Stars. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:28 Sep 2021 Chapterr 4 Multicolorr Polarimetry of Selected Be Stars: 1990-93 3 (originallyy published in 1994 PASP, 106, 949) ABSTRACT T Opticall polarization data in the XJBVRI filter system for eight bright northernn Be stars are presented here as the continuation of a long term mon- itoringg project begun in 1984. There are no strong cases of night-to-night variability,, and the only star showing unmistakable changes in polarization fromfrom year to year over the nine years covered by the program is Pi Aquarii. -
Disk Loss and Disk Renewal Phases in Classical Be Stars I: Analysis of Long-Term Spectropolarimetric Data
Accepted in ApJ Dec 8, 2009 A Preprint typeset using L TEX style emulateapj v. 11/12/01 DISK LOSS AND DISK RENEWAL PHASES IN CLASSICAL BE STARS I: ANALYSIS OF LONG-TERM SPECTROPOLARIMETRIC DATA John P. Wisniewski1,2, Zachary H. Draper1, Karen S. Bjorkman3, Marilyn R. Meade4, Jon E. Bjorkman3, Adam F. Kowalski1 Accepted in ApJ Dec 8, 2009 ABSTRACT Classical Be stars are known to occasionally transition from having a gaseous circumstellar disk (“Be phase”) to a state in which all observational evidence for the presence of these disks disappears (“normal B-star phase”). We present one of the most comprehensive spectropolarimetric views to date of such a transition for two Be stars, π Aquarii and 60 Cygni. 60 Cyg’s disk loss episode was characterized by a generally monotonic decrease in emission strength over a time-scale of ∼1000 days from the maximum V-band polarization to the minimum Hα equivalent width, consistent with the viscous time-scale of the disk, assuming α ∼0.14. π Aqr’s disk loss was episodic in nature and occurred over a time-scale of ∼2440 days. An observed time lag between the behavior of the polarization and Hα in both stars indicates the disk clearing proceeded in an “inside-out” manner. We determine the position angle of the intrinsic polarization to be 166.7±0.1◦ for π Aqr and 107.7±0.4◦ for 60 Cyg, and model the wavelength dependence of the observed polarization during the quiescent diskless phase of each star to determine the interstellar polarization along the line of sight.