Compound - Physical Properties Density Melting Point G Cm-3 C

Total Page:16

File Type:pdf, Size:1020Kb

Compound - Physical Properties Density Melting Point G Cm-3 C Goodfellow Cambridge Limited Ermine Business Park, Huntingdon PE29 6WR England Telephone +44 1480 424 800 : Fax +44 1480 424 900 Compound - Physical Properties Density Melting point g cm-3 C Aluminum Carbide 2.36 - Al C 4 3 Aluminum Nitride 3.26 - AlN Antimony Telluride 6.50 - Sb Te 2 3 Barium Titanate 5.8-6.0 - BaTiO3 Bismuth Telluride 7.7 - Bi Te 2 3 Boron Nitride 2.25 - BN Calcium Boride 2.3 - CaB6 Calcium Fluoride 3.18 1360-1400 CaF2 Calcium Titanate 4.10 1975 CaTiO3 Chromium Carbide 6.68 - Cr C 3 2 Chromium Diboride 4.36 - CrB2 Chromium Nitride 5.9 - Cr2N Chromium Silicide 5.5 - CrSi2 Cobalt (II) Oxide 6.45 1795 CoO Cobalt (III) Oxide 5.18 - Co O 3 4 Copper Selenide 5.99 - CuSe Cupric Oxide 6.39 - CuO Hafnium Carbide 12.2 approx. 3890 HfC Hafnium Diboride 10.5 3100 HfB2 Indium Oxide/Tin Oxide 7.16 - In O 90 /SnO2 10 2 3 All information and technical data are given as a guide only. Although every effort has been made to ensure that the information 1 is correct, no warranty is given as to its completeness or accuracy. September 17 2021 Goodfellow Cambridge Limited Ermine Business Park, Huntingdon PE29 6WR England Telephone +44 1480 424 800 : Fax +44 1480 424 900 Compound - Physical Properties Density Melting point g cm-3 C Iron Silicide 6.1 - FeSi Lanthanum Hexaboride 2.61 - LaB6 Lead Selenide 8.10 - PbSe Magnesium Fluoride - 1396 MgF2 Magnesium Oxide 3.58 - MgO Molybdenum Carbide 8.9 - Mo2C Molybdenum Diboride 7.12 - MoB2 Molybdenum Disilicide 6.31 - MoSi2 Nickel Oxide 6.67 1984 NiO Niobium Boride 6.97 - NbB2 Niobium Carbide 7.6 - NbC Niobium Nitride 8.4 - NbN Niobium Pentoxide 4.47 - Nb O 2 5 Niobium Silicide 5.37 - NbSi2 Silicon Carbide 3.217 - SiC Silicon Monoxide 2.13 - SiO Silicon Nitride 3.44 - Si N 3 4 Silver Chloride 5.56 455 AgCl Sodium Chloride 2.16 - NaCl Tantalum Boride 11.15 approx. 3000 TaB2 All information and technical data are given as a guide only. Although every effort has been made to ensure that the information 2 is correct, no warranty is given as to its completeness or accuracy. September 17 2021 Goodfellow Cambridge Limited Ermine Business Park, Huntingdon PE29 6WR England Telephone +44 1480 424 800 : Fax +44 1480 424 900 Compound - Physical Properties Density Melting point g cm-3 C Tantalum Carbide 13.9 3880 TaC Tantalum Silicide 9.14 - TaSi2 Tin Oxide 6.5 1080 SnO Titanium Boride 4.5 - TiB2 Titanium Carbide 4.93 - TiC Titanium Hydride 3.9 - TiH2 Titanium Nitride 5.22 - TiN Titanium Silicide 4.02 - TiSi2 Tungsten Boride 10.77 - WB Tungsten Carbide 15.63 - WC Tungsten Disulfide 7.5 - WS2 Tungsten Silicide 9.4 - WSi2 Tungsten Trioxide 7.16 1473 WO3 Vanadium Carbide 5.77 - VC Vanadium Nitride 6.13 - VN Zinc Arsenide 5.53 - Zn As 3 2 Zinc Selenide 5.42 - ZnSe Zinc Sulfide - 1700 ZnS Zirconium Boride 6.085 - ZrB2 Zirconium Carbide 6.73 3540 ZrC All information and technical data are given as a guide only. Although every effort has been made to ensure that the information 3 is correct, no warranty is given as to its completeness or accuracy. September 17 2021 Goodfellow Cambridge Limited Ermine Business Park, Huntingdon PE29 6WR England Telephone +44 1480 424 800 : Fax +44 1480 424 900 Compound - Physical Properties Density Melting point g cm-3 C Zirconium Hydride 5.47 - ZrH2 Zirconium Nitride 7.09 2980Æ 50 ZrN All information and technical data are given as a guide only. Although every effort has been made to ensure that the information 4 is correct, no warranty is given as to its completeness or accuracy. September 17 2021.
Recommended publications
  • Sintering of Niobium Containing AISI M2 High Speed Steel
    Sintering of AISI M2 high speed steel with the addition of NbC Alexandre Wentzcovitch1, Francisco Ambrozio Filho1, Luis Carlos Elias da Silva2, Maurício David Martins das Neves2 1Centro Universitário da FEI 2Instituto de Pesquisas Energéticas e Nucleares – IPEN-CNEN/SP [email protected]; [email protected]; [email protected]; [email protected] Keywords: powder metallurgy, high speed steel, NbC, sintering and microstructure. Abstract. The influence of adding 6 wt% (NbC) niobium carbide on the sintering temperature and microstructure of high speed steel - AISI M2 (0.87% C, 5.00% Mo, 6.00% W, 4,00% Cr, 2.00% V and Fe bal.) powder was studied. The starting material was obtained by vacuum melting followed by atomization in water. The samples were axially cold compacted in a cylindrical matrix and then vacuum sintered at 1250 and 1350 °C. Dilatometry and differential scanning calorimetry measurements indicated an increase in sintering temperature with addition of niobium to the AISI M2 steel. Optical and scanning electron microscope observations revealed a microstructure with uniformly distributed niobium carbides. Introduction High-speed steels have been widely used in the manufacture of cutting tools and wear-resistant materials [1]. Several techniques have been used to improve the properties of sintered high speed steels and these include: addition of alloying elements to increase carbide formation [2, 3], addition of ceramic reinforcements and use of high- energy milling [4]. Niobium is an alloying element that can be added to high speed steels to form stable carbides and provide reinforcement to the matrix. The niobium added to the steel combines with carbon to form a MC-type carbide, which can increase the hardness and wear resistance of the high speed steel and prevent austenite grain growth during sintering and heat treatment.
    [Show full text]
  • UNITE-D STATESJPATBNT Omen .V
    .' Patented Sept. 11,1934 1,973,428 UNITE-D STATESJPATBNT omen .v ’ 1,973,428 ; CEMEN'I'ED man ommn'm'raamn Gregory J. Comstock, Edgcwoorl, Pa. assignor'to ~: ' ' ' , Firth-Sterling Steel CompanmMcKeeeport, 2a., , a corporation of Pennsylvania Y . ‘ ' ' No Drawing. Application November 8,‘ 1932, Serial No. 641,762 r .' 3 Claims. (ems-1‘) cold-press, method or the hot-ypress' method. In , . This invention relates generally to hard- ce-f the cold-press method thefmixtureis compacted " mented carbide materials made by a cementing into 'a billet under relatively ‘high'pressure, for -' ‘ or sintering process, and more ‘particularly to example 10,000#/sq.~ in.v and is then preferably such materials containing tungsten carbide, tan:- ,. given'a ‘preliminary sinter at about _1600°‘>-F. ‘of 5 talum carbide, titanium carbide and an auxiliary , It is cooled and :reshaped'and then given a ?nal, I , ‘ I metal, or alloy- such as cobalt, iron or nickel. sinter at a temperature of between ‘2600 and‘ Hard cemented carbide materials containing 32009.- E, . 7' . ~ - _ tungsten carbide and iron, cobalt. or nickel are The material may be made according to the ’ now known and have been described in hot-press method in which the heat ‘and pressure 65 10 Schroeter Patent No. 1,549,615. ‘ ' ‘ ' ' - ‘I ' are applied simultaneously. We’ preter in the ' In my application, Serial No. ‘512,917, filed hot-press, method to use. ‘a temperature‘ of about . November 4, 1931, there isdescribed a hard. 3200° F. and a pressure of about 140o#/sq. in'. cemented carbidematerial containing tungsten and.‘ to carry out the sintering‘for, about ?ve _ carbide, tantalum carbide and cobalt, nickel or minutes‘ at thisftemperature.
    [Show full text]
  • Bismuth Antimony Telluride
    ci al S ence Mahajan et al., J Material Sci Eng 2018, 7:4 ri s te & a E M n DOI: 10.4172/2169-0022.1000479 f g o i n l e a e n r r i n u g o Journal of Material Sciences & Engineering J ISSN: 2169-0022 Research Article Article OpenOpen Access Access Study and Characterization of Thermoelectric Material (TE) Bismuth Antimony Telluride Aniruddha Mahajan1*, Manik Deosarkar1 and Rajendra Panmand2 1Chemical Engineering Department, Vishwakarma Institute of Technology, Pune, India 2Centre for Materials Electronics and Technology (C-MET), Dr. Homi Bhabha Road, Pune, India Abstract Thermoelectric materials are used to convert the heat to electricity with no moving parts, in the present work an attempt has been made to prepare it for power generation function. Bismuth antimony telluride nanopowders were prepared by using mechanochemical method. Three different materials; Bismuth Telluride, (Bi0.75Sb0.25)2Te 3 and (Bi0.5Sb0.5)2Te 3 were synthesized. XRD and TEM analysis was carried out to confirm the results. The particle size of the material was determined by using FESEM analysis. The two alloys of Bismuth Telluride such prepared were converted in the pellet form using vacuum hydraulic pressure and their Seebeck coefficients were determined to test the material suitability for its use as a thermoelectric device. Their power factor measurement and Hall effect measurements were carried out at room temperature. Keywords: Bismuth telluride; Mechanochemical method; energy in one form into another. Use of TE solid materials Applications Nanoparticals; Seebeck coefficients in heat pump and refrigeration is well known [14] and it is now expanded such as cooled seats in luxury automobiles [15].
    [Show full text]
  • Chemistry of the Corrosion of Metals in Presence of Molten Vanadium Pentoxide
    CHEMISTRY OF THE CORROSION OF METALS IN PRESENCE OF MOLTEN VANADIUM PENTOXIDE THESIS Submitted for the Degree of DOCTOR OF PHILOSOPHY THE UNIVERSITY OF LONDON by KAILATHUVALAPPIL INNIRI VASU February, 1964 Department of Metallurgy, Royal School of Mines, Imperial College, London, S.W.7. The author is grateful to Dr. D. A. Pantony, who supervised this research project, for his constant encouragement, numerous suggestions and stimulating discussions; to his colleagues and the members of the teaching and technical staff of the Department of Metallurgy, Imperial College, for their helpful co—operation; and to the British Petroleum Company Limited for financial assistance. CONTENTS ABSTRACT NOMENCLATURE vi I. INTRODUCTION A. HISTORY 1 B. NATURE OF CORROSION 2 C. ACTIVATION - AND DIFFUSION - CONTROLLED PROCESSES 4 D. RELEVANT PREVIOUS INVESTIGATIONS 6 E. APPROACH TO THE PROBLEM 9 (a) PHYSICAL-CHEMICAL STUDIES ON VANADIC MELTS (1)Dissociation Equilibrium 10 (2)Kinetics of the Oxidation of Vanadium Dioxide 11 (3)Cryoscopy 11 (4)Conductivity of Vanadic Melts 11 (5)Viscosity and Density 12 (b) CORROSION OF METALS IN THE PRESENCE OF MOLTEN VANADIUM PENTOXIDE (1)General Nature 12 (2)In Relation to Gas-Turbine Corrosion 13 (3)A Model for Study 14 (3a) The Corrosion Layer 19 (4)Metal Surface and Corrosion 23 (5)Prevention of Corrosion 23 II. EXPERIMENTAL A. MATERIALS (a)Vanadium Pentoxide 25 (b)Metals 25 (c)Metal Oxides 27 (d)Oxygen, Nitrogen, and Oxygen- Nitrogen Mixtures 28 B. SPECIMENS FOR CORROSION STUDIES 30 C. EXPERIMENTAL PROCEDURE (a)Container
    [Show full text]
  • S42004-019-0231-3.Pdf — Adobe
    ARTICLE https://doi.org/10.1038/s42004-019-0231-3 OPEN Niobium pentoxide nanomaterials with distorted structures as efficient acid catalysts Kai Skrodczky1, Margarida M. Antunes2, Xianying Han1, Saveria Santangelo 3, Gudrun Scholz1, Anabela A. Valente 2*, Nicola Pinna 1* & Patrícia A. Russo1* 1234567890():,; Niobium pentoxides are promising acid catalysts for the conversion of biomass into fuels and chemicals. Developing new synthesis routes is essential for designing niobium pentoxide catalysts with improved activity for specific practical processes. Here we show a synthesis approach in acetophenone, which produces nanostructured niobium pentoxides with varying structure and acidity that act as efficient acid catalysts. The oxides have orthorhombic structures with different extents of distortions and coordinatively unsaturated metal atoms. A strong dependence is observed between the type and strength of the acid sites and specific structural motifs. Ultrasmall niobium pentoxide nanoparticles, which have strong Brønsted acidity, as well as Lewis acidity, give product yields of 96% (3 h, 140 °C, 100% conversion), 85% (3 h, 140 °C, 86% conversion), and 100% (3 h, 110 °C, 100% conversion) in the reac- tions of furfuryl alcohol, 5-(hydroxymethyl)furfural, and α-angelica lactone with ethanol, respectively. 1 Institut für Chemie and IRIS Adlershof, Humboldt-Universität zu Berlin, Berlin, Germany. 2 Department of Chemistry, CICECO, University of Aveiro, Aveiro, Portugal. 3 Dipartimento di Ingegneria Civile, dell’Energia, dell’Ambiente e dei Materiali (DICEAM), Università “Mediterranea”, Reggio Calabria, Italy. *email: [email protected]; [email protected]; [email protected] COMMUNICATIONS CHEMISTRY | (2019) 2:129 | https://doi.org/10.1038/s42004-019-0231-3 | www.nature.com/commschem 1 ARTICLE COMMUNICATIONS CHEMISTRY | https://doi.org/10.1038/s42004-019-0231-3 iobium pentoxides show high potential as acid catalysts will also allow getting insights into the structure–acidity–activity Nfor the sustainable production of fuels and chemicals from relationships.
    [Show full text]
  • Enrichment Strategies for Phosphoproteomics: State-Of-The-Art
    Rev Anal Chem 31 (2012): 29–41 © 2012 by Walter de Gruyter • Berlin • Boston. DOI 10.1515/revac-2011-0025 Enrichment strategies for phosphoproteomics: state-of-the-art Barbora Salovska 1,2, *, Ales Tichy 1,2 , Martina MIP molecularly imprinted polymer Rezacova 1 , Jirina Vavrova 2 and Eva Novotna 2 MOAC metal oxide affi nity chromatography MS mass spectrometry 1 Department of Medical Biochemistry , Faculty of NTA nitriloacetic acid Medicine in Hradec Kralove, Charles University in PTMs post-translational modifi cations Prague, Hradec Kr á lov é , Czech Republic , pS phosphoserine e-mail: [email protected] pT phosphothreonine 2 Department of Radiobiology , Faculty of Military Health pY phosphotyrosine Sciences, University of Defence, Hradec Kralove , RPLC reversed phase liquid chromatography Czech Republic SAX strong anion-exchange chromatography SCX strong cation-exchange chromatography * Corresponding author Introduction Abstract Protein phosphorylation is a key regulator in many biological The human genome involves approximately 30,000 protein- processes, such as homeostasis, cellular signaling and com- coding genes; the human proteome contains several million munication, transcriptional and translational regulation, and different protein effectors. This is due to alternative splic- apoptosis. The defects in this tightly controlled reversible post- ing of genes and post-translational modifi cations (PTMs). translational modifi cation have been described to contribute Several hundred PTMs are currently known, among them to genesis and
    [Show full text]
  • Method for Producing Thick Ceramic Films by a Sol Gel
    Europäisches Patentamt *EP000815285B1* (19) European Patent Office Office européen des brevets (11) EP 0 815 285 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.7: C23C 18/12 of the grant of the patent: // C04B41/87, C04B41/50 22.08.2001 Bulletin 2001/34 (86) International application number: (21) Application number: 96901675.7 PCT/CA96/00088 (22) Date of filing: 13.02.1996 (87) International publication number: WO 96/29447 (26.09.1996 Gazette 1996/43) (54) METHOD FOR PRODUCING THICK CERAMIC FILMS BY A SOL GEL COATING PROCESS VERFAHREN ZUR HERSTELLUNG DICKER KERAMIKFILMS DURCH SOL-GEL-BESCHICHTUNGSPROZESS PROCEDE DE FABRICATION DE FILMS DE CERAMIQUE EPAIS METTANT EN UVRE UN PROCESSUS DE REVETEMENT SOL-GEL (84) Designated Contracting States: (74) Representative: AT BE CH DE DK ES FR GB GR IE LI NL PT SE Simpson, Alison Elizabeth Fraser et al Urquhart-Dykes & Lord, (30) Priority: 22.03.1995 US 409127 30 Welbeck Street London W1G 8ER (GB) (43) Date of publication of application: 07.01.1998 Bulletin 1998/02 (56) References cited: EP-A- 0 433 915 EP-A- 0 482 659 (73) Proprietor: QUEEN’S UNIVERSITY AT KINGSTON EP-A- 0 564 866 WO-A-96/00198 Kingston Ontario K7L 3N6 (CA) US-A- 4 921 731 (72) Inventors: • TECHNICAL DISCLOSURE BULLETIN, vol. 37, • BARROW, David No 09, September 1994, "Low Leakage, Ajax, Ontario L1S 6Z4 (CA) Temperature Invariant, High Dielectric Constant • PETROFF, Edward, T. Films, using Multilayered Sol-Gel Fabrication", Scarborough, Ontario M1T 1V8 (CA) page 27 - page 28 • SAYER, Michael • PATENT ABSTRACTS OF JAPAN, vol.
    [Show full text]
  • The Titanium Industry: a Case Study in Oligopoly and Public Policy
    THE TITANIUM INDUSTRY: A CASE STUDY IN OLIGOPOLY AND PUBLIC POLICY DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy In the Graduate School of the Ohio State University by FRANCIS GEORGE MASSON, B.A., M.A. The Ohio State University 1 9 5 k Content* L £MR I. INTRODUCTION............................................................................................... 1 II. THE PRODUCT AND ITS APPLICATIONS...................................... 9 Consumption and Uses ................................. 9 Properties ........................................................ ...... 16 III. INDUSTRY STRUCTURE................................................................................ 28 Definition of the I n d u s t r y ............................................ 28 Financial Structure. ..••••••.••. 32 Alloys and Carbide Branch. ........................... 3 k Pigment Branch .............................................................................. 35 Primary Metal Branch ................................. 1*0 Fabrication Branch ................................. $0 IT. INDUSTRY STRUCTURE - CONTINUED............................................. $2 Introduction ................................ $2 World Production and Resources ................................. $3 Nature of the Demand for Ram Materials . $8 Ores and Concentrates Branch. ••••••• 65 Summary.................................................................. 70 V. TAXATION. ANTITRUST AND TARIFF POLICY............................
    [Show full text]
  • Pdf 1007.44 K
    IJE TRANSACTIONS B: Applications Vol. 29, No. 5, (May 2016) 677-687 International Journal of Engineering Journal Homepage: www.ije.ir A Review on Titanium Nitride and Titanium Carbide Single and Multilayer Coatings Deposited by Plasma Assisted Chemical Vapor Deposition a, A. Sabour Rouhaghdamb, S. Ahangaranic٭M. Azadi a Faculty of metallurgical Engineering and material, Semnan University, Semnan, Iran b Faculty of Engineering, Materials Engineering Department, Surface Engineering Laboratory ,Tarbiat Modares University, Tehran, Iran c Advanced Materials and Renewable Energies Department, Iranian Research Organization for Science and Technology, Tehran, Iran P A P E R I N F O ABSTRACT Paper history: In this paper, we reviewed researches about the titanium nitride (TiN) and titanium carbide (TiC) Received 21 September 2015 single and multilayer coatings. These coatings were deposited by the plasma assisted chemical vapor Received in revised form 06 February 2016 deposition (PACVD) technique. Plasma-based technologies are used for the processing of thin films Accepted 4 March 2016 and coatings for different applications such as automobile and aerospace parts, computer disc drives, food industry and surgical/medical instruments. We describe the state of the performance of different Keywords: coating systems and thin film architectures in PACVD suitable for industrial-scale or laboratory Titanium Nitride applications. Mechanical properties of coatings such as wear resistance, hardness and the scratch Titanium Carbide resistance, structural characteristics, physical and chemical properties like coatings adhesion into Multilayer Coatings different substrates, wetting behavior and corrosion resistance were studied. Thus, this paper represents Hard Coatings a source of information for those who want to familiarize with the status of knowledge in the area of Plasma Assisted Chemical Vapor Deposition materials science of functional coatings, in particular TiN/TiC coatings that was deposited by a new Plasma-based technologies.
    [Show full text]
  • Evaluation of Anticorrosive Effect of Niobium Carbide Coating
    1387 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 57, 2017 The Italian Association of Chemical Engineering Online at www.aidic.it/cet Guest Editors: Sauro Pierucci, Jiří Jaromír Klemeš, Laura Piazza, Serafim Bakalis Copyright © 2017, AIDIC Servizi S.r.l. DOI: 10.3303/CET1757232 ISBN 978-88-95608- 48-8; ISSN 2283-9216 Evaluation of Anticorrosive Effect of Niobium Carbide Coating Applied on Carbon Steel b a b a Luisa Novoa , Luis E. Cortes , Eliana Gonzalez , Arnaldo Jimenez , Luis G. a a a Cortes , Mario Ojeda , Aida L. Barbosa* a Laboratory of Research of Catalysis and New materials (LICATUC), Science Faculty, Chemistry Program, University of Cartagena, Campus of Zaragocilla, Kra 50 Nº 30-40, Cartagena, Colombia b Dept of Civil Engineering, Civil Enginering programm, University of Cartagena, Campus of Piedra de Bolivar, Av. El Consulado Calle 30. No. 48 - 152, Cartagena, Colombia [email protected] South America and particularly Colombia, has niobium and tantalum deposits, which can be used as a carbon steel protective agent. A preliminary step is the raw material characterization. Fresh and calcinated samples of niobium mineral in ores and sand were analyzed through optic microscopy, laser-Raman spectroscopy, DRX and textural aspects. The main components of the ore and alluvial sand were Ferrotapiolite and ferrocolumbite with chemical formula (Fe,Mn)•(Ta,Nb)2O6 and associated oxides like Fe2O3, SiO2. In the shape of Tectosilicates, Mn-Tantalite, Nb=O terminal and polyatomic octahedral structures of NbO6, highly distorted, susceptible to form carbides. Ferrocolumbite synthetic (FeNb50) was used as precursor of NbC coating for the surfaces protection of AISI 1020 steel samples having dimensions of 3/8 inch diameter and 1/2 inch length.
    [Show full text]
  • Technology Properties and Applications of Niobium Carbide
    Fundame slatn and Applications of Mo and Nb Alloying in High Performance sleetS – Volume 2 Edited by Hardy Mohrb ehca r CBMM, IMOA and TMS, 2015 TECHNOLOGY, PROPERTIES AND APPLICATIONS OF NIOBIUM CARBIDE REINFORCED STEEL AND IRON ALLOYS H. Mohrb ca h re 1 a dn D . Jar er at 2 1 NiobelCon bvba, Schild ,e B le gium 2 Metal Prime T ce olonh gy .etP L ,.dt niS g pa ore Keywords: Abrasive eW ,ra Wear Resistant Steels, NbC Particles, W etih C tsa I nor s Abstract The al rge tsoc dna snoc i elbared downtime uac es d by lper a ic ng wo nr rap ts ni htrae moving na d mining equipment, sa well sa ni eht materials issecorp ng tsudni ry, er stneserp a uounitnoc s ellahc nge ot materi la poleved men .t Components sed ig den rof sacri cif i la wear must ni ht e tsrif ecalp ssessop tauqeda e a noisarb natsiser c .e F qer u tne ly, oh wev ,re ht ey must osla evah ht e iliba ty ot dnatshtiw impact dna to tsiser chemical .kcatta The eriuqer m tne fo good noisarba r ecnatsise in combination htiw g oo d uot g ssenh si g ne e lar ly ni .noitcidartnoc Typi lac ly, rah d ori n- esab d materials hcus sa marten etis ro etirubedel era hi hg ly tnatsiser ot ba r isa on, y te very elttirb dna tluciffid ot machine. An evitavonni rppa o hca si ot compose a more cud tile ori n-b desa m irta x, embedding a much ah r red we ra tnatsiser phas .e Amongst esoht ex rt emely ha dr ahp s se are sedibrac of eht tr noitisna metals uinatit m, oin b ui m, dna ut ng ets n tiw h hardn sse fo vo er 002 0 HV.
    [Show full text]
  • Niobium(V) Oxide Patinal®
    Product Information Niobium(V) Oxide Patinal ® GENERAL INFORMATION Niobium pentoxide is especially suited for IAD processes and a suitable alternative to TiO 2 with its high refractive index and low absorption. However the layers may show some absorption when deposited by conventional thermal evaporation. Similar to tantalum pentoxide, niobium pentoxide emits oxygen during melting and evaporation, requiring reactive evaporation. Due to the similarities in the process for those two materials, Nb 2O5 is a close alternative to Ta 2O5 and, in contrary to tantalum, not included on the list of “conflict minerals” mentioned in the Dodd-Franck Wall Street Reform and Consumer Protection Act. AREAS OF APPLICATION • Multi-layer coatings for laser mirrors and beam splitters • Anti-reflection coatings on glass in VIS and NIR THIN FILM PROPERTIES Chemical Formula Nb 2O5 Range of Transparency 380 nm – 7 µm Refractive index at 500 nm • conventional T s = 300 °C / no IAD ~ 2.25 – 2.30 • IAD – Ts = RT ~ 2.30 – 2.35 Thin film stress Compressive The optical properties of the thin film are strongly dependent on the deposition rate, substrate temperature and oxygen partial pressure. Strict control of these parameters allows excellent reproducibility. wavl / nm 375 450 550 700 900 1200 n - IAD 2.495 2.341 2.266 2.220 2.196 2.181 k - IAD 2.5E-03 4.6E-04 2.0E-04 1.1E-04 6.9E-05 4.6E-05 Status: 02 / 2018, Page 1 of 4 EMD Performance Materials* One International Plaza Suite 300 / Philadelphia, PA / 19113 USA +888 367 3275 / [email protected] / patinal.com
    [Show full text]