Computing the Common Zeros of Two Bivariate Functions Via B Ezout´ Resultants
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Invertibility Condition of the Fisher Information Matrix of a VARMAX Process and the Tensor Sylvester Matrix
Invertibility Condition of the Fisher Information Matrix of a VARMAX Process and the Tensor Sylvester Matrix André Klein University of Amsterdam Guy Mélard ECARES, Université libre de Bruxelles April 2020 ECARES working paper 2020-11 ECARES ULB - CP 114/04 50, F.D. Roosevelt Ave., B-1050 Brussels BELGIUM www.ecares.org Invertibility Condition of the Fisher Information Matrix of a VARMAX Process and the Tensor Sylvester Matrix Andr´eKlein∗ Guy M´elard† Abstract In this paper the invertibility condition of the asymptotic Fisher information matrix of a controlled vector autoregressive moving average stationary process, VARMAX, is dis- played in a theorem. It is shown that the Fisher information matrix of a VARMAX process becomes invertible if the VARMAX matrix polynomials have no common eigenvalue. Con- trarily to what was mentioned previously in a VARMA framework, the reciprocal property is untrue. We make use of tensor Sylvester matrices since checking equality of the eigen- values of matrix polynomials is most easily done in that way. A tensor Sylvester matrix is a block Sylvester matrix with blocks obtained by Kronecker products of the polynomial coefficients by an identity matrix, on the left for one polynomial and on the right for the other one. The results are illustrated by numerical computations. MSC Classification: 15A23, 15A24, 60G10, 62B10. Keywords: Tensor Sylvester matrix; Matrix polynomial; Common eigenvalues; Fisher in- formation matrix; Stationary VARMAX process. Declaration of interest: none ∗University of Amsterdam, The Netherlands, Rothschild Blv. 123 Apt.7, 6527123 Tel-Aviv, Israel (e-mail: [email protected]). †Universit´elibre de Bruxelles, Solvay Brussels School of Economics and Management, ECARES, avenue Franklin Roosevelt 50 CP 114/04, B-1050 Brussels, Belgium (e-mail: [email protected]). -
10 7 General Vector Spaces Proposition & Definition 7.14
10 7 General vector spaces Proposition & Definition 7.14. Monomial basis of n(R) P Letn N 0. The particular polynomialsm 0,m 1,...,m n n(R) defined by ∈ ∈P n 1 n m0(x) = 1,m 1(x) = x, . ,m n 1(x) =x − ,m n(x) =x for allx R − ∈ are called monomials. The family =(m 0,m 1,...,m n) forms a basis of n(R) B P and is called the monomial basis. Hence dim( n(R)) =n+1. P Corollary 7.15. The method of equating the coefficients Letp andq be two real polynomials with degreen N, which means ∈ n n p(x) =a nx +...+a 1x+a 0 andq(x) =b nx +...+b 1x+b 0 for some coefficientsa n, . , a1, a0, bn, . , b1, b0 R. ∈ If we have the equalityp=q, which means n n anx +...+a 1x+a 0 =b nx +...+b 1x+b 0, (7.3) for allx R, then we can concludea n =b n, . , a1 =b 1 anda 0 =b 0. ∈ VL18 ↓ Remark: Since dim( n(R)) =n+1 and we have the inclusions P 0(R) 1(R) 2(R) (R) (R), P ⊂P ⊂P ⊂···⊂P ⊂F we conclude that dim( (R)) and dim( (R)) cannot befinite natural numbers. Sym- P F bolically, we write dim( (R)) = in such a case. P ∞ 7.4 Coordinates with respect to a basis 11 7.4 Coordinates with respect to a basis 7.4.1 Basis implies coordinates Again, we deal with the caseF=R andF=C simultaneously. Therefore, letV be an F-vector space with the two operations+ and . -
Beam Modes of Lasers with Misaligned Complex Optical Elements
Portland State University PDXScholar Dissertations and Theses Dissertations and Theses 1995 Beam Modes of Lasers with Misaligned Complex Optical Elements Anthony A. Tovar Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Electrical and Computer Engineering Commons Let us know how access to this document benefits ou.y Recommended Citation Tovar, Anthony A., "Beam Modes of Lasers with Misaligned Complex Optical Elements" (1995). Dissertations and Theses. Paper 1363. https://doi.org/10.15760/etd.1362 This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. DISSERTATION APPROVAL The abstract and dissertation of Anthony Alan Tovar for the Doctor of Philosophy in Electrical and Computer Engineering were presented April 21, 1995 and accepted by the dissertation committee and the doctoral program. Carl G. Bachhuber Vincent C. Williams, Representative of the Office of Graduate Studies DOCTORAL PROGRAM APPROVAL: Rolf Schaumann, Chair, Department of Electrical Engineering ************************************************************************ ACCEPTED FOR PORTLAND STATE UNIVERSITY BY THE LIBRARY ABSTRACT An abstract of the dissertation of Anthony Alan Tovar for the Doctor of Philosophy in Electrical and Computer Engineering presented April 21, 1995. Title: Beam Modes of Lasers with Misaligned Complex Optical Elements A recurring theme in my research is that mathematical matrix methods may be used in a wide variety of physics and engineering applications. Transfer matrix tech niques are conceptually and mathematically simple, and they encourage a systems approach. -
Generalized Sylvester Theorems for Periodic Applications in Matrix Optics
Portland State University PDXScholar Electrical and Computer Engineering Faculty Publications and Presentations Electrical and Computer Engineering 3-1-1995 Generalized Sylvester theorems for periodic applications in matrix optics Lee W. Casperson Portland State University Anthony A. Tovar Follow this and additional works at: https://pdxscholar.library.pdx.edu/ece_fac Part of the Electrical and Computer Engineering Commons Let us know how access to this document benefits ou.y Citation Details Anthony A. Tovar and W. Casperson, "Generalized Sylvester theorems for periodic applications in matrix optics," J. Opt. Soc. Am. A 12, 578-590 (1995). This Article is brought to you for free and open access. It has been accepted for inclusion in Electrical and Computer Engineering Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. 578 J. Opt. Soc. Am. AIVol. 12, No. 3/March 1995 A. A. Tovar and L. W. Casper Son Generalized Sylvester theorems for periodic applications in matrix optics Anthony A. Toyar and Lee W. Casperson Department of Electrical Engineering,pirtland State University, Portland, Oregon 97207-0751 i i' Received June 9, 1994; revised manuscripjfeceived September 19, 1994; accepted September 20, 1994 Sylvester's theorem is often applied to problems involving light propagation through periodic optical systems represented by unimodular 2 X 2 transfer matrices. We extend this theorem to apply to broader classes of optics-related matrices. These matrices may be 2 X 2 or take on an important augmented 3 X 3 form. The results, which are summarized in tabular form, are useful for the analysis and the synthesis of a variety of optical systems, such as those that contain periodic distributed-feedback lasers, lossy birefringent filters, periodic pulse compressors, and misaligned lenses and mirrors. -
A Note on the Inversion of Sylvester Matrices in Control Systems
Hindawi Publishing Corporation Mathematical Problems in Engineering Volume 2011, Article ID 609863, 10 pages doi:10.1155/2011/609863 Research Article A Note on the Inversion of Sylvester Matrices in Control Systems Hongkui Li and Ranran Li College of Science, Shandong University of Technology, Shandong 255049, China Correspondence should be addressed to Hongkui Li, [email protected] Received 21 November 2010; Revised 28 February 2011; Accepted 31 March 2011 Academic Editor: Gradimir V. Milovanovic´ Copyright q 2011 H. Li and R. Li. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We give a sufficient condition the solvability of two standard equations of Sylvester matrix by using the displacement structure of the Sylvester matrix, and, according to the sufficient condition, we derive a new fast algorithm for the inversion of a Sylvester matrix, which can be denoted as a sum of products of two triangular Toeplitz matrices. The stability of the inversion formula for a Sylvester matrix is also considered. The Sylvester matrix is numerically forward stable if it is nonsingular and well conditioned. 1. Introduction Let Rx be the space of polynomials over the real numbers. Given univariate polynomials ∈ f x ,g x R x , a1 / 0, where n n−1 ··· m m−1 ··· f x a1x a2x an1,a1 / 0,gx b1x b2x bm1,b1 / 0. 1.1 Let S denote the Sylvester matrix of f x and g x : ⎫ ⎛ ⎞ ⎪ ⎪ a a ··· ··· a ⎪ ⎜ 1 2 n 1 ⎟ ⎬ ⎜ ··· ··· ⎟ ⎜ a1 a2 an1 ⎟ m row ⎜ ⎟ ⎪ ⎜ . -
Selecting a Monomial Basis for Sums of Squares Programming Over a Quotient Ring
Selecting a Monomial Basis for Sums of Squares Programming over a Quotient Ring Frank Permenter1 and Pablo A. Parrilo2 Abstract— In this paper we describe a method for choosing for λi(x) and s(x), this feasibility problem is equivalent to a “good” monomial basis for a sums of squares (SOS) program an SDP. This follows because the sum of squares constraint formulated over a quotient ring. It is known that the monomial is equivalent to a semidefinite constraint on the coefficients basis need only include standard monomials with respect to a Groebner basis. We show that in many cases it is possible of s(x), and the equality constraint is equivalent to linear to use a reduced subset of standard monomials by combining equations on the coefficients of s(x) and λi(x). Groebner basis techniques with the well-known Newton poly- Naturally, the complexity of this sums of squares program tope reduction. This reduced subset of standard monomials grows with the complexity of the underlying variety, as yields a smaller semidefinite program for obtaining a certificate does the size of the corresponding SDP. It is therefore of non-negativity of a polynomial on an algebraic variety. natural to explore how algebraic structure can be exploited I. INTRODUCTION to simplify this sums of squares program. Consider the Many practical engineering problems require demonstrat- following reformulation [10], which is feasible if and only ing non-negativity of a multivariate polynomial over an if (2) is feasible: algebraic variety, i.e. over the solution set of polynomial Find s(x) equations. -
(Integer Or Rational Number) Arithmetic. -Computing T
Electronic Transactions on Numerical Analysis. ETNA Volume 18, pp. 188-197, 2004. Kent State University Copyright 2004, Kent State University. [email protected] ISSN 1068-9613. A NEW SOURCE OF STRUCTURED SINGULAR VALUE DECOMPOSITION PROBLEMS ¡ ANA MARCO AND JOSE-J´ AVIER MARTINEZ´ ¢ Abstract. The computation of the Singular Value Decomposition (SVD) of structured matrices has become an important line of research in numerical linear algebra. In this work the problem of inversion in the context of the computation of curve intersections is considered. Although this problem has usually been dealt with in the field of exact rational computations and in that case it can be solved by using Gaussian elimination, when one has to work in finite precision arithmetic the problem leads to the computation of the SVD of a Sylvester matrix, a different type of structured matrix widely used in computer algebra. In addition only a small part of the SVD is needed, which shows the interest of having special algorithms for this situation. Key words. curves, intersection, singular value decomposition, structured matrices. AMS subject classifications. 14Q05, 65D17, 65F15. 1. Introduction and basic results. The singular value decomposition (SVD) is one of the most valuable tools in numerical linear algebra. Nevertheless, in spite of its advantageous features it has not usually been applied in solving curve intersection problems. Our aim in this paper is to consider the problem of inversion in the context of the computation of the points of intersection of two plane curves, and to show how this problem can be solved by computing the SVD of a Sylvester matrix, a type of structured matrix widely used in computer algebra. -
1 Expressing Vectors in Coordinates
Math 416 - Abstract Linear Algebra Fall 2011, section E1 Working in coordinates In these notes, we explain the idea of working \in coordinates" or coordinate-free, and how the two are related. 1 Expressing vectors in coordinates Let V be an n-dimensional vector space. Recall that a choice of basis fv1; : : : ; vng of V is n the same data as an isomorphism ': V ' R , which sends the basis fv1; : : : ; vng of V to the n standard basis fe1; : : : ; eng of R . In other words, we have ' n ': V −! R vi 7! ei 2 3 c1 6 . 7 v = c1v1 + ::: + cnvn 7! 4 . 5 : cn This allows us to manipulate abstract vectors v = c v + ::: + c v simply as lists of numbers, 2 3 1 1 n n c1 6 . 7 n the coordinate vectors 4 . 5 2 R with respect to the basis fv1; : : : ; vng. Note that the cn coordinates of v 2 V depend on the choice of basis. 2 3 c1 Notation: Write [v] := 6 . 7 2 n for the coordinates of v 2 V with respect to the basis fvig 4 . 5 R cn fv1; : : : ; vng. For shorthand notation, let us name the basis A := fv1; : : : ; vng and then write [v]A for the coordinates of v with respect to the basis A. 2 2 Example: Using the monomial basis f1; x; x g of P2 = fa0 + a1x + a2x j ai 2 Rg, we obtain an isomorphism ' 3 ': P2 −! R 2 3 a0 2 a0 + a1x + a2x 7! 4a15 : a2 2 3 a0 2 In the notation above, we have [a0 + a1x + a2x ]fxig = 4a15. -
Evaluation of Spectrum of 2-Periodic Tridiagonal-Sylvester Matrix
Evaluation of spectrum of 2-periodic tridiagonal-Sylvester matrix Emrah KILIÇ AND Talha ARIKAN Abstract. The Sylvester matrix was …rstly de…ned by J.J. Sylvester. Some authors have studied the relationships between certain or- thogonal polynomials and determinant of Sylvester matrix. Chu studied a generalization of the Sylvester matrix. In this paper, we introduce its 2-period generalization. Then we compute its spec- trum by left eigenvectors with a similarity trick. 1. Introduction There has been increasing interest in tridiagonal matrices in many di¤erent theoretical …elds, especially in applicative …elds such as numer- ical analysis, orthogonal polynomials, engineering, telecommunication system analysis, system identi…cation, signal processing (e.g., speech decoding, deconvolution), special functions, partial di¤erential equa- tions and naturally linear algebra (see [2, 4, 5, 6, 15]). Some authors consider a general tridiagonal matrix of …nite order and then describe its LU factorizations, determine the determinant and inverse of a tridi- agonal matrix under certain conditions (see [3, 7, 10, 11]). The Sylvester type tridiagonal matrix Mn(x) of order (n + 1) is de- …ned as x 1 0 0 0 0 n x 2 0 0 0 2 . 3 0 n 1 x 3 .. 0 0 6 . 7 Mn(x) = 6 . .. .. .. .. 7 6 . 7 6 . 7 6 0 0 0 .. .. n 1 0 7 6 7 6 0 0 0 0 x n 7 6 7 6 0 0 0 0 1 x 7 6 7 4 5 1991 Mathematics Subject Classi…cation. 15A36, 15A18, 15A15. Key words and phrases. Sylvester Matrix, spectrum, determinant. Corresponding author. -
Tight Monomials and the Monomial Basis Property
PDF Manuscript TIGHT MONOMIALS AND MONOMIAL BASIS PROPERTY BANGMING DENG AND JIE DU Abstract. We generalize a criterion for tight monomials of quantum enveloping algebras associated with symmetric generalized Cartan matrices and a monomial basis property of those associated with symmetric (classical) Cartan matrices to their respective sym- metrizable case. We then link the two by establishing that a tight monomial is necessarily a monomial defined by a weakly distinguished word. As an application, we develop an algorithm to compute all tight monomials in the rank 2 Dynkin case. The existence of Hall polynomials for Dynkin or cyclic quivers not only gives rise to a simple realization of the ±-part of the corresponding quantum enveloping algebras, but also results in interesting applications. For example, by specializing q to 0, degenerate quantum enveloping algebras have been investigated in the context of generic extensions ([20], [8]), while through a certain non-triviality property of Hall polynomials, the authors [4, 5] have established a monomial basis property for quantum enveloping algebras associated with Dynkin and cyclic quivers. The monomial basis property describes a systematic construction of many monomial/integral monomial bases some of which have already been studied in the context of elementary algebraic constructions of canonical bases; see, e.g., [15, 27, 21, 5] in the simply-laced Dynkin case and [3, 18], [9, Ch. 11] in general. This property in the cyclic quiver case has also been used in [10] to obtain an elementary construction of PBW-type bases, and hence, of canonical bases for quantum affine sln. In this paper, we will complete this program by proving this property for all finite types. -
Polynomial Interpolation CPSC 303: Numerical Approximation and Discretization
Lecture Notes 2: Polynomial Interpolation CPSC 303: Numerical Approximation and Discretization Ian M. Mitchell [email protected] http://www.cs.ubc.ca/~mitchell University of British Columbia Department of Computer Science Winter Term Two 2012{2013 Copyright 2012{2013 by Ian M. Mitchell This work is made available under the terms of the Creative Commons Attribution 2.5 Canada license http://creativecommons.org/licenses/by/2.5/ca/ Outline • Background • Problem statement and motivation • Formulation: The linear system and its conditioning • Polynomial bases • Monomial • Lagrange • Newton • Uniqueness of polynomial interpolant • Divided differences • Divided difference tables and the Newton basis interpolant • Divided difference connection to derivatives • Osculating interpolation: interpolating derivatives • Error analysis for polynomial interpolation • Reducing the error using the Chebyshev points as abscissae CPSC 303 Notes 2 Ian M. Mitchell | UBC Computer Science 2/ 53 Interpolation Motivation n We are given a collection of data samples f(xi; yi)gi=0 n • The fxigi=0 are called the abscissae (singular: abscissa), n the fyigi=0 are called the data values • Want to find a function p(x) which can be used to estimate y(x) for x 6= xi • Why? We often get discrete data from sensors or computation, but we want information as if the function were not discretely sampled • If possible, p(x) should be inexpensive to evaluate for a given x CPSC 303 Notes 2 Ian M. Mitchell | UBC Computer Science 3/ 53 Interpolation Formulation There are lots of ways to define a function p(x) to approximate n f(xi; yi)gi=0 • Interpolation means p(xi) = yi (and we will only evaluate p(x) for mini xi ≤ x ≤ maxi xi) • Most interpolants (and even general data fitting) is done with a linear combination of (usually nonlinear) basis functions fφj(x)g n X p(x) = pn(x) = cjφj(x) j=0 where cj are the interpolation coefficients or interpolation weights CPSC 303 Notes 2 Ian M. -
Arxiv:1805.04488V5 [Math.NA]
GENERALIZED STANDARD TRIPLES FOR ALGEBRAIC LINEARIZATIONS OF MATRIX POLYNOMIALS∗ EUNICE Y. S. CHAN†, ROBERT M. CORLESS‡, AND LEILI RAFIEE SEVYERI§ Abstract. We define generalized standard triples X, Y , and L(z) = zC1 − C0, where L(z) is a linearization of a regular n×n −1 −1 matrix polynomial P (z) ∈ C [z], in order to use the representation X(zC1 − C0) Y = P (z) which holds except when z is an eigenvalue of P . This representation can be used in constructing so-called algebraic linearizations for matrix polynomials of the form H(z) = zA(z)B(z)+ C ∈ Cn×n[z] from generalized standard triples of A(z) and B(z). This can be done even if A(z) and B(z) are expressed in differing polynomial bases. Our main theorem is that X can be expressed using ℓ the coefficients of the expression 1 = Pk=0 ekφk(z) in terms of the relevant polynomial basis. For convenience, we tabulate generalized standard triples for orthogonal polynomial bases, the monomial basis, and Newton interpolational bases; for the Bernstein basis; for Lagrange interpolational bases; and for Hermite interpolational bases. We account for the possibility of common similarity transformations. Key words. Standard triple, regular matrix polynomial, polynomial bases, companion matrix, colleague matrix, comrade matrix, algebraic linearization, linearization of matrix polynomials. AMS subject classifications. 65F15, 15A22, 65D05 1. Introduction. A matrix polynomial P (z) ∈ Fm×n[z] is a polynomial in the variable z with coef- ficients that are m by n matrices with entries from the field F. We will use F = C, the field of complex k numbers, in this paper.