bioRxiv preprint doi: https://doi.org/10.1101/2021.01.04.425338; this version posted January 5, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Indole-3-glycerolphosphate synthase, a branchpoint for the biosynthesis of tryptophan, indole, and benzoxazinoids in maize Annett Richter1, Adrian F. Powell1, Mahdieh Mirzaei1, Lucy J. Wang1, Navid Movahed1, Julia K. Miller2, Miguel A. Piñeros3, Georg Jander1* 1Boyce Thompson Institute, Ithaca, NY 2Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 3Robert W. Holley Center for Agriculture and Health, USDA-ARS, Ithaca, NY *To whom correspondence should be addressed Georg Jander Boyce Thompson Institute 533 Tower Road Ithaca, NY 14850 Phone: 1 (607) 254-1365 Email:
[email protected] Key words maize, Zea mays, tryptophan, indole, benzoxazinoid, indole-3-glycerolphosphate, indole-3- glycerolphosphate synthase, metabolic channeling, defense Abstract The maize (Zea mays) genome encodes three indole-3-glycerolphosphate synthase enzymes (IGPS1, 2, and 3) catalyzing the conversion of 1-(2-carboxyphenylamino)-l-deoxyribulose-5- phosphate to indole-3-glycerolphosphate. Three further maize enzymes (BX1, benzoxazinoneless 1; TSA, tryptophan synthase α subunit; and IGL, indole glycerolphosphate lyase) convert indole- 3-glycerolphosphate to indole, which is released as a volatile defense signaling compound and also serves as a precursor for the biosynthesis of tryptophan and defense-related benzoxazinoids. Phylogenetic analyses showed that IGPS2 is similar to enzymes found in both monocots and dicots, whereas maize IGPS1 and IGPS3 are in monocot-specific clades.