Lithological Characteristics of the Lambeth Group

Total Page:16

File Type:pdf, Size:1020Kb

Lithological Characteristics of the Lambeth Group PAPER geotechnical properties. This is set in the context of the environment of deposition and also the post-depositional changes that altered these sediments, both of which are necessary to explain the observed .iI:~o oclica diversity. The measured geotechnical properties of the Lambeth Group are highly diverse, often too diverse to draw other than very conservative assumptions on engineering behaviour. This paper sets out to explain c >aracI:eris',ics why and how the sediments were formed and some of the complex processes that affected them. With this in mind, the measured values often obtained from a ground investigation can be appreciated and 'I, understood in a broader sense. Some brief recommendations are made o~ >e .agni )e', i for the treatment of sites where the Lambeth Group is encountered. The group has been increasingly encountered in major civil engineering schemes, for example, in the expansion of the east Thames corridor, the Jubilee Line Extension, the Docklands Light Railway I)roll ) Extension to Lewisham, the planned East London Line, CrossRail and the Channel Tunnel Rail Link. However, there have been few geological or integrated engineering geological studies of the By Darren Page, High-Point Rendel, London and Lambeth Group. Jackie Skipper, Natural History Museum, London. The paper forms a reference work for the forthcoming CIRIA report on Engineering Properties of UK Soils and Rocks: RP576 for the Lambeth Group co-authored by Darren Page with contributions by Jackie Skipper. nderlying the London Clay throughout south and south east Britain are a group of highly variable sediments belonging to the Stratlgraphlcal framework a Lambeth Group (formerly called the Woolwich and Reading Beds). Ellison et al (1994) have devised a new stratigraphical scheme for the The Lambeth Group comprises a mixture of stiff and hard clays, Palaeogene of the UK. In it, the term Woolwich and Reading Beds has silts, sands and gravel which vary tremendously both laterally and been discarded in favour of a term that can encompass the three main vertically. Locally, these sediments are cemented with calcium formations (Table 1). carbonate, iron oxides and silica to form materials with relatively high The diversity within the Lambeth Group has been recognised strength. It is the variable lithology and strength, combined with the for a long time and accurate descriptions were made as long ago general poor understanding of the group within the industry, that as the early 19th century during the expansion of the railway network has made these sediments probably the most difficult to engineer (Prestwich, 1854 and Whitaker, 1872). The group was brought together in the UK. for mapping by Hester (1965) and a "lithofacies" approach has only The lithologies within the Lambeth Group are highly diverse —there more recently been adopted for London (Ellison, 1983 and 1991).This is probably no other group of sediments within the UK that displays approach has allowed these sediments to be more readily recognised such a range of textures and fabrics within such a small stratigraphical across the whole of southern Britain (Skipper and Page, in thickness (generally between 15m and 40m). The origin and preparation). characteristics of these lithologies are the key to understanding the The Upnor Formation, which comprises the stratigraphically lowest engineering behaviour and properties of the Lambeth Group. and geographically most widespread formation, unconformably This paper describes the main divisions of the Lambeth Group in overlies and oversteps the Thanet Sand Formation in the London area. terms of the component formations and informally recognised Elsewhere the Upnor Formation lies directly on the Chalk. The Thames members. For each, the lithologies are described, together with the Group, which comprises the Harwich or London Clay Formations sedimentary structures that typify them and influence the measured (Ellison et al 1994),overlies the Lambeth Group. (MaaelalIeeg ::Ikkfaagan Igal eel taark ~hraheg aaaaIalphda :k~rev,=.~m &%wan~ ARSWW% LarnhaIadahaarahrg, ~akaadaaeaaal Walnii%aaa~ ~adalaaaawr Laaaaa~ allaar aklga (~~ phfai —:aandal Ig aaae e=~0$$y aheya and anaconda ~~efagarsMO and aanda: Weyeeaahrr Note: This ienotaehatigrapfdcal cokimn; itmerelyiabukdee theformats and thek conagtugve informal members. The Upnor Formagon can be contemporaneous wghthe~ Formagon andfhe WbotwfohFormatkm conlempraneouswNhlhelteding Formatkm. The Wboladch Fonnagon Neo efraggraphicagyafxwethe Upnor Formagonandienetcontempomneoue(aee Rgure T).Quueel sand bodieeoccurteoughout the gmup GROUND ENGINEERING FEBRUARY 2000 PAPER which were then later overlain by the base of the Woolwich Formation. Laminated silt, sand, clays, This palaeo-landsurface has been termed the "mid Lambeth Group shell beds +/- cement hiatus" (Page, 1994)and is often easily recognisable in borehole logs by a sharp change in lithology, downwards from the reduced grey or black sediments of the Woolwich Formation (Lower Shelly Beds) to the reddish, oxidised or colour mottled sediments of the Reading Formation (Lower Mottled Beds). Another occurs above the Reading Formation ("Upper Mottled Beds") Mottled clays, silts, at the base of Woolwich Formation ("Upper Shelly Beds") in central and sands and tluvial Laminated clays, south eastern London (Figure 1). These two surfaces represent +/- sands shells, silts/sands, sequence boundaries (a point at which there has been the most rapid rate lignites in fall of sea level which results in downcutting/planation of the landsurface (Van Wagoner et al, 1990).They are important in correlating Silcretes, calcretes, ferricretes the Lambeth Group. The climatic conditions during the deposition of the Lambeth Group were sub-tropical with a distinct seasonality, similar to climates Upnor FM associated with parts of South East Asia today. Mottled sands, clays, Contemporaneous volcanic activity was occurring in western pebble beds Clayey sand, Scotland and northern Ireland (as a consequence of the opening of the laminated sand/clay, north Atlantic Ocean) and periodic ash falls were widespread (Knox, pebble beds 1996).Clays, chiefly illite, kaolinite and smectite, (derived from volcanic ash), form a significant component of the fine grained sediments within Sequence boundary ~ Diachronous boundary the Lambeth Group (eg Ellison and Lake, 1986). Rgmo1:Sidnmmeo smpnmooslralgraphhmlndaeonshlphN the Lamhelh creep. The llpnor Formation dhgraminInosenha west toeastseoeonaorossew Hampshhe and London eashL The Upnor Formation is characterised by predominantly sand lithologies with a variable clay and/or silt content. It varies from fine to Palaeoenvironmental model medium grained clean sands to sandy clays and can be well graded. Well During the deposition of the Lambeth Group, the London/Hampshire rounded flint gravel is present, as beds from one clast thick to beds up to — Basin lay to the south east of uplands within a broad, topographically about Sm thick and as large channel fill structures ribbon shaped low lying, alluvial and coastal plain area. To the east lay the North Sea bodies of impersistent lateral extent (Skipper, 1999). The green clay occupying a major fault bound, rapidly subsiding, depositional basin. In mineral glauconite is present throughout the formation although where this type of situation relative changes in sea level are more pronounced exposed it weathers to iron oxides. Two subdivisions of this unit have and a slight change in sea level can dramatically alter the environment been recognised on palaeomagnetic evidence (Ali and Jolley 1996 and and therefore the sediment type produced. Sea level fall caused a shift in Ellison et al 1996). In central London these subdivisions each coarsen the alluvial sediments seawards and a rise led to the landward shift in upward from a sand to a coarse gravel representing a fall in sea level. marine sediments (Figure 1).Exposure of the sediments as a result of The surface at the base of the formation is usually burrowed either sea level fall created "palaeo-landsurfaces", subsequently colonised by into the underlying Thanet Sand Formation (Page, in preparation) or vegetation and within which soils (in the non-engineering sense) Chalk (Bromley & Goldring, 1992), with material from the overlying developed. The events that resulted in their formation were widespread sediment penetrating into that underneath. The Upnor Formation can across the basin so that these periods of relative sea level fall are well be cross-bedded, laminated, cross-laminated and bioturbated at various recorded. A number of these events occurred during the deposition of scales. Some typical sedimentary structures are shown in Figure 2. Ash the Lambeth Group, the most notable of which is represented by the fall layers of volcanic origin have been recognised in boreholes in weathered top of the Upnor Formation and the "Lower Mottled Beds", Suffolk and Essex. p= . I~» ~. "" I'>4m ~: ~ ~ - PTpnn31VNhnd---- ---—; -- --areeepner- =--"—aaeÃLapeLaoNeeahmnee: -lgm1dlh)+ernea ——-----ender ~eandandelapaTCanadaSahr~~~ aaem~~~Tea awe,a ~~~L ~m h =-— GROUND ENGINEERING FEBRUARY 2000 31 PAPER I!! /Flainfatt k volcanic ash !, ' Pondln9 and ! LB ~~ ~<~:::—::=i~etotI== = ~setwwltIOIR~QNNp OKIIPC&IOINItatf ~tan%::::iwe%4twer%naltoIae'la %ROWS Nake,~- =:::aaaelaIh Evaporation "LeeerlhelIIIalaa Nttttttt.~~karl Evaporation eaNg~:::—":nNL%0~~ ~otttttoaaoto" '3¹l7", tdati. town G I a ~lit+ extremely anisotropic as a consequence of the alignment of wood fibres. High
Recommended publications
  • Geology of the London Basin
    Geology of the London Basin - 100 Million Years in the Making on 16 November 2018 Mr Philip Laurie first showed a geological map of London produced in 1848 by Stanford – the first of its kind. The Earth is 46,000 million years old, so much had happened before the London area made an appearance. The geological history of London started a hundred million years ago. For 60% of that time it has been under ice, causing sea levels to fall. He lives near the Ravensbourne, which rises south of the North Downs, runs through them and north to the Thames, emerging at Deptford Creek. How did it, and other rivers such as the Wandle, Darent and Medway, come to flow through the North Downs? At one time it was thought that there were faults in the chalk which gave them a way through, but this has been discounted. The Weald is now low lying, but when tectonic plate movement, mainly caused by Africa colliding with Europe, raised not only the Alps but buckled strata in northern Europe, a Wealden ridge was formed. An underlying chalk stratum buckled with high ridges at the South and North Downs and a dip under the Weald, squeezing up the soft sedimentary rocks between them to form the Ridge. Fast flowing streams from the ridge soon eroded channels in the chalk on their way to the sea. The ridge has since been eroding away (reducing river flows). They are ancient rivers. London is over a layer of cretaceous chalk about 40m down, which in turn is over gault clay.
    [Show full text]
  • A CRITICAL EVALUATION of the LOWER-MIDDLE PALAEOLITHIC ARCHAEOLOGICAL RECORD of the CHALK UPLANDS of NORTHWEST EUROPE Lesley
    A CRITICAL EVALUATION OF THE LOWER-MIDDLE PALAEOLITHIC ARCHAEOLOGICAL RECORD OF THE CHALK UPLANDS OF NORTHWEST EUROPE The Chilterns, Pegsdon, Bedfordshire (photograph L. Blundell) Lesley Blundell UCL Thesis submitted for the degree of PhD September 2019 2 I, Lesley Blundell, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Signed: 3 4 Abstract Our understanding of early human behaviour has always been and continues to be predicated on an archaeological record unevenly distributed in space and time. More than 80% of British Lower-Middle Palaeolithic findspots were discovered during the late 19th/early 20th centuries, the majority from lowland fluvial contexts. Within the British planning process and some academic research, the resultant findspot distributions are taken at face value, with insufficient consideration of possible bias resulting from variables operating on their creation. This leads to areas of landscape outside the river valleys being considered to have only limited archaeological potential. This thesis was conceived as an attempt to analyse the findspot data of the Lower-Middle Palaeolithic record of the Chalk uplands of southeast Britain and northern France within a framework complex enough to allow bias in the formation of findspot distribution patterns and artefact preservation/discovery opportunities to be identified and scrutinised more closely. Taking a dynamic, landscape = record approach, this research explores the potential influence of geomorphology, 19th/early 20th century industrialisation and antiquarian collecting on the creation of the Lower- Middle Palaeolithic record through the opportunities created for artefact preservation and release.
    [Show full text]
  • Herne Bay (Beltinge)
    BELTINGE, HERNE BAY, KENT INTRODUCTION TO BELTINGE Thank you for enrolling on our fossil hunting event. The section of coast at Beltinge provides an opportunity to explore the rocks and fossils from the Palaeocene and Eocene epochs of between 56 and 54 million years ago. Beltinge is famed for it’s fossil shark teeth and marine vertebrate remains, such as the THE GEOLOGY vertebrae of fish, palates of rays, bones and carapace of marine turtles. This site represents deposits laid down during the late Paleocene and early Eocene epochs, in a warm climate. The gravel and shingle on the foreshore will The Paleocene rocks of the Thanet Formation are exposed provide you with opportunities to find the on the foreshore and in the cliffs towards Reculver. fossils, however the chances of finding shark teeth improves the further the tide goes out . The younger Paleocene and Eocene rocks overlay this and Broadly speaking, the collecting area is in the are exposed in the gently dipping strata and at Beltinge, the section of beach between the groynes, either Beltinge Fish Bed of the Upnor Formation (Paleocene) is side of the concrete steps, at the access brought down to beach level. point. The most productive area is immediately West of the car park, the Oldhaven Beds slope towards opposite the car park and for about 100 m beach level, exposing the Oldhaven Fish Bed. Fish fossils, west. There are teeth from about 24 species (particularly shark teeth, ray teeth and crushing palettes and of shark, ray and other fish to be found here, fish vertebrae) and turtle carapace are common and can be as well as the remains of crocodile and turtle.
    [Show full text]
  • Geology of London, UK
    Geology of London, UK Katherine R. Royse1, Mike de Freitas2,3, William G. Burgess4, John Cosgrove5, Richard C. Ghail3, Phil Gibbard6, Chris King7, Ursula Lawrence8, Rory N. Mortimore9, Hugh Owen10, Jackie Skipper 11, 1. British Geological Survey, Keyworth, Nottingham, NG12 5GG, UK. [email protected] 2. Imperial College London SW72AZ, UK & First Steps Ltd, Unit 17 Hurlingham Studios, London SW6 3PA, UK. 3. Department of Civil and Environmental Engineering, Imperial College London, London, SW7 2AZ, UK. 4. Department of Geological Sciences, University College London, WC1E 6BT, UK. 5. Department of Earth Science and Engineering, Imperial College London, London, SW7 2AZ, UK. 6. Cambridge Quaternary, Department of Geography, University of Cambridge CB2 3EN, UK. 7. 16A Park Road, Bridport, Dorset 8. Crossrail Ltd. 25 Canada Square, Canary Wharf, London, E14 5LQ, UK. 9. University of Brighton & ChalkRock Ltd, 32 Prince Edwards Road, Lewes, BN7 1BE, UK. 10. Department of Palaeontology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK. 11. Geotechnical Consulting Group (GCG), 52A Cromwell Road, London SW7 5BE, UK. Abstract The population of London is around 7 million. The infrastructure to support this makes London one of the most intensively investigated areas of upper crust. however construction work in London continues to reveal the presence of unexpected ground conditions. These have been discovered in isolation and often recorded with no further work to explain them. There is a scientific, industrial and commercial need to refine the geological framework for London and its surrounding area. This paper reviews the geological setting of London as it is understood at present, and outlines the issues that current research is attempting to resolve.
    [Show full text]
  • Outline • Background
    Outline • Background Case Study 1 • Landslide Debris (Dorset) Case Study 2 • Engineering NIR Stratigraphy (Hampshire) Case Study 3 • Weathering - London Clay (London) NIR Spectroscopy Background to NIR NIR Thermal Range Spectral Logging • Visible, NIR, SWIR Wavelengths (350-2500nm) • Spectral resolution 1nm • Measurement window 4-24 mm • Limited/no sample contact • No sample prep needed – (lab samples can be crushed) • Measurement time 0.05 secs Spectral Logging Sensitive to most minerals but especially clays Biggest applications: • Mining – mineral exploration • Heritage Conservation (as non contact) • Pharmaceuticals • Biscuits Typical XRD plot for London Clay Typical Lab Spectra • Sensitive to moisture, mineralogy, clay content, organics, plant health, particulate contaminants......... • Relate to weathering, water movement, vegetation growth Dark Clay Orange Sand 0 2500 nm 0 2500 nm Landslide Debris Particle Size Characterization Upper Group Lower Group Intermediate Group Particle Size Characterization • Possible to predict article composition from 2-3 wavelengths e.g. % clay =130.3-82.754*R(λ 2204 ) +937.388 R(λ 1411 ) Moisture Content Next Steps • Black Venn Study: debris flow mobility – does the mixing of debris flow materials relate to how mobile it is? Debris flow mechanics. • China Bailong Corridor (Zhouqu Debris Flow – Lanzhou Uni): properties of source materials with debris flow mobility. Current Research Projects: Engineering NIR Stratigraphy London Clay (Hampshire Basin) White Cliff Bay - Isle of Wight White Cliff Bay Geological
    [Show full text]
  • The Stratigraphical Framework for the Palaeogene Successions of the London Basin, UK
    The stratigraphical framework for the Palaeogene successions of the London Basin, UK Open Report OR/12/004 BRITISH GEOLOGICAL SURVEY OPEN REPORT OR/12/004 The National Grid and other Ordnance Survey data are used The stratigraphical framework for with the permission of the Controller of Her Majesty’s Stationery Office. the Palaeogene successions of the Licence No: 100017897/2012. London Basin, UK Key words Stratigraphy; Palaeogene; southern England; London Basin; Montrose Group; Lambeth Group; Thames Group; D T Aldiss Bracklesham Group. Front cover Borehole core from Borehole 404T, Jubilee Line Extension, showing pedogenically altered clays of the Lower Mottled Clay of the Reading Formation and glauconitic sands of the Upnor Formation. The white bands are calcrete, which form hard bands in this part of the Lambeth Group (Section 3.2.2.2 of this report) BGS image P581688 Bibliographical reference ALDISS, D T. 2012. The stratigraphical framework for the Palaeogene successions of the London Basin, UK. British Geological Survey Open Report, OR/12/004. 94pp. Copyright in materials derived from the British Geological Survey’s work is owned by the Natural Environment Research Council (NERC) and/or the authority that commissioned the work. You may not copy or adapt this publication without first obtaining permission. Contact the BGS Intellectual Property Rights Section, British Geological Survey, Keyworth, e-mail [email protected]. You may quote extracts of a reasonable length without prior permission, provided a full acknowledgement is given of the source of the extract. Maps and diagrams in this book use topography based on Ordnance Survey mapping. © NERC 2012.
    [Show full text]
  • Geology of London, UK
    Proceedings of the Geologists’ Association 123 (2012) 22–45 Contents lists available at ScienceDirect Proceedings of the Geologists’ Association jo urnal homepage: www.elsevier.com/locate/pgeola Review paper Geology of London, UK a, b,c d e c Katherine R. Royse *, Mike de Freitas , William G. Burgess , John Cosgrove , Richard C. Ghail , f g h i j k Phil Gibbard , Chris King , Ursula Lawrence , Rory N. Mortimore , Hugh Owen , Jackie Skipper a British Geological Survey, Keyworth, Nottingham NG12 5GG, UK b First Steps Ltd, Unit 17 Hurlingham Studios, London SW6 3PA, UK c Department of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, UK d Department of Earth Sciences, University College London, WC1E 6BT, UK e Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK f Cambridge Quaternary, Department of Geography, University of Cambridge, CB2 3EN, UK g 16A Park Road, Bridport, Dorset, UK h Crossrail Ltd. 25 Canada Square, Canary Wharf, London E14 5LQ, UK i University of Brighton & ChalkRock Ltd, 32 Prince Edwards Road, Lewes BN7 1BE, UK j Department of Palaeontology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK k Geotechnical Consulting Group (GCG), 52A Cromwell Road, London SW7 5BE, UK A R T I C L E I N F O A B S T R A C T Article history: The population of London is around 7 million. The infrastructure to support this makes London one of the Received 25 February 2011 most intensively investigated areas of upper crust. However construction work in London continues to Received in revised form 5 July 2011 reveal the presence of unexpected ground conditions.
    [Show full text]
  • Property of WJ Groundwater
    Groundwater WJ Dr Toby Roberts FRENG of WJ GROUNDWATER LTD Depressurisation strategies in the PropertyLambeth Group River Terrace Deposits Terrace Gravels Upper Aquifer London Clay Aquiclude Thames Group Harwich Forma:on Upper MoDled Beds Intermediate Aquifer Cohesive + granular Laminated Beds Lambeth Group laminaons to channels Lower Shelly Beds Mid-Lambeth Hiatus Lower MoDled Beds + occ sand channels Upnor Lower Aquifer Thanet Sand Thanet Sand Formaon Bullhead Beds Chalk Chalk London basin typical soil profile Lambeth Group/ Upper Mottled Beds Intermediate Aquifer Depth: 5 to 60 m to top Laminated Beds: Stiff Clay Thickness: 15 to 20 m Predominantly cohesive Channel Sands Granular horizons range Groundwater Reduced from laminaons to MLH sand channels: WJ Oxidised width: 2 to 300 m length: ? of correlaon with lost Rivers Lower Mottled Beds: Stiff Clay Thickness: mms to 12 m Property Crossrail: Stepney Grn EB Groundwater WB WJ Caverns of 100 m long 40 m apart 8 to 17 m wide Property 62 installaons Groundwater WJ of Property Non-hydrostac Recharge required to sustain profile Boundary Condions: Source of recharge? • Seepage from London Clay Very low permeability • Leakage via fissures or scour features Scour features relavely rare, lile evidence Groundwater • Seepage via ungrouted wells or boreholes WJ Plenty of them but not much evidence of • Horizontal flow from areas with higher groundwater Significant distances involved Property Wellpoint Groundwater pumps WJ of Access constrained in an advancing SCLProperty cavern 45 Surface ejectors EB
    [Show full text]
  • Mammalian Faunal Turnover Across the Paleocene-Eocene Boundary in NW Europe: the Roles of Displacement, Com- Munity Evolution and Environment______
    of CLIMATE & BIOTA the EARLY PALEOGENE Austrian Journal of Earth Sciences Volume 105/1 Vienna 2012 Mammalian faunal turnover across the Paleocene-Eocene boundary in NW Europe: the roles of displacement, com- munity evolution and environment__________________________ Jerry J. HOOKER1)*) & Margaret E. COLLINSON2) KEYWORDS Ecological diversity 1) Department of Palaeontology, Natural History Museum, Cromwell Road, London, SW7 5BD, UK; plant fossils 2) Department of Earth Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK; understorey extinction *) Corresponding author, [email protected] predation Abstract Improved knowledge of the diversity of Late Paleocene mammal faunas of NW Europe indicates a higher level of turnover at the Paleocene-Eocene boundary than previously recognized. Possible causes of the large number of extinctions in Europe are inves- tigated through ecological diversity analysis of the mammals and the plant fossil record. Predation by incoming ground- and tree- dwelling specialized carnivores has been previously considered the main cause of the extinctions. However, the preferential extinc- tion of small terrestrial and semiterrestrial insectivore-frugivores, (mainly stem macroscelideans and multituberculates), which are inferred to have inhabited forests with dense understorey in the Paleocene, is also linked to the arrival in Europe of a new ecolo- gical type, the large terrestrial browsing herbivore, namely the pantodont Coryphodon, which would have reduced understorey by feeding and physical disturbance. It is suggested that there was a delay in community evolution in Europe, which in North America had previously produced large herbivorous and specialized carnivorous types. The cause of the delay may have been the persis- tence throughout the Paleocene in Europe of thermophilic evergreen forests despite the cooling in the middle of the epoch.
    [Show full text]
  • Home Counties North Regional Group Newsletter Issue 3, October 2015 Page 1
    Home Counties North Regional Group Newsletter Issue 3, October 2015 Page 1 Home Counties North Regional Group Newsletter - Issue No. 3 - September 2015 WELCOME to this third edition of the Newsletter of the Home Counties North Regional Group. I must start with apologies, firstly to Susan Gann for getting her name wrong in the last issue and secondly to the Group as a whole for the delay in producing this issue. This is I am afraid down partly to indolence on the part of the editor and partly to ill health and IT problems earlier this year. Because of the amount of material, it has been decided to limit this issue to events during the latter half of 2014 with the intention of reporting on 2015 events later this year. It is pleasing to report the continuation of a successful programme of evening lecture meetings and one-day field trips, though attendance has not been as high as might have been hoped. We have again managed to get around the region, with meetings in Hatfield, Hemel Hempstead and Milton Keynes. The programme has been varied and we hope to maintain that variety in the future. As reported in the last issue, 2 members who had expressed an interest in serving on the Committee, Susan Gann and Stuart Wagstaff were co-opted onto the Committee and our Chair, Sophy Crosby, resigned in the summer. As a result, Dave Brook volunteered to act as Chair until the AGM. We present below only the photographs of those elected at the AGM details of whom are in Issue No.
    [Show full text]
  • Geological Survey of Northern Ireland
    Annual2003-04 Report Natural Environment The British Geological Survey (BGS) is a component body of the Natural Research Council, Environment Research Council (NERC) — one of the seven research councils that Polaris House, fund and manage scientific research and training in the UK. The NERC uses a North Star Avenue, Swindon budget of just over £270 million a year to fund independent research and training SN2 1EU, UK. in the environmental sciences. About half of its budget goes to universities, and half is invested in its own research centres. 01793 411500 www.nerc.ac.uk The NERC is the research council that carries out earth system science with the aim of advancing knowledge of planet Earth as a complex, interacting system. Its work NERC’s Research Centres: covers the full range of atmospheric, earth, terrestrial and aquatic sciences, from the depth of the oceans to the upper atmosphere. The NERC’s mission is to gather and British Antarctic Survey apply knowledge, create understanding and predict the behaviour of the natural ຜ 01223 221400 environment and its resources. www.antarctica.ac.uk The NERC’s current strategic priorities are: to prioritise and deliver world-class British Geological Survey environmental science to understand the Earth system; to use NERC-funded ຜ 0115 936 3100 science to identify and provide sustainable solutions to environmental problems; to train and develop skilled individuals to meet national needs; and to provide effective www.bgs.ac.uk national and international leadership for the environmental sciences. Centre for Ecology and Hydrology ຜ 01793 442524 www.ceh.ac.uk Proudman Oceanography Laboratory ຜ 0151 653 8633 www.pol.ac.uk In addition, the NERC funds a number of collaborative centres in partnership with other organisations.
    [Show full text]
  • Crossrail Project: Machine-Driven Tunnels on the Elizabeth Line, London
    Civil Engineering Proceedings of the Institution of Civil Engineers Volume 170 Issue CE5 Civil Engineering 170 May 2017 Issue CE5 Pages 31–38 http://dx.doi.org/10.1680/jcien.16.00028 Crossrail project: machine-driven Paper 1600028 tunnels on the Elizabeth line, London Received 11/07/2016 Accepted 16/12/2016 Keywords: concrete structures/excavation/tunnels & King, Thomas and Stenning tunnelling ICE Publishing: All rights reserved Crossrail project: machine-driven tunnels on the Elizabeth line, London 1 Mike King BSc, CEng, MICE 3 Andy Stenning BSc, PhD, CPEng, MIEAust, MHKIE, MASCE Technical and Compliance Director - Tunnels, CH2M, London, UK Technical Director, Atkins Ltd, London, UK 2 Ivor Thomas BEng, LLB, CEng, FICE Tunnel Manager, BAM Nuttall, London, UK 1 2 3 The 42 km of tunnels constructed using soft-ground pressure-balance tunnel-boring machines for London’s new Elizabeth line were completed over a 3 year period. A single lining design solution was developed for all tunnels using a fully gasketed, steel-fibre-reinforced, concrete segmental lining suitable for use in all potential ground conditions anticipated along the alignment. The £14·8 billion Crossrail project faced many challenges, including dealing with significant quantities of different excavated material while minimising the environmental impact from transportation and disposal, minimising settlement effects and dealing with multiple tunnel-boring machine launches and receptions. This paper addresses how the issues were tackled and comments on the tunnel-boring machine design and the approach taken for survey control. Outline figures are also provided for the tunnelling rates. Finally, some conclusions and recommendations are made based on the observations and lessons learnt during the project.
    [Show full text]