Analysis of the Optimization for an Earth to Mars Areostationary Mission

Total Page:16

File Type:pdf, Size:1020Kb

Analysis of the Optimization for an Earth to Mars Areostationary Mission EPSC Abstracts Vol. 14, EPSC2020-134, 2020 https://doi.org/10.5194/epsc2020-134 Europlanet Science Congress 2020 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Analysis of the optimization for an Earth to Mars areostationary mission Marta M. Sanchez-Garcia1, Gonzalo Barderas2, and Pilar Romero3 1Instituto de Matemática Interdisciplinar. U.D. Astronomia y Geodesia, Facultad de Matematicas, Universidad Complutense de Madrid, Spain ([email protected]) 2Instituto de Matemática Interdisciplinar. U.D. Astronomia y Geodesia, Facultad de Matematicas, Universidad Complutense de Madrid, Spain ([email protected]) 3Instituto de Matemática Interdisciplinar. U.D. Astronomia y Geodesia, Facultad de Matematicas, Universidad Complutense de Madrid, Spain ([email protected]) Abstract Areostationary Relay Satellites are the most robust candidates to meet the coming set of Mars science missions. Areostationary satellites combine both the continuous coverage over the same Mars localization and the return of engineering and scientific instrument data in almost real time needed for the tele-robotic exploration. We present a procedure to minimize the total required impulses magnitudes in the major mission phases for an areostationary satellite. This mission design optimization problem involves two main problems. First, the determination of the launch and arrival dates for an optimal minimum energy Earth-Mars transfer trajectory. Second, the optimal minimum thrust manoeuvres to capture the spacecraft from the hyperbolic arrival trajectory to Mars and place it in the areostationary orbit. 1. Introduction An areostationary satellite would orbit Mars in an areoequatorial circular orbit with a semi-major axis of as = 20428 km to remain over a fixed point on the Martian surface with respect to the rotating Mars with a period of P=88775.244 s (Montabone, 2020). The purpose of this work is to analyse the elliptic heliocentric transfer and the hyperbolic areocentric orbits to achieve the final areostationary position with the minimal impulses cost. To this end, first the elliptic trajectory optimization using genetic metaheuristic algorithms is performed. Then, an analysis of accuracy of the matched solutions for the elliptic and the hyperbolic orbits using an iterative procedure at the Mars influence sphere is accomplished. Finally, the Mars arrival manoeuvres needed to capture the probe and to place it in an areostationary orbit are optimized. 2. Earth to Mars elliptic transfer optimization In this minimum-energy problem, we search a solution minimizing the equation: 2 where the characteristic energy at the boundary of the sphere of influence of the Earth, C3= V ∞E, and the Mars arrival velocity V∞M are weighted according to WC3 and W∞M, respectively. The minimum C in equation (1) tends to give lower values of the total impulsive manoeuvres required, first to give to the space vehicle an orbital velocity greater than the parabolic Earth escape velocity, and after, at the Mars arriving hyperbolic orbit, to reduce the hyperbolic excess velocity to capture the probe. Determining the optimal elliptic orbital transfer parameters by minimizing C by exhaustive search or analytical methods is infeasible as for each Earth departure date and Mars arrival date combination the Lambert's problem needs to be solved: being and the heliocentric Earth and Mars position vectors and the areocentric vector position of the spacecraft in an ecliptic reference system. Genetic algorithms are metaheuristic algorithms that explore different solutions amongst a defined population, finding a possible minimum solution. Lambert's problem shall be solved for each member of the population following the procedure in Gooding (1988), having the orbital elements of the spacecraft's orbit once the solution is achieved. Table 1 shows different simulation scenarios to compare genetic algorithms performance minimizing the cost function C. Figure 1 shows an optimal transfer for launch on 20th July 2020 and arrival on 1st February 2021. 3. Accuracy analysis for the conic matching procedure To match the heliocentric and the areocentric orbits, the following model is used: The function f corresponds to the Lambert's problem (2), g and h are given in Battin (1999). Then, the following iterative method is implemented: that converges when the following condition is met: which is equivalent to: Simulations are performed introducing different initial inclination conditions. The method converges, after 3 iterations, to the objective values of the periapsis radius and the inclination of the hyperbolic orbit. 4. Mars arrival optimization Finally, we present the procedure for minimizing the total impulse needed to capture the probe and to place it in an areostationary orbit: where is the capture manoeuvre to avoid the probe leaving its sphere of influence on a flyby trajectory; and are the Hoffman transfer maneuvers from the capture orbit to target the areostationary orbit; and is the inclination correction manoeuvre to reach the final zero desired inclination. 5. Summary and Conclusions Optimal dates which provide minimum hyperbolic excess velocity at Earth and the Mars arrival velocity are determined to obtain the optimal transfer orbit from Earth to Mars. Then, an iterative procedure is proposed to match the heliocentric and areocentric orbits at Mars sphere of influence which converges to the objective values to position the spacecraft in the areostationary orbit. Optimal Mars arrival manoeuvres are obtained when hyperbolic periapsis is fixed to be the semi- major axis of the areostationary orbit with the minimum inclination constrained by the areocentric declination of the arrival velocity direction V∞M. Acknowledgements Part of this research has been funded by the Government of Spain (Project ESP2016-79135-R). References Montabone, L. et al, Observing Mars from Areostationary Orbit: Benefits and Applications, 2020, MEPAG Gooding, R.H., On the solution of Lambert's orbital boundary-value problem, 1988, Royal Aerospace Establishment Battin, R.H., An Introduction to the Mathematics and Methods of Astrodynamics, 1999, AAIA Educational Series Powered by TCPDF (www.tcpdf.org).
Recommended publications
  • Reduction of Saturn Orbit Insertion Impulse Using Deep-Space Low Thrust
    Reduction of Saturn Orbit Insertion Impulse using Deep-Space Low Thrust Elena Fantino ∗† Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates. Roberto Flores‡ International Center for Numerical Methods in Engineering, 08034 Barcelona, Spain. Jesús Peláez§ and Virginia Raposo-Pulido¶ Technical University of Madrid, 28040 Madrid, Spain. Orbit insertion at Saturn requires a large impulsive manoeuver due to the velocity difference between the spacecraft and the planet. This paper presents a strategy to reduce dramatically the hyperbolic excess speed at Saturn by means of deep-space electric propulsion. The inter- planetary trajectory includes a gravity assist at Jupiter, combined with low-thrust maneuvers. The thrust arc from Earth to Jupiter lowers the launch energy requirement, while an ad hoc steering law applied after the Jupiter flyby reduces the hyperbolic excess speed upon arrival at Saturn. This lowers the orbit insertion impulse to the point where capture is possible even with a gravity assist with Titan. The control-law algorithm, the benefits to the mass budget and the main technological aspects are presented and discussed. The simple steering law is compared with a trajectory optimizer to evaluate the quality of the results and possibilities for improvement. I. Introduction he giant planets have a special place in our quest for learning about the origins of our planetary system and Tour search for life, and robotic missions are essential tools for this scientific goal. Missions to the outer planets arXiv:2001.04357v1 [astro-ph.EP] 8 Jan 2020 have been prioritized by NASA and ESA, and this has resulted in important space projects for the exploration of the Jupiter system (NASA’s Europa Clipper [1] and ESA’s Jupiter Icy Moons Explorer [2]), and studies are underway to launch a follow-up of Cassini/Huygens called Titan Saturn System Mission (TSSM) [3], a joint ESA-NASA project.
    [Show full text]
  • Electric Propulsion System Scaling for Asteroid Capture-And-Return Missions
    Electric propulsion system scaling for asteroid capture-and-return missions Justin M. Little⇤ and Edgar Y. Choueiri† Electric Propulsion and Plasma Dynamics Laboratory, Princeton University, Princeton, NJ, 08544 The requirements for an electric propulsion system needed to maximize the return mass of asteroid capture-and-return (ACR) missions are investigated in detail. An analytical model is presented for the mission time and mass balance of an ACR mission based on the propellant requirements of each mission phase. Edelbaum’s approximation is used for the Earth-escape phase. The asteroid rendezvous and return phases of the mission are modeled as a low-thrust optimal control problem with a lunar assist. The numerical solution to this problem is used to derive scaling laws for the propellant requirements based on the maneuver time, asteroid orbit, and propulsion system parameters. Constraining the rendezvous and return phases by the synodic period of the target asteroid, a semi- empirical equation is obtained for the optimum specific impulse and power supply. It was found analytically that the optimum power supply is one such that the mass of the propulsion system and power supply are approximately equal to the total mass of propellant used during the entire mission. Finally, it is shown that ACR missions, in general, are optimized using propulsion systems capable of processing 100 kW – 1 MW of power with specific impulses in the range 5,000 – 10,000 s, and have the potential to return asteroids on the order of 103 104 tons. − Nomenclature
    [Show full text]
  • Mscthesis Joseangelgutier ... Humada.Pdf
    Targeting a Mars science orbit from Earth using Dual Chemical-Electric Propulsion and Ballistic Capture Jose Angel Gutierrez Ahumada Delft University of Technology TARGETING A MARS SCIENCE ORBIT FROM EARTH USING DUAL CHEMICAL-ELECTRIC PROPULSION AND BALLISTIC CAPTURE by Jose Angel Gutierrez Ahumada MSc Thesis in partial fulfillment of the requirements for the degree of Master of Science in Aerospace Engineering at the Delft University of Technology, to be defended publicly on Wednesday May 8, 2019. Supervisor: Dr. Francesco Topputo, TU Delft/Politecnico di Milano Dr. Ryan Russell, The University of Texas at Austin Thesis committee: Dr. Francesco Topputo, TU Delft/Politecnico di Milano Prof. dr. ir. Pieter N.A.M. Visser, TU Delft ir. Ron Noomen, TU Delft Dr. Angelo Cervone, TU Delft This thesis is confidential and cannot be made public until December 31, 2020. An electronic version of this thesis is available at http://repository.tudelft.nl/. Cover picture adapted from https://steemitimages.com/p/2gs...QbQvi EXECUTIVE SUMMARY Ballistic capture is a relatively novel concept in interplanetary mission design with the potential to make Mars and other targets in the Solar System more accessible. A complete end-to-end interplanetary mission from an Earth-bound orbit to a stable science orbit around Mars (in this case, an areostationary orbit) has been conducted using this concept. Sets of initial conditions leading to ballistic capture are generated for different epochs. The influence of the dynamical model on the capture is also explored briefly. Specific capture trajectories are then selected based on a study of their stabilization into an areostationary orbit.
    [Show full text]
  • Determination of Optimal Earth-Mars Trajectories to Target the Moons Of
    The Pennsylvania State University The Graduate School Department of Aerospace Engineering DETERMINATION OF OPTIMAL EARTH-MARS TRAJECTORIES TO TARGET THE MOONS OF MARS A Thesis in Aerospace Engineering by Davide Conte 2014 Davide Conte Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science May 2014 ii The thesis of Davide Conte was reviewed and approved* by the following: David B. Spencer Professor of Aerospace Engineering Thesis Advisor Robert G. Melton Professor of Aerospace Engineering Director of Undergraduate Studies George A. Lesieutre Professor of Aerospace Engineering Head of the Department of Aerospace Engineering *Signatures are on file in the Graduate School iii ABSTRACT The focus of this thesis is to analyze interplanetary transfer maneuvers from Earth to Mars in order to target the Martian moons, Phobos and Deimos. Such analysis is done by solving Lambert’s Problem and investigating the necessary targeting upon Mars arrival. Additionally, the orbital parameters of the arrival trajectory as well as the relative required ΔVs and times of flights were determined in order to define the optimal departure and arrival windows for a given range of date. The first step in solving Lambert’s Problem consists in finding the positions and velocities of the departure (Earth) and arrival (Mars) planets for a given range of dates. Then, by solving Lambert’s problem for various combinations of departure and arrival dates, porkchop plots can be created and examined. Some of the key parameters that are plotted on porkchop plots and used to investigate possible transfer orbits are the departure characteristic energy, C3, and the arrival v∞.
    [Show full text]
  • Politecnico Di Milano Modeling and Optimization of Aero-Ballistic Capture
    POLITECNICO DI MILANO School of Industrial and Information Engineering Master of Science in Space Engineering MODELING AND OPTIMIZATION OF AERO-BALLISTIC CAPTURE Supervisor Prof. Francesco TOPPUTO Candidate Carmine GIORDANO Matr. 836570 ACADEMIC YEAR 2015/2016 ABSTRACT n this thesis a novel paradigm for Mars missions is formulated, modeled and asses- sed. This concept consists of a maneuver that combines two of the most promising Imethods in terms of mass saving: aerocapture and ballistic capture; it is labeled aero-ballistic capture. The idea is reducing the overall cost and mass by exploiting the interaction with the planet atmosphere as well as the complex Sun–Mars gravitational field. The aero-ballistic capture paradigm is first formulated. It is split into a number of phases, each of them is modeled with mathematical means. The problem is then stated by using optimal control theory, and optimal solutions, maximizing the final mass, are sought. These are specialized to four application cases. An assessment of aero-ballistic capture shows their superiority compared to classical injection maneuvers when medium-to-high final orbits about Mars are wanted. i SOMMARIO n questa tesi, è formulato, modellato e valutato un nuovo paradigma per missioni verso Marte. Questi consiste in una manovra che combina due dei metodi più Ipromettenti in termini di riduzione della massa, l’aerocattura e la cattura balistica, ed è definito cattura aero-balistica. L’idea è di ridurre il costo totale e la massa andando a sfruttare sia l’interazione con l’atmosfera sia il complesso campo gravitazionale creato dal Sole e da Marte. Come primo punto, è formulato il paradigma della cattura aero- balistica, dividendo la manovra in una serie di fasi, ognuna modellata matematicamente.
    [Show full text]
  • Astrodynamics (AERO0024)
    Astrodynamics (AERO0024) The two­body problem Lamberto Dell'Elce Space Structures & Systems Lab (S3L)0 Outline The two­body problem µ rÜ = – r Equations of motion r 3 Resulting orbits 1 Outline The two­body problem µ rÜ = – r Equations of motion r 3 Resulting orbits 2 What is the two­body problem (or Kepler problem)? F 21 F m1 12 m2 Motion of two point masses due to their gravitational interaction 3 Two­body problem vs real world 4 What is the interest in the two­body problem? 5 Gravitational force of a point mass F 21 F m1 12 m2 r Norm: m1 m2 kF 12k = kF 21k = G r 2 Direction: • Along the line joining m1 and m2 • Directed toward the attractor 6 Gravitational constant 7 Gravitational parameter of a Celestial body 8 Satellite laser ranging 9 Satellites as bodies in free fall 10 Is point­mass a good approximation for Earth gravity? 11 Gravitational potential of a uniform sphere 12 Gravitational potential of a spherically­symmetric body 13 Outline The two­body problem µ rÜ = – r Equations of motion r 3 Resulting orbits 14 Dynamics of the two bodies 15 Motion of the center of mass 16 Equations of relative motion Assume m2 m1 17 Equations of relative motion 18 Integrals of motion: The angular momentum 19 Implication: Motion lies in a plane 20 Azimuth component of the velocity 21 Integrals of motion: The eccentricity vector 22 Relative trajectory 23 In summary 24 Outline The two­body problem µ rÜ = – r Equations of motion r 3 Resulting orbits 25 Conic sections in polar coordinates 26 Conic sections 27 Possible trajectories of the two­body
    [Show full text]
  • Communication Strategies for Colonization Mission to Mars
    Communication Strategies for Colonization Mission to Mars A Thesis Submitted to the Faculty of Universidad Carlos III de Madrid In Partial Fulfillment of the Requirements for the Bachelor’s Degree in Aerospace Engineering By Pablo A. Machuca Varela June 2015 Dedicated to my dear mother, Teresa, for her education and inspiration; for making me the person I am today. And to my grandparents, Teresa and Hernan,´ for their care and love; for being the strongest motivation to pursue my goals. Acknowledgments I would like to thank my advisor, Professor Manuel Sanjurjo-Rivo, for his help and guidance along the past three years, and for his advice on this thesis. Professor Sanjurjo-Rivo first accepted me as his student and helped me discover my passion for the Orbital Mechanics research area. I am very thankful for the opportunity Professor Sanjurjo-Rivo gave me to do research for the first time, which greatly helped me improve my knowledge and skills as an engineer. His valuable advice also encouraged me to take Professor Howell’s Orbital Mechanics course and Professor Longuski’s Senior Design course while at Purdue University, as an exchange student, which undoubtedly enhanced my desire, and created the opportunity, to become a graduate student at Purdue University. I would like to thank Sarag Saikia, the Mission Design Advisor of Project Aldrin-Purdue, for his exemplary passion and enthusiasm for the field. Sarag is responsible for making me realize the interest and relevance of a Mars communication network. He encouraged me to work on this thesis, and advised me along the way.
    [Show full text]
  • Passivity-Based Distributed Acquisition and Station-Keeping Control of a Satellite Constellation in Areostationary Orbit
    Passivity-based distributed acquisition and station-keeping control of a satellite constellation in areostationary orbit Emmanuel Sin, He Yin and Murat Arcak Abstract— We present a distributed control law to assemble a cluster of satellites into an equally-spaced, planar constellation in a desired circular orbit about a planet. We assume each satellite only uses local information, transmitted through com- munication links with neighboring satellites. The same control law is used to maintain relative angular positions in the presence of disturbance forces. The stability of the constellation in the desired orbit is proved using a compositional approach. We first show the existence and uniqueness of an equilibrium of the interconnected system. We then certify each satellite and communication link is equilibrium-independent passive with respective storage functions. By leveraging the skew symmetric Fig. 1. Depiction of constellation. Each satellite may share state informa- coupling structure of the constellation and the equilibrium- tion with its neighbors via communication links independent passivity property of each subsystem, we show that the equilibrium of the interconnected system is stable with a Lyapunov function composed of the individual subsystem distributed control strategy is appealing for satellite con- storage functions. We further prove that the angular velocity of each satellite converges to the desired value necessary to stellations in situations where centralized control is difficult maintain circular, areostationary orbit. Finally, we present or impossible. For example, as thousands of satellites are simulation results to demonstrate the efficacy of the proposed employed in constellations, the resulting uplink/downlink control law in acquisition and station-keeping of an equally- demands on a network of Earth-based ground stations may spaced satellite constellation in areostationary orbit despite the become unmanageable.
    [Show full text]
  • Comparison of the Characteristic Energy of Precipitating Electrons Derived from Ground-Based and DMSP Satellite Data M
    Comparison of the characteristic energy of precipitating electrons derived from ground-based and DMSP satellite data M. Ashrafi, M. J. Kosch, F. Honary To cite this version: M. Ashrafi, M. J. Kosch, F. Honary. Comparison of the characteristic energy of precipitating electrons derived from ground-based and DMSP satellite data. Annales Geophysicae, European Geosciences Union, 2005, 23 (1), pp.135-145. hal-00317498 HAL Id: hal-00317498 https://hal.archives-ouvertes.fr/hal-00317498 Submitted on 31 Jan 2005 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Annales Geophysicae (2005) 23: 135–145 SRef-ID: 1432-0576/ag/2005-23-135 Annales © European Geosciences Union 2005 Geophysicae Comparison of the characteristic energy of precipitating electrons derived from ground-based and DMSP satellite data M. Ashrafi, M. J. Kosch, and F. Honary Department of Communications Systems, Lancaster University, Lancaster, LA1 4WA, UK Received: 15 December 2003 – Revised: 16 April 2004 – Accepted: 5 May 2004 – Published: 31 January 2005 Part of Special Issue “Eleventh International EISCAT Workshop” Abstract. Energy maps are important for ionosphere- (Heppner et al., 1952; Campbell and Leinbach, 1961). Holt magnetosphere coupling studies, because quantitative de- and Omholt (1962) and Gustafsson (1969) found a good cor- termination of field-aligned currents requires knowledge of relation between the absorption and the intensity fluctuation the conductances and their spatial gradients.
    [Show full text]
  • Observing Mars from Areostationary Orbit: Benefits and Applications
    The information presented in this paper is pre-decisional and provided for planning and discussion purposes only OBSERVING MARS FROM AREOSTATIONARY ORBIT: BENEFITS AND APPLICATIONS A White Paper submitted to the Planetary Science and Astrobiology Decadal Survey 2023-2032 Primary authors Luca Montabone, Space Science Institute (USA) and National Space Science and Technology Center/United Arab Emirates University (UAE), [email protected], +33 650 243 565 Nicholas Heavens, Space Science Institute (USA), [email protected], +44 748 160 671 Co-authors Jose L. Alvarellos, NASA ARC (USA) Robert Lillis, UC Berkeley (USA) Michael Aye, LASP-CU Boulder (USA) Giuliano Liuzzi, NASA GSFC (USA) Alessandra Babuscia, JPL/Caltech (USA) Michael A. Mischna, JPL/Caltech (USA) Nathan Barba, JPL/Caltech (USA) Claire E. Newman, Aeolis Research (USA) J. Michael Battalio, Yale University Maurizio Pajola, INAF-OAPD (Italy) Tanguy Bertrand, NASA ARC (USA) Alexey Pankine, SSI (USA) Bruce Cantor, MSSS (USA) Sylvain Piqueux, JPL/Caltech (USA) Michel Capderou, LMD/École Polytech. (Fr) Ali Rahmati, UC Berkeley (USA) Matthew Chojnacki, PSI (USA) M. Pilar Romero-Perez, IMI-UCM (Spain) Shannon M. Curry, UC Berkeley (USA) Marc Sanchez-Net, JPL/Caltech (USA) Charles D. Edwards, JPL/Caltech (USA) Michael D. Smith, NASA GSFC (USA) Meredith K. Elrod, Univ. of Maryland (USA) Alejandro Soto, SwRI (USA) Lori K. Fenton, SETI Institute (USA) Aymeric Spiga, LMD/Sorbonne Univ. (France) Robin L. Fergason, USGS (USA) Leslie Tamppari, JPL/Caltech (USA) Claus Gebhardt, NSSTC/UAEU (UAE) Joshua Vander Hook, JPL Caltech (USA) Scott D. Guzewich, NASA GSFC (USA) Paulina Wolkenberg, INAF-IAPS (Italy) Melinda A. Kahre, NASA ARC (USA) Michael D.
    [Show full text]
  • The Collisional Penrose Process
    Noname manuscript No. (will be inserted by the editor) The Collisional Penrose Process Jeremy D. Schnittman Received: date / Accepted: date Abstract Shortly after the discovery of the Kerr metric in 1963, it was realized that a region existed outside of the black hole's event horizon where no time-like observer could remain stationary. In 1969, Roger Penrose showed that particles within this ergosphere region could possess negative energy, as measured by an observer at infinity. When captured by the horizon, these negative energy parti- cles essentially extract mass and angular momentum from the black hole. While the decay of a single particle within the ergosphere is not a particularly efficient means of energy extraction, the collision of multiple particles can reach arbitrar- ily high center-of-mass energy in the limit of extremal black hole spin. The re- sulting particles can escape with high efficiency, potentially erving as a probe of high-energy particle physics as well as general relativity. In this paper, we briefly review the history of the field and highlight a specific astrophysical application of the collisional Penrose process: the potential to enhance annihilation of dark matter particles in the vicinity of a supermassive black hole. Keywords black holes · ergosphere · Kerr metric 1 Introduction We begin with a brief overview of the Kerr metric for spinning, stationary black holes [1]. By far the most convenient, and thus most common form of the Kerr metric is the form derived by Boyer and Lindquist [2]. In standard spherical coor-
    [Show full text]
  • The Fundamental Scales of Structures from First Principles Scott Funkhouser Department of Physics, the Citadel 171 Moultrie St., Charleston, SC, 29409
    The fundamental scales of structures from first principles Scott Funkhouser Department of Physics, The Citadel 171 Moultrie St., Charleston, SC, 29409 ABSTRACT Five fundamental scales of mass follow from holographic limitations, a self-similar law for angular momentum and the basic scaling laws for a fractal universe with dimension 2. The five scales correspond to the observable universe, clusters, galaxies, stars and the nucleon. The fundamental scales form naturally a self-similar hierarchy, generating new relationships among the parameters of the nucleon, the cosmological constant and the Planck scale. There is implied a sixth fundamental scale that corresponds to the electrostatic force within an atom. Identifying the implied scale as such leads to new relationships among the fundamental charge, the mass of the electron and cosmological parameters. These considerations also suggest that structures on the scale of galaxies and larger must be bound by non- Newtonian forces. 1. Introduction The combination of three well-established components of modern physics leads to a set of critical scales for the masses of astronomical bodies and particles. Those critical scales correspond to the observable cosmos, clusters of galaxies, galaxies, solar systems and the nucleon. The three components that generate those fundamental scales are the physics of a fractal universe, a self-similar scaling law for angular momentum and holographic limits on information. In Sections 2, 3 and 4 of this work, basic relationships from those physical components are presented. In Sections 5 – 9 the fundamental structural scales are obtained by requiring consistency among those relationships. In Section 10 the critical scales of mass derived in Sections 5 – 9 are shown to form naturally a self-similar hierarchy based on powers of a pure number that is a function of fundamental constants.
    [Show full text]