Viola.Clausnit
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Critical Species of Odonata in Eastern Africa
--- Guardians of the watershed. Global status of dragonflies: critical species, threat and conservation --- Critical species of Odonata in eastern Africa Viola Clausnitzer Liebenauer Stra~e 180, D-0611 0 Halle/Saale, Germany. <violacl®gmx.de> Key words: Odonata, dragonfly, IUCN, critical species, conservation, eastern Africa. ABSTRACT From eastern Africa, ranging from Somalia and Ethiopia south to Mozambique and Zimbabwe and west to eastern Democratic Republic of Congo and Botswana, ca 500 species of Odonata are known. Comments on species and sites of conserva tion concern are given as well as recommendations for future research and conservation activities. Due to the rapid and ongoing destruction of forests, especially of coastal, Guineo-Congolian and Eastern Arc forests, species confined to these habitats are the most threatened. REGIONAL DEFINITION Eastern Africa is not a fixed political or geographical description for a specific area. Here the term is used for the region comprising the Rift Valley from Ethiopia south ward to Mozambique and northern Botswana and westward to eastern Democratic Republic of Congo and eastern Angola. The neighbouring regions are covered to the south by Sam ways (2004 ), to the southwest by Suhling et al. (2004 ), to the west by Dijkstra & Vick (2004) and to the north by Jodicke et al. (2004). As biogeo graphy and faunistic distributions do not follow political borders, there may be overlaps with neighbouring regions. The area considered here covers some of the most important centres for endemism and regions of high biodiversity in Africa, namely forested mountain chains along the Albertine Rift and the Eastern Arc and coastal forests (e.g. -
Spatial Learning in Dragonflies Perri K
Eastern Illinois University The Keep Faculty Research & Creative Activity Biological Sciences January 2006 Spatial learning in dragonflies Perri K. Eason Paul Switzer Eastern Illinois University, [email protected] Follow this and additional works at: http://thekeep.eiu.edu/bio_fac Part of the Behavior and Ethology Commons, Entomology Commons, and the Evolution Commons Recommended Citation Eason, Perri K. and Switzer, Paul, "Spatial learning in dragonflies" (2006). Faculty Research & Creative Activity. 239. http://thekeep.eiu.edu/bio_fac/239 This Article is brought to you for free and open access by the Biological Sciences at The Keep. It has been accepted for inclusion in Faculty Research & Creative Activity by an authorized administrator of The Keep. For more information, please contact [email protected]. International Journal of Comparative Psychology, 2006, 19, 268-281. Copyright 2006 by the International Society for Comparative Psychology Spatial Learning in Dragonflies Perri K. Eason University of Louisville, U.S.A. Paul V. Switzer Eastern Illinois University, U.S.A. Spatial learning is evident in dragonflies on a variety of spatial scales. Mature dragonflies must be able to locate a variety of features in the habitat that are critical to survival and reproduction, includ- ing sites for breeding, foraging, roosting, and thermoregulating. In many species, these sites do not coincide in space. Because individuals may repeatedly use particular sites for different activities, they must learn both the locations of these sites and routes among them. Further evidence of spatial mem- ory in dragonflies is provided by their site specificity on a finer scale. Breeding males, for example, often are faithful not only to a particular area, but to a specific territory site within that area. -
Phylogeny of the Higher Libelluloidea (Anisoptera: Odonata): an Exploration of the Most Speciose Superfamily of Dragonflies
Molecular Phylogenetics and Evolution 45 (2007) 289–310 www.elsevier.com/locate/ympev Phylogeny of the higher Libelluloidea (Anisoptera: Odonata): An exploration of the most speciose superfamily of dragonflies Jessica Ware a,*, Michael May a, Karl Kjer b a Department of Entomology, Rutgers University, 93 Lipman Drive, New Brunswick, NJ 08901, USA b Department of Ecology, Evolution and Natural Resources, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901, USA Received 8 December 2006; revised 8 May 2007; accepted 21 May 2007 Available online 4 July 2007 Abstract Although libelluloid dragonflies are diverse, numerous, and commonly observed and studied, their phylogenetic history is uncertain. Over 150 years of taxonomic study of Libelluloidea Rambur, 1842, beginning with Hagen (1840), [Rambur, M.P., 1842. Neuropteres. Histoire naturelle des Insectes, Paris, pp. 534; Hagen, H., 1840. Synonymia Libellularum Europaearum. Dissertation inaugularis quam consensu et auctoritate gratiosi medicorum ordinis in academia albertina ad summos in medicina et chirurgia honores.] and Selys (1850), [de Selys Longchamps, E., 1850. Revue des Odonates ou Libellules d’Europe [avec la collaboration de H.A. Hagen]. Muquardt, Brux- elles; Leipzig, 1–408.], has failed to produce a consensus about family and subfamily relationships. The present study provides a well- substantiated phylogeny of the Libelluloidea generated from gene fragments of two independent genes, the 16S and 28S ribosomal RNA (rRNA), and using models that take into account non-independence of correlated rRNA sites. Ninety-three ingroup taxa and six outgroup taxa were amplified for the 28S fragment; 78 ingroup taxa and five outgroup taxa were amplified for the 16S fragment. -
Developing an Odonate-Based Index for Monitoring Freshwater Ecosystems in Rwanda: Towards Linking Policy to Practice Through Integrated and Adaptive Management
Antioch University AURA - Antioch University Repository and Archive Student & Alumni Scholarship, including Dissertations & Theses Dissertations & Theses 2020 Developing an Odonate-Based Index for Monitoring Freshwater Ecosystems in Rwanda: Towards Linking Policy to Practice through Integrated and Adaptive Management Erasme Uyizeye Follow this and additional works at: https://aura.antioch.edu/etds Part of the Ecology and Evolutionary Biology Commons, Entomology Commons, and the Environmental Sciences Commons Department of Environmental Studies DISSERTATION COMMITTEE PAGE The undersigned have examined the dissertation entitled: Developing an Odonate-Based Index for Monitoring Freshwater Ecosystems in Rwanda: Towards Linking Policy to Practice through Integrated and Adaptive Management, presented by Erasme Uyizeye, candidate for the degree of Doctor of Philosophy, and hereby certify that it is accepted*. Committee Chair: Beth A. Kaplin, Ph.D. Antioch University New England, USA Committee member: Lisabeth Willey, Ph.D. Antioch University New England, USA Committee member: Viola Clausnitzer, Ph.D. Senckenberg Museum of Natural History Görlitz, Germany. Defense Date: April 17th, 2020. Date Approved by all Committee Members: April 30th, 2020. Date Deposited: April 30th, 2020. *Signatures are on file with the Registrar’s Office at Antioch University New England. Developing an Odonate-Based Index for Monitoring Freshwater Ecosystems in Rwanda: Towards Linking Policy to Practice through Integrated and Adaptive Management By Erasme Uyizeye A dissertation submitted in partial fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Environmental Studies at Antioch University New England Keene, New Hampshire 2020 ii © 2020 by Erasme Uyizeye All rights reserve iii Dedication I dedicate this dissertation to my daughter who was born in the midst of this doctoral journey, my wife who has stayed by my side, my father for his words of encouragement (1956-1993) & my mother for her unwavering support and love. -
Spatial Learning in Dragonflies
International Journal of Comparative Psychology, 2006, 19 , 268-281. Copyright 2006 by the International Society for Comparative Psychology Spatial Learning in Dragonflies Perri K. Eason University of Louisville, U.S.A. Paul V. Switzer Eastern Illinois University, U.S.A. Spatial learning is evident in dragonflies on a variety of spatial scales. Mature dragonflies must be able to locate a variety of features in the habitat that are critical to survival and reproduction, includ- ing sites for breeding, foraging, roosting, and thermoregulating. In many species, these sites do not coincide in space. Because individuals may repeatedly use particular sites for different activities, they must learn both the locations of these sites and routes among them. Further evidence of spatial mem- ory in dragonflies is provided by their site specificity on a finer scale. Breeding males, for example, often are faithful not only to a particular area, but to a specific territory site within that area. Males appear to become faithful to a territory site through localization, a process during which they explore the site and develop a spatial map of the location of the territory and its resources. Males also respond to their interactions with other individuals, adjusting both their choice of territories and their space use within their territories to reflect those interactions. In eastern amberwing dragonflies ( Perithemis tenera ), males are not faithful to territories on which they have lost a fight with another male; in contrast, males are more likely to be faithful to territories on which they successfully mated than to territories on which they obtained no matings. -
070339 Guido Dijkstra Binnenwerk.Indd
Demise and rise : the biogeography and taxonomy of the Odonata of tropical Africa Dijkstra, K.D.B. Citation Dijkstra, K. D. B. (2007, May 16). Demise and rise : the biogeography and taxonomy of the Odonata of tropical Africa. Retrieved from https://hdl.handle.net/1887/11969 Version: Corrected Publisher’s Version Licence agreement concerning inclusion of doctoral thesis in License: the Institutional Repository of the University of Leiden Downloaded from: https://hdl.handle.net/1887/11969 Note: To cite this publication please use the final published version (if applicable). Demise and rise the biogeography and taxonomy of the Odonata of tropical Africa Klaas-Douwe B. Dijkstra Dijkstra, K.-D.B. 2007 Demise and rise: the biogeography and taxonomy of the Odonata of tropical Africa PhD Th esis, Leiden University Front cover photos: Gomphidia gamblesi (above) and Kintampo Falls, Ghana, by K.-D. B. Dijkstra Back cover photo: the author in Ankasa, Ghana, by Eric F. Th omassen Lay-out: Guido O. Keijl Printed by Finesse Druk, Heerhugowaard Demise and rise the biogeography and taxonomy of the Odonata of tropical Africa Proefschrift ter verkrijging van de graad van Doctor aan de Universiteit Leiden, op gezag van de Rector Magnifi cus prof. mr. P.F. van der Heijden, volgens besluit van het College voor Promoties, te verdedigen op woensdag 16 mei 2007, klokke 13.45 uur. door Klaas-Douwe Benediktus Dijkstra geboren te Kampen in 1975 Promotiecommissie Promotor: Prof. dr. E. Gittenberger (Nationaal Natuurhistorisch Museum Naturalis; Universiteit Leiden) Co-promotor: Dr. V. Clausnitzer (Philipps-Universität Marburg, Duitsland) Referent: Dr. M.L. May (Rutgers University, New Brunswick, Verenigde Staten) Overige leden: Prof. -
Dragonflies (Odonata) of Mulanje, Malawi
IDF-Report 6 (2004): 23-29 23 Dragonflies (Odonata) of Mulanje, Malawi Klaas-Douwe B. Dijkstra Gortestraat 11, NL-2311 MS Leiden, The Netherlands, [email protected] Abstract 65 species of Odonata are recorded from Mulanje and its slopes. Only eight species dominate on the high plateau. Among them are two relict species of conservation concern: The endemic Oreocnemis phoenix (monotypic genus) and the restricted-range species Chlorolestes elegans. The absence of mountain marsh specialists on the plateau is noteworthy. Mulanje’s valleys, of which Likabula and Ruo are best known, have a rich dragonfly fauna. The Eastern Arc relict Nepogomphoides stuhlmanni is common here. Introduction Mulanje, at about 3000 m the highest peak between Kilimanjaro and Drakens- berg, is an isolated massif in Southern Malawi. From a plain at about 700 m altitude it rises almost vertically to a plateau with an average altitude of 2000 m. The plateau (including peaks) has a surface of about 220 km², being approxi- mately 24 km across at its widest point. The plain surrounding the massif was originally dominated by miombo (Brachystegia woodland), but is now largely under cultivation. The valleys are characterised by lowland and submontane forest, the plateau by montane forest, grasslands, bracken fields, scrub and rocky slopes, interspersed with countless streams (Dowsett-Lemaire 1988; Eastwood 1979). Surveys have shown that the Mulanje Massif contains over 30 million metric tonnes of bauxite, with an estimated excavation life of 43 years. In 2001 the government of Malawi announced to take action to exploit these reserves. Bauxite is an erosion mineral, which has been deposited superficially on the plateau. -
The Biodiversity of Atewa Forest
The Biodiversity of Atewa Forest Research Report The Biodiversity of Atewa Forest Research Report January 2019 Authors: Jeremy Lindsell1, Ransford Agyei2, Daryl Bosu2, Jan Decher3, William Hawthorne4, Cicely Marshall5, Caleb Ofori-Boateng6 & Mark-Oliver Rödel7 1 A Rocha International, David Attenborough Building, Pembroke St, Cambridge CB2 3QZ, UK 2 A Rocha Ghana, P.O. Box KN 3480, Kaneshie, Accra, Ghana 3 Zoologisches Forschungsmuseum A. Koenig (ZFMK), Adenauerallee 160, D-53113 Bonn, Germany 4 Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK 5 Department ofPlant Sciences, University ofCambridge,Cambridge, CB2 3EA, UK 6 CSIR-Forestry Research Institute of Ghana, Kumasi, Ghana and Herp Conservation Ghana, Ghana 7 Museum für Naturkunde, Berlin, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstr. 43, 10115 Berlin, Germany Cover images: Atewa Forest tree with epiphytes by Jeremy Lindsell and Blue-moustached Bee-eater Merops mentalis by David Monticelli. Contents Summary...................................................................................................................................................................... 3 Introduction.................................................................................................................................................................. 5 Recent history of Atewa Forest................................................................................................................................... 9 Current threats -
Odonata) in Zambia 165 Doi: 10.3897/Afrinvertebr.59.29021 RESEARCH ARTICLE
African Invertebrates 52(9): 165–193New (2018) records of dragonflies (Odonata) in Zambia 165 doi: 10.3897/AfrInvertebr.59.29021 RESEARCH ARTICLE http://africaninvertebrates.pensoft.net New records of dragonflies (Odonata) in Zambia Rafał Bernard1, Bogusław Daraż2 1 Department of Nature Education and Conservation, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, PL-61-614 Poznań, Poland 2 Kościelna 41, PL-35-505 Rzeszów, Poland Corresponding author: Rafał Bernard ([email protected]) Academic editor: P. Stoev | Received 10 August 2018 | Accepted 1 October 2018 | Published 5 November 2018 http://zoobank.org/D53B382A-0C84-4645-9E68-1C587E34712B Citation: Bernard R, Daraż B (2018) New records of dragonflies (Odonata) in Zambia. African Invertebrates 59(2): 165–193. https://doi.org/10.3897/AfrInvertebr.59.29021 Abstract Zoogeographically important data on the occurrence of 22 dragonfly species in Zambia are presented, including at least seven species for the first time recorded or unambiguously confirmed in the country. They filled gaps in the previously known distribution ranges and showed that some of them reach further, especially to the south, but also west or north. Zoogeographical considerations are completed with some remarks on species’ morphological traits and habitat selection and activity. Keywords Africa, Afrotropical fauna, zoogeography, Zygoptera, Anisoptera, Gynacanthini Introduction Studies of Afrotropical odonates have been significantly intensified since the end of the 20th century. Apart from many taxonomic works, they brought the spectacular event of publication on 60 new species for science (Dijkstra et al. 2015) and several syntheses, such as the first regional handbook for all Odonata from Sudan to Zimbabwe (Dijkstra and Clausnitzer 2014) and papers summing up present knowledge for Namibia (Suh- ling and Martens 2014), Botswana (Kipping 2010) and Angola (Kipping et al. -
IDF-Report 92 (2016)
IDF International Dragonfly Fund - Report Journal of the International Dragonfly Fund 1-132 Matti Hämäläinen Catalogue of individuals commemorated in the scientific names of extant dragonflies, including lists of all available eponymous species- group and genus-group names – Revised edition Published 09.02.2016 92 ISSN 1435-3393 The International Dragonfly Fund (IDF) is a scientific society founded in 1996 for the impro- vement of odonatological knowledge and the protection of species. Internet: http://www.dragonflyfund.org/ This series intends to publish studies promoted by IDF and to facilitate cost-efficient and ra- pid dissemination of odonatological data.. Editorial Work: Martin Schorr Layout: Martin Schorr IDF-home page: Holger Hunger Indexed: Zoological Record, Thomson Reuters, UK Printing: Colour Connection GmbH, Frankfurt Impressum: Publisher: International Dragonfly Fund e.V., Schulstr. 7B, 54314 Zerf, Germany. E-mail: [email protected] and Verlag Natur in Buch und Kunst, Dieter Prestel, Beiert 11a, 53809 Ruppichteroth, Germany (Bestelladresse für das Druckwerk). E-mail: [email protected] Responsible editor: Martin Schorr Cover picture: Calopteryx virgo (left) and Calopteryx splendens (right), Finland Photographer: Sami Karjalainen Published 09.02.2016 Catalogue of individuals commemorated in the scientific names of extant dragonflies, including lists of all available eponymous species-group and genus-group names – Revised edition Matti Hämäläinen Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, the Netherlands E-mail: [email protected]; [email protected] Abstract A catalogue of 1290 persons commemorated in the scientific names of extant dra- gonflies (Odonata) is presented together with brief biographical information for each entry, typically the full name and year of birth and death (in case of a deceased person). -
Odonata, Biodiversity Is Frequently Used Term Nowadays, Only In
Odonatologica 30(1): 49-66 March I, 2001 Notes on the species diversity of East African Odonata, with a checklist of species V. Clausnitzer Geography Department, University of Marburg, 35032 Marburg, Germany, e-mail: [email protected] Received August 11, 2000 / Revised and Accepted September 6, 2000 Preliminary considerations concerning the species diversity of East African dragonflies and the problems of identifying and using such diversity figures are For detailed the data in that given. a approach basic problem is lack of sufficient area. A checklist of species recorded so far for East Africa is given. Looking at number in relation is for pure species to area, Uganda definitely more important dragonfly diversity than its eastern neighbouring countries. If taking endemism and taxonomic singularity into account, the coastal forests of Tanzania and Kenya are very important too. INTRODUCTION Biodiversity is a common and frequently used term nowadays, not only in conservationist’s circles. much been achieved in scientist’s or Although has broad scale about documenting biodiversity on a pattern, questions existing patterns and the understanding of the multiple factors that play a role in the distributionof biodiversity are still a challenge (GASTON, 2000). Biodiversity is a useful catchword for political argumentation and for fundraising. Most often no further definitionis given, whetherit is used as species richness (ct- effects -diversity), as species diversity with an adjustment for sampling and species abundance or as functionaldiversity with different weighted species, as key-stone endemics, If it is used of different difficulties species, etc. to compare diversity areas, how such distinctness start as to to weight parameters as species richness, endemism, or taxonomic singularity (VANE-WRIGHT etal., 1991). -
Larval and Molecular Characters Help to Solve Phylogenetic
ARTICLE IN PRESS Organisms, Diversity & Evolution 8 (2008) 1–16 www.elsevier.de/ode Larval and molecular characters help to solve phylogenetic puzzles in the highly diverse dragonfly family Libellulidae (Insecta: Odonata: Anisoptera): The Tetrathemistinae are a polyphyletic group Gu¨nther Flecka,b,Ã, Manuela Brenka, Bernhard Misofa aZoologisches Forschungsinstitut und Museum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany bMuse´um National d’Histoire Naturelle, 45 Rue Buffon, 75005 Paris, France Received 8 March 2006; accepted 14 August 2006 Abstract The systematics of the dragonfly family Libellulidae remains an unsolved puzzle. The classification into subfamilies relies primarily on wing venational characters, as is the case for most systematic hypotheses on dragonflies. In this study, we show that the discovery of unknown libellulid larvae can change tremendously our views on phylogenetic relationships. The larvae of the genera Micromacromia Karsch, 1889 and Allorhizucha Karsch, 1889 are described and illustrated. They are briefly compared with the larva of Neodythemis Karsch, 1889. The larvae of A. klingi Karsch, 1889 and N. africana Fraser, 1954 are extremely similar. The larva of M. camerunica Karsch, 1889 displays well developed dorsal hooks on abdominal segments 4–8, which distinguishes it from other closely allied genera. Micromacromia, Allorhizucha and Neodythemis are traditionally placed within the Tetrathemistinae, but their larvae strongly resemble those in the subfamily Libellulinae. Larval morphological studies and a molecular analysis based on mitochondrial SSU, LSU and tRNA valine imply that Micromacromia, Allorhizucha and Neodythemis have to be placed in the subfamily Libellulinae. Consequently, the subfamily Tetrathemistinae becomes a polyphyletic group. Our analysis suggests that imaginal characters, and in particular wing venation, are much more often prone to homoplasious evolution than previously anticipated.