Structural Diversity of Anodic Zinc Oxide Controlled by the Type Of

Total Page:16

File Type:pdf, Size:1020Kb

Structural Diversity of Anodic Zinc Oxide Controlled by the Type Of Reviews ChemElectroChem doi.org/10.1002/celc.202100216 Zinc Anodizing: Structural Diversity of Anodic Zinc Oxide Controlled by the Type of Electrolyte Katja Engelkemeier,*[a, c] Aijia Sun,[a, c] Dietrich Voswinkel,[b, c] Olexandr Grydin,[b, c] Mirko Schaper,[b, c] and Wolfgang Bremser[a, b] ChemElectroChem 2021, 8, 1–15 1 © 2021 The Authors. ChemElectroChem published by Wiley-VCH GmbH These are not the final page numbers! �� Wiley VCH Dienstag, 18.05.2021 2199 / 204431 [S. 1/15] 1 Reviews ChemElectroChem doi.org/10.1002/celc.202100216 Anodic zinc oxide (AZO) layers are attracting interdisciplinary The article gives an overview of the different possibilities of research interest. Chemists, physicists and materials scientists anodic treatment, whereby the voltage and the current type are are increasingly devoting attention to fundamental and the main distinguishing criteria. Presented is the electrolytic application-related research on these layers. Research work oxidation (anodizing) and the electrolytic plasma oxidation focuses on the application as semiconductor, corrosion protec- (EPO). The electrolytic etching is also a process of anodic tor, adhesion promoter, abrasion protector, or antibacterial treatment. However, it does not produce AZO layers, but rather surfaces. The structure and crystallinity essentially determine a degradation of the zinc layer. The review article shows the the properties of the AZO coatings. The type and concentration parameters used so far (electrolyte, current type, current of the electrolyte, the applied current density or voltage as well density, voltage) and points out the influence on the formation as the duration time enable layer structures of structural variety. of AZO structures in dependency to the used electrolyte. The European parliament voted in favor of a general ban on 1. Importance of Zinc Anodization for the use of the carcinogenic chrome (Cr) VI compounds.[12,13] Corrosion Protection and Further Applications Alternative surface treatment methods are required, thus anod- izing is becoming more attractive as a method of surface Zinc is essential as an protector layer primarily for steel treatment.[14] materials and is used for car bodies,[1] fence elements, or joining In the 1960s, the international lead zinc research organ- elements[2] like screws, nuts, and nails. However, zinc coatings ization inc. (ILZRO, USA) was engaged in zinc anodizing and tend to stain, tarnishes quickly and is susceptible to atmos- galvanized coatings. The treatment process was commercially pheric corrosion.[3] Under atmospheric conditions, zinc materials introduced by the Allied Kelite Product Division (AKPD) under exhibit a certain corrosion resistance in comparison to steel and the trade name “Iridizing”. Granted patents are those of A. G. form a smooth, compact, and weather-resistant protective layer. White[15] (1961) and M. M. Wright[16] (1967). They describe their The layer consists of zinc oxide (ZnO), zinc hydroxide, and process as “anodic treatment under alternating current (AC)” carbonate (Zn(CO3)·Zn (OH)2), known as white rust. However, instead of direct current. The specified parameters for the the native protective layer, less than 20 nm thickness, is not anodization treatment: Voltages between 50 V and 250 V, sufficient for long-term corrosion protection. Furthermore, the current densities between 37.6 mAcmÀ 2 (35 AftÀ 2) and natural oxide layer is not scratch-resistant.[4] 48.4 mAcmÀ 2 and temperatures between 65.6 °C and 82.2 °C. The international lead and zinc study group (ILZSG) has The process of anodic treatment takes place at high voltages statistically captured, the demand for zinc increased up to 4 and is a process of plasma electrolytic oxidation (PEO).[17] percent between 2013 and 2018.[5] Even the increase in global The process generates corrosion protective coatings with a zinc prices did not affect the demand. The worldwide export of thickness of up to 300 μm. However, commercial acceptance is galvanized steel doubled between 2001 and 2017.[6–8] marginal. Reasons are high costs associated with the process in Produced were up to 247,000 tons of zinc, primarily in terms of equipment, the energy-inefficient process design, and demand by automotive and construction companies.[9] Galvan- the high-risk potential due to excessive clamping voltages of ized steels are furthermore attractive components in hybrid the AC power supply. Furthermore, the application of the materials. However, the smooth zinc surface does not provide process recommends sodium hydroxide and potassium any possibilities for mechanical interlocking. Surface treatments hydroxide based electrolytes (pH 5 to pH 11.4), phosphate ions must be applied to adapt the zinc surface to the requirements and chromate ions (Cr(VI), Cr(III).[18] of the hybrid material.[10] It is known that specific structures of The zinc anodizing process MIL-A-81801[19] (1971), devel- AZO increase the adhesive strength between the steel and the oped by the ILZRO and financed by the US military, also works fiber composite component.[11] with voltages of up to 200 V. Layers of up to 80 μm in thickness can be realized through the addition of chromate and phosphate compounds. The AZO layers have a salt water [a] K. Engelkemeier, A. Sun, Prof. W. Bremser resistance of above thousand hours and have an increased Paderborn University [20–22] Department of Chemistry, ‘Coatings, Materials & Polymers’ abrasion resistance compared to the base metal. 33098 Paderborn, Germany Anodizing is an alternative option to increase the corrosion E-mail: [email protected] resistance and wear properties of zinc and galvanized layers, as it [b] D. Voswinkel, Dr. O. Grydin, Prof. M. Schaper, Prof. W. Bremser [18] Paderborn University can generate protective oxide layers. Researchers are increasingly Department of Chemistry, ‘Chair of Material Science’ turning to basic research on zinc anodizing, with a focus on the 33098 Paderborn, Germany semiconductor functionalities. Zinc oxide is a wide bandgap II–IV [c] K. Engelkemeier, A. Sun, D. Voswinkel, Dr. O. Grydin, Prof. M. Schaper Institute for Lightweight Design with Hybrid Systems (ILH) semiconductor material (3.37 eV at 300 K). It is used in application [23–25] [26,27] Paderborn University areas such as microelectronics, optoelectronics, sensor 33098 Paderborn, Germany technology[28–30] and photocatalysis.[31,32] Zinc oxide surfaces also © 2021 The Authors. ChemElectroChem published by Wiley-VCH GmbH. This have antibacterial properties that make them interesting for is an open access article under the terms of the Creative Commons [33,34] Attribution License, which permits use, distribution and reproduction in any biotechnical and biomedical applications. medium, provided the original work is properly cited. ChemElectroChem 2021, 8, 1–15 www.chemelectrochem.org 2 © 2021 The Authors. ChemElectroChem published by Wiley-VCH GmbH These are not the final page numbers! �� Wiley VCH Dienstag, 18.05.2021 2199 / 204431 [S. 2/15] 1 Reviews ChemElectroChem doi.org/10.1002/celc.202100216 In an earlier review article, Zaraska et al. discussed the oxidation (PEO),[15,45–48] and electrolytic etching.[49] The Electro- anodic formation of zinc oxide nanostructures.[35] They dis- lytic oxidation is known as anodizing and PEO is commonly cussed the formation of different structures and showed the referred to as micro-arc oxidation (DC-current) or iridizing (AC- impact of specific applied parameters and electrolytes. The current). In all cases, the workpiece forms the anode. Figure 1 amount of literature on anodizing has increased in recent years shows a short overview of the three methods. Influenced is the and allows correlations between the structure formation and anodic formation of zinc oxide by the type of method, type of the anodizing parameters depending on the electrolyte. This electrolyte, concentration and pH value of the electrolyte, the article focuses on the anodizing process in different electrolytes applied current density or potential, the type of current (direct and shows the relationship between the AZO formation in current or alternating current), the current mode (pulsed or various electrolytes depending on other anodizing parameters. constant), the duration time, additives and its topography. Anodizing of zinc products leads to further possibilities for application such as wear protection for tools,[36] sensor technology,[37] automotive and aircraft construction,[38–40] bio- 2.1. Electrolytic Oxidation (Anodizing) medical and medical technology.[41–43] The anodic treatment is typically applied below the dielectric breakdown. Figure 2 shows the oxidation process at the 2. Types of Zinc Anodizing interphase between the electrolyte and the zinc anode. The affinity of zinc to oxygen is exploited to increase the thickness Tree types of anodic treatment. The methods of anodic treat- of the oxide layer. The anodic formation of the oxide layer is ment include electrolytic oxidation,[44] plasma electrolytic less established for zinc than for aluminum. Zinc tends to have Katja Engelkemeier studied chemistry at the Dr. Olexandr Grydin gained a Ph.D. degree at Paderborn University from 2009 to 2014 and the National Metallurgical Academy of Ukraine is completing her Ph.D. this year at the Chair (Ukraine) in 2004. He habilitated to a Dr. tech. of Material Science (LWK) in the Faculty of sc. at the same university in 2014. Since 2014, Mechanical Engineering. Since 2019, she has he is working as a senior engineer at the been employed as a junior research group Department of Materials Science of the Pader- leader in the Faculty of Natural Sciences in the born University (Germany). He has expertise in working group Coatings, Materials and Poly- twin-roll casting of light metals, in particular mers at the Paderborn University and is high-strength aluminum alloys, and metallic actively involved as a specialist group repre- clads such as aluminum and steel, thermome- sentative at the Institute for Lightweight chanical treatment of metallic materials, sur- Construction with Hybrid Systems (ILH). She is face treatment of metals for advanced bond- currently focusing on the development of ing properties.
Recommended publications
  • Sodium Hydroxide
    Sodium hydroxide From Wikipedia, the free encyclopedia • Learn more about citing Wikipedia • Jump to: navigation, search Sodium hydroxide IUPAC name Sodium hydroxide Other names Lye, Caustic Soda Identifiers CAS number 1310-73-2 Properties Molecular NaOH formula Molar mass 39.9971 g/mol Appearance White solid Density 2.1 g/cm³, solid Melting point 318°C (591 K) Boiling point 1390°C (1663 K) Solubility in 111 g/100 ml water (20°C) Basicity (pKb) -2.43 Hazards MSDS External MSDS NFPA 704 0 3 1 Flash point Non-flammable. Related Compounds Related bases Ammonia, lime. Except where noted otherwise, data are given for materials in their standard state (at 25 °C, 100 kPa) Infobox disclaimer and references Sodium hydroxide (NaOH), also known as lye, caustic soda and sodium hydrate, is a caustic metallic base. Caustic soda forms a strong alkaline solution when dissolved in a solvent such as water. It is used in many industries, mostly as a strong chemical base in the manufacture of pulp and paper, textiles, drinking water, soaps and detergents and as a drain cleaner. Worldwide production in 1998 was around 45 million tonnes. Sodium hydroxide is the most used base in chemical laboratories. Pure sodium hydroxide is a white solid; available in pellets, flakes, granules and as a 50% saturated solution. It is deliquescent and readily absorbs carbon dioxide from the air, so it should be stored in an airtight container. It is very soluble in water with liberation of heat. It also dissolves in ethanol and methanol, though it exhibits lower solubility in these solvents than potassium hydroxide.
    [Show full text]
  • Zinc Oxide and Zinc Hydroxide Formation Via Aqueous Precipitation: Effect of the Preparation Route and Lysozyme Addition
    Materials Chemistry and Physics 167 (2015) 77e87 Contents lists available at ScienceDirect Materials Chemistry and Physics journal homepage: www.elsevier.com/locate/matchemphys Zinc oxide and zinc hydroxide formation via aqueous precipitation: Effect of the preparation route and lysozyme addition * Ayben Top , Hayrullah Çetinkaya _ _ Department of Chemical Engineering, Izmir Institute of Technology, Urla-Izmir, 35430, Turkey highlights graphical abstract Aqueous precipitation products of Zn(NO3)2 and NaOH were prepared. Synthesis route and lysozyme addi- tion affected morphology of the products. ε-Zn(OH)2, b-Zn(OH)2, and ZnO crys- tal structures were observed. Lysozyme-ZnO/Zn(OH)2 composites with ~5e20% lysozyme content were obtained. article info abstract Article history: Aqueous precipitation products of Zn(NO3)2 and NaOH obtained by changing the method of combining Received 13 February 2015 the reactants and by using lysozyme as an additive were investigated. In the case of single addition Received in revised form method, octahedral ε-Zn(OH)2 and plate-like b-Zn(OH)2 structures formed in the absence and in the 20 August 2015 presence of lysozyme, respectively. Calcination of these Zn(OH) samples at 700 C yielded porous ZnO Accepted 10 October 2015 2 structures by conserving the template crystals. When zinc source was added dropwise into NaOH so- Available online 24 October 2015 lution, predominantly clover-like ZnO crystals were obtained independent of lysozyme addition. Mixed spherical and elongated ZnO morphology was observed when NaOH was added dropwise into Zn(NO ) Keywords: 3 2 Oxides solution containing lysozyme. Lysozyme contents of the precipitation products were estimated as in the e fi Composite materials range of ~5 20% and FTIR indicated no signi cant conformational change of lysozyme in the composite.
    [Show full text]
  • Chemical Deposition of Zinc Hydroxosulfide Thin Films from Zinc (II) - Ammonia-Thiourea Solutions B
    Chemical Deposition of Zinc Hydroxosulfide thin Films from Zinc (II) - Ammonia-Thiourea Solutions B. Mokili, M. Froment, D. Lincot To cite this version: B. Mokili, M. Froment, D. Lincot. Chemical Deposition of Zinc Hydroxosulfide thin Films from Zinc (II) - Ammonia-Thiourea Solutions. J. Phys. IV, 1995, 05 (C3), pp.C3-261-C3-266. 10.1051/jp4:1995324. jpa-00253690 HAL Id: jpa-00253690 https://hal.archives-ouvertes.fr/jpa-00253690 Submitted on 1 Jan 1995 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. JOURNAL DE PHYSIQUE lV Colloque C3, supplCment au Journal de Physique 111, Volume 5, avril 1995 Chemical Deposition of Zinc Hydroxosulfide thin Films from Zinc (11) - Ammonia-Thiourea Solutions B. Mokili, M. Froment* and D. ~incot(1) Laboratoire d'Electrochimie et de Chimie Analytique, Unite' Associke au CNRS, Ecole Nationale Supe'rieure de Chimie de Paris, I I rue Pierre et Marie Curie, 75231 Paris cedex 05, France * UPR 15 du CNRS "Physiquedes Liquides et Electrochimie", Universite' Pierre et Marie Curie, 75252 Paris cedex 05, France Abstract The growth of ZnS films from ammonia solutions using thiourea as a sulfur precursor has been investigated.
    [Show full text]
  • LESSON 11 THEME: Equilibriums in Solutions of Coordination Complexes
    LESSON 11 THEME: Equilibriums in solutions of coordination complexes. Heterogeneous equilibriums and processes. Research work: «Reception of complexes. Medicobiological value: the coordination complexes carry out various biological functions. So, for vital activity of a human organism the unique value has a coordination complex of iron ions with protein - haemoglobin exercising transport of oxygen from lung to tissues. In life of plants the important role is played chlorophyll - complex of magnesium, due to which the plants transmute carbone dioxide and water into composite organic matters (amylum, saccharum, etc.). The ion Cu2+is the component of several important enzymes - participants of a biological oxidizing. The coordination complexes of a cobalt considerably raise intensity of protein metabolism, regulate composition of a blood. Metalenzymes is the coordination complexes with high specificity of ions of metals, among them, except for mentioned above, is more often than others there are ions of zinc, molybden, manganese. In the whole cations almost of all metals are in alive organisms as coordination complexes. Pollution by transition metals and their compounds: mercury, lead, cadmium, chromium, nickel - can result into a poisoning. The toxicity of such compounds in many cases is explained to that these ions supersede ions of biogenic metals (Fe, Zn, Cu, W) from coordination complexes with a bioorganic ligand (for example, porphyrin). The stability of coordination complexes, formed at it, usually is higher, they collect in an organism, therefore the normal vital activity of an organism is broken and the toxicosis begins. The coordination complexes will be used in medical practice. Various metals (macroelements) introduce to the organism as coordination complexes.
    [Show full text]
  • Complex Ions and Amphoterism
    Chemistry 112: Reactions Involving Complex Ions Page 27 COMPLEX IONS AND AMPHOTERISM his experiment involves the separation and identification of ions using Ttwo important reaction types: (i) the formation of complex ions and (ii) the amphoteric behavior of some metal hydroxides. You have already encoun- tered complex ion formation in the analysis of the silver group ions and in the experiment on metal sulfides, but more needs to be said about this topic as an introduction to this experiment. THE FORMATION OF COMPLEX IONS Although we usually write cation formulas in solution as if they were simple ions, such as Al3+, these ions are actually bound to a number of water mol- ecules arranged around the central ion (see figure below). The water molecules in this case are examples of a much larger class of molecules and ions called ligands that form coordinate covalent bonds with a central metal cation. That is, the bond is of the form L: → Mn+, where L has donated δ+ an otherwise unused lone pair of electrons H As noted in the experiment on the to the electron accepting metal ion. In the 3+ δ+ H O Al silver group ions, a ligand is a Lewis water molecule, there are two lone pairs of •• base (a donor of one or more pairs of electrons on the O atom, and either of these δ− electrons), and the metal ion in the may form a coordinate covalent bond with a complex ion is a Lewis acid (an elec- metal cation. Ligands are often small, polar tron pair acceptor).
    [Show full text]
  • Complex Ions and Amphoterism
    Chemistry 112: Reactions Involving Complex Ions Page 27 COMPLEX IONS AND AMPHOTERISM his experiment involves the separation and identification of ions using Ttwo important reaction types: (i) the formation of complex ions and (ii) the amphoteric behavior of some metal hydroxides. You have already encoun- tered complex ion formation in the analysis of the silver group ions and in the experiment on metal sulfides, but more needs to be said about this topic as an introduction to this experiment. THE FORMATION OF COMPLEX IONS Although we usually write cation formulas in solution as if they were simple ions, such as Al3+, these ions are actually bound to a number of water mol- ecules arranged around the central ion (see figure below). The water molecules in this case are examples of a much larger class of molecules and ions called ligands that form coordinate covalent bonds with a central metal cation. That is, the bond is of the form L: → Mn+, where L has donated δ+ an otherwise unused lone pair of electrons H As noted in the experiment on the to the electron accepting metal ion. In the 3+ δ+ H O Al silver group ions, a ligand is a Lewis water molecule, there are two lone pairs of •• base (a donor of one or more pairs of electrons on the O atom, and either of these δ− electrons), and the metal ion in the may form a coordinate covalent bond with a complex ion is a Lewis acid (an elec- metal cation. Ligands are often small, polar tron pair acceptor).
    [Show full text]
  • Intercalations and Characterization of Zinc/Aluminium Layered Double Hydroxide-Cinnamic Acid
    Available online at BCREC website: https://bcrec.id Bulletin of Chemical Reaction Engineering & Catalysis, 14 (1) 2019, 165-172 Research Article Intercalations and Characterization of Zinc/Aluminium Layered Double Hydroxide-Cinnamic Acid Nurain Adam1,2, Sheikh Ahmad Izaddin Sheikh Mohd Ghazali2*, Nur Nadia Dzulkifli2, Cik Rohaida Che Hak3, Siti Halimah Sarijo1 1Faculty of Applied Sciences, Universiti Teknologi MARA, 40450, Shah Alam, Malaysia 2Faculty of Applied Sciences, Universiti Teknologi MARA, Pekan Parit Tinggi, 72000, Kuala Pilah, Negeri Sembilan, Malaysia 3Material Technology Group, Industrial Technology Division, Malaysian Nuclear Agency, Kajang, Malaysia Received: 1st October 2018; Revised: 8th December 2018; Accepted: 12nd December 2018; Available online: 25th January 2019; Published regularly: April 2019 Abstract Cinnamic acid (CA) is known to lose its definite function by forming into radicals that able to penetrate into the skin and lead to health issues. Incorporating CA into zinc/aluminum-layered double hydroxides (Zn/Al-LDH) able to reduce photodegradation and eliminate close contact between skin and CA. Co-precipitation or direct method used by using zinc nitrate hexahydrate and aluminium nitrate nonahydrate as starting precursors with addition of various concentration of CA. The pH were kept constant at 7±0.5. Fourier Transform Infrared-Attenuated Total Reflectance (FTIR-ATR) shows the presence of nanocomposites peak 3381 cm–1 for OH group, 1641 cm–1 for C=O group, 1543 cm–1 for C=C group and 1206 cm–1 for C–O group and disappearance of N–O peak at 1352 cm–1 indi- cates that cinnamic acid were intercalated in between the layered structures. Powder X-Ray Diffraction (PXRD) analysis for Zn/Al-LDH show the basal spacing of 9.0 Ǻ indicates the presence of nitrate and increases to 18.0 Ǻ in basal spacing in 0.4M Zn/Al-LDH-CA.
    [Show full text]
  • Selective Recovery of Chromium, Copper, Nickel, and Zinc from an Acid Solution Using an Environmentally Friendly Process
    Selective recovery of chromium, copper, nickel, and zinc from an acid solution using an environmentally friendly process Manuela D. Machado & Eduardo V. Soares & Helena M. V. M. Soares Abstract solution at pH 10, selective recovery of zinc (82.7% as Purpose Real electroplating effluents contain multiple zinc hydroxide) and chromium (95.4% as a solution of metals. An important point related with the feasibility of cromate) was achieved. the bioremediation process is linked with the strategy to Conclusion The approach, used in the present work, recover selectively metals. In this work, a multimetal allowed a selective and efficient recovery of chromium, solution, obtained after microwave acid digestion of the copper, nickel, and zinc from an acid solution using a ashes resulted from the incineration of Saccharomyces combined electrochemical and chemical process. The cerevisiae contaminated biomass, was used to recover strategy proposed can be used for the selective recovery selectively chromium, copper, nickel, and zinc. of metals present in an acid digestion solution, which Results The acid solution contained 3.8, 0.4, 2.8, and resulted from the incineration of ashes of biomass used in 0.2 g/L of chromium(III), copper, nickel, and zinc, the treatment of heavy metals rich industrial effluents. respectively. The strategy developed consisted of recov- ering copper (97.6%), as a metal, by electrolyzing the Keywords Chemical precipitation . Electrolysis . Heavy solution at a controlled potential. Then, the simultaneous metals . Recycling . Selective recovery. Chemical speciation alkalinization of the solution (pH 14), addition of H2O2, and heating of the solution led to a complete oxidation of chromium and nickel recovery (87.9% as a precipitate of 1 Introduction nickel hydroxide).
    [Show full text]
  • Xanthan Gum Capped Zno Microstars As a Promising Dietary Zinc Supplementation
    foods Article Xanthan Gum Capped ZnO Microstars as a Promising Dietary Zinc Supplementation Alireza Ebrahiminezhad 1,2, Fatemeh Moeeni 2, Seyedeh-Masoumeh Taghizadeh 2, Mostafa Seifan 3, Christine Bautista 3, Donya Novin 3, Younes Ghasemi 2,* and Aydin Berenjian 3,* 1 Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz 71348, Iran; [email protected] 2 Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71348, Iran; [email protected] (F.M.); [email protected] (S.-M.T.) 3 School of Engineering, Faculty of Sciences and Engineering, University of Waikato, Hamilton 3216, New Zealand; [email protected] (M.S.); [email protected] (C.B.); [email protected] (D.N.) * Correspondence: [email protected] (Y.G.); [email protected] (A.B.) Received: 7 February 2019; Accepted: 26 February 2019; Published: 2 March 2019 Abstract: Zinc is one of the essential trace elements, and plays an important role in human health. Severe zinc deficiency can negatively affect organs such as the epidermal, immune, central nervous, gastrointestinal, skeletal, and reproductive systems. In this study, we offered a novel biocompatible xanthan gum capped zinc oxide (ZnO) microstar as a potential dietary zinc supplementation for food fortification. Xanthan gum (XG) is a commercially important extracellular polysaccharide that is widely used in diverse fields such as the food, cosmetic, and pharmaceutical industries, due to its nontoxic and biocompatible properties. In this work, for the first time, we reported a green procedure for the synthesis of ZnO microstars using XG, as the stabilizing agent, without using any synthetic or toxic reagent.
    [Show full text]
  • A Critical Review of Synthesis Parameters Affecting the Properties
    Applied Water Science (2021) 11:48 https://doi.org/10.1007/s13201-021-01370-z REVIEW ARTICLE A critical review of synthesis parameters afecting the properties of zinc oxide nanoparticle and its application in wastewater treatment E. Y. Shaba1 · J. O. Jacob1 · J. O. Tijani1 · M. A. T. Suleiman1 Received: 5 October 2020 / Accepted: 18 January 2021 / Published online: 13 February 2021 © The Author(s) 2021 Abstract In this era, nanotechnology is gaining enormous popularity due to its ability to reduce metals, metalloids and metal oxides into their nanosize, which essentially alter their physical, chemical, and optical properties. Zinc oxide nanoparticle is one of the most important semiconductor metal oxides with diverse applications in the feld of material science. However, several factors, such as pH of the reaction mixture, calcination temperature, reaction time, stirring speed, nature of capping agents, and concentration of metal precursors, greatly afect the properties of the zinc oxide nanoparticles and their applications. This review focuses on the infuence of the synthesis parameters on the morphology, mineralogical phase, textural proper- ties, microstructures, and size of the zinc oxide nanoparticles. In addition, the review also examined the application of zinc oxides as nanoadsorbent for the removal of heavy metals from wastewater. Keywords Zinc oxide · Synthesis parameters · Nanoadsorbent · Heavy metals Introduction 2019). In each phase, zinc oxide nanoparticles (ZnONPs) are a semiconductor material with a direct wide bandgap of Zinc oxide nanoparticles constitute one of the important ∼ 3.3 eV (Senol et al. 2020). It has advantages such as sta- metal oxides materials that have been widely applied in bilization on substrate especially the zincblende form with materials science due to its unique physical, chemical, and a cubic lattice structure (Parihar et al.
    [Show full text]
  • Preparatory Problems
    Preparatory Problems 43rd International Chemistry Olympiad Editor: Saim Özkar Department of Chemistry, Middle East Technical University Tel +90 312 210 3203, Fax +90 312 210 3200 e-mail [email protected] January 2011 Ankara 2 Preparatory Problems Problem Authors O. Yavuz Ataman Sezer Aygün Metin Balcı Özdemir Doğan Jale Hacaloğlu Hüseyin İşçi Ahmet M. Önal Salih Özçubukçu İlker Özkan Saim Özkar Cihangir Tanyeli Department of Chemistry, Middle East Technical University, 06531 Ankara, Turkey. 3 Preparatory Problems Preface We have provided this set of problems with the intention of making the preparation for the 43rd International Chemistry Olympiad easier for both students and mentors. We restricted ourselves to the inclusion of only a few topics that are not usually covered in secondary schools. There are six such advanced topics in theoretical part that we expect the participants to be familiar with. These fields are listed explicitly and their application is demonstrated in the problems. In our experience each of these topics can be introduced to well-prepared students in 2-3 hours. Solutions will be sent to the head mentor of each country by e-mail on 1st of February 2011. We welcome any comments, corrections or questions about the problems via e-mail to [email protected]. Preparatory Problems with Solutions will be on the web in July 2011. We have enjoyed preparing the problems and we hope that you will also enjoy solving them. We look forward to seeing you in Ankara. Acknowledgement I thank all the authors for their time, dedication, and effort. All the authors are Professors in various fields of chemistry at Middle East Technical University.
    [Show full text]
  • Synthesis and Exfoliation of Layered Hydroxide Zinc Aminobenzoate Compounds
    Journal of the Ceramic Society of Japan 117 [10] 1115-1119 2009 Paper Synthesis and exfoliation of layered hydroxide zinc aminobenzoate compounds Lifang ZHAO,*,** Jianyjing MIAO,* Hongshe WANG,* Yoshie ISHIKAWA** and Qi FENG**,† *Department of Chemistry and Chemical Engineering, Baoji University of Arts and Science, Baoji, Shanxi, 721007 P. R. China **Department of Advanced Materials Science, Faculty of Engineering, Kagawa University, 2217-20 Hayashi-cho, Takamatsu-shi, 761- 0396 Two types of layered hydroxide zinc o-aminobenzoate compounds with structures of layered basic metal salt (LBMS) were prepared by reacting of zinc hydroxide and o-aminobenzoic acid solution in a temperature range of 40–110°C. The formation reactions, structures, chemical compositions, and exfoliation behavior in alcohol solvents of the layered compounds were inves- tigated by using XRD, TG–DTA, SEM, and TEM. The layered phase with a basal spacing of 1.33 nm has an α-Ni(OH)2-like structure, and its chemical formula can be written as Zn(OH)1.27(o-NH2C6H4COO)0.73·nH2O. The 1.33 nm layered phase shows plate-like particle morphology. The plate-like crystals can be exfoliated into nanosheet-like particles in alcohol solvents. ©2009 The Ceramic Society of Japan. All rights reserved. Key-words : Layered hydroxide zinc aminobenzoate compound, Layered basic metal salt, Exfoliation reaction, Nanosheet [Received June 1, 2009; Accepted August 20, 2009] Another type of anion-exchangeable brucite-like layered metal 1. Introduction hydroxide compounds is known as layered basic metal salts Low-dimensional nanomaterials, such as zero-dimensional (LBMSs), and can be represented by a general formula of II m– 13) – nanoparticles, one-dimensional nanofibers and nanotubes, and [M (OH)2–x](A )x/m·nH2O.
    [Show full text]