Sulfur and Selenium in Peptides and Proteins: Part I – Chemoselective Methods for Disulfide Bond Ormation,F Part Ii – Function of Selenium in Enzymes

Total Page:16

File Type:pdf, Size:1020Kb

Sulfur and Selenium in Peptides and Proteins: Part I – Chemoselective Methods for Disulfide Bond Ormation,F Part Ii – Function of Selenium in Enzymes University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2020 Sulfur And Selenium In Peptides And Proteins: Part I – Chemoselective Methods For Disulfide Bond ormation,F Part Ii – Function Of Selenium In Enzymes. Emma Jean Ste.Marie University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Part of the Organic Chemistry Commons Recommended Citation Ste.Marie, Emma Jean, "Sulfur And Selenium In Peptides And Proteins: Part I – Chemoselective Methods For Disulfide Bond ormation,F Part Ii – Function Of Selenium In Enzymes." (2020). Graduate College Dissertations and Theses. 1270. https://scholarworks.uvm.edu/graddis/1270 This Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. SULFUR AND SELENIUM IN PEPTIDES AND PROTEINS: PART I – CHEMOSELECTIVE METHODS FOR DISULFIDE BOND FORMATION, PART II – FUNCTION OF SELENIUM IN ENZYMES. A Dissertation Presented by Emma Jean Ste.Marie to The Faculty of the Graduate College of The University of Vermont In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Specializing in Chemistry August, 2020 Defense Date: June 4, 2020 Dissertation Examination Committee: Robert J. Hondal, Ph. D., Advisor Robert J. Kelm, Ph. D., Chairperson Matthew D. Liptak, Ph. D. Jose S. Madalengoitia, Ph. D. Cynthia J. Forehand, Ph. D., Dean of the Graduate College 1 ABSTRACT Selenocysteine (Sec), the 21st proteogenic amino acid, was first identified in 1976 by Thressa Stadtman. In proteins, Sec replaces the far more common sulfur-containing amino acid cysteine (Cys). A key question since Stadtman’s discovery is: Why does Sec replace Cys? This question is especially relevant since Cys-orthologs of Sec-enzymes catalyze the identical reaction with only slightly reduced efficiency, and incorporation of Sec into a protein is much more complicated and bioenergetically costly compared to Cys. The study of selenoproteins is very difficult because Sec is incorporated into proteins by recoding a UGA stop codon as a sense codon. Production of recombinant selenoproteins involves reconstituting the recoding machinery. Alternatively, selenoproteins can be produced using a combination of recombinant DNA technology and peptide synthesis. While the development of solid phase peptide synthesis has provided a synthetic route for studying Sec, the Sec side chain requires the use of sturdy protecting groups (PGs) during synthesis. Work herein first addresses complications associated with Sec and Cys PGs, which until now have required harsh conditions for removal. My work has developed facile new methods for the deprotection of Sec and Cys residues. For Sec, we found that the use of DTNP to remove various PGs with subsequent ascorbolysis results in a Sec-selenol. Likewise, we developed 2,2’-dipyridyl diselenide (PySeSePy) to deprotect Cys, which can be used with subsequent ascorbolysis to provide a Cys-thiol. Notably, we found the ascorbolysis step to be chemoselective; ascorbate can reduce a selenosulfide bond, but not a formed disulfide bond. We harnessed this chemoselectivity for the synthesis of peptides that contain multiple disulfide bonds, which we demonstrate by synthesizing guanylin and tachyplesin-1 using PySeSePy as a chemical tool. Another chemical tool that we utilize to explore selenoprotein chemistry is alpha- methyl selenocysteine (αMe)Sec. This unique amino acid has a methyl group in place of its α-H. We found that a peptide containing (αMe)Sec (compared to a Sec-peptide control), showed enhanced stability when incubated in oxygenated buffer for prolonged periods of time. We also utilized our (αMe)Sec-peptide as a glutathione peroxidase mimic to reduce peroxides, and postulate that this peptide could serve as a therapeutic in times of high oxidative stress. Finally, it is now commonly accepted in the field that selenoproteins evolved to resist oxidative stress. Herein, we expand this hypothesis: Sec replaces Cys in proteins to resist all types of electrophilic stress. We found that when Sec residues are alkylated by reactive biological electrophiles (such as acrolein), the formed adduct can be reversed. There are many potential mechanisms of reversal, but we provide evidence supporting a selenoxide elimination mechanism using a mutant form of thioredoxin reductase that contains (αMe)Sec in place of the native Sec residue at the C-terminal active site. Taken together, the works described in this dissertation expand the chemical toolbox for the study of Se-containing biomolecules and provides new hypotheses for the chemical role of Se in proteins. 0 CITATIONS Material from this dissertation has been published in the following form: Ste.Marie, E.J., & Hondal, R.J.. (2019). 2,2'-Dipyridyl diselenide: A chemoselective tool for cysteine deprotection and disulfide bond formation. Journal of Peptide Science, e3236. Wehrle, R.J.*, Ste.Marie, E.J.*, Hondal, R.J., & Masterson, D.S.. (2019). Synthesis of alpha‐methyl selenocysteine and its utilization as a glutathione peroxidase mimic. Journal of Peptide Science, 25(6), e3173. *these authors contributed equally to this work. Ste.Marie, E.J., & Hondal, R.J.. (2018). Reduction of cysteine‐S‐protecting groups by triisopropylsilane. Journal of Peptide Science, 24(11), e3130. Ste. Marie, E.J., Ruggles, E.L., & Hondal, R. J.. (2016). Removal of the 5‐nitro‐2‐ pyridine‐sulfenyl protecting group from selenocysteine and cysteine by ascorbolysis. Journal of Peptide Science, 22(9), 571-576. AND Material from this dissertation has been submitted for publication in ACS Biochemistry in the following form: Ste.Marie, E.J.*, Wehrle, R.J.*, Haupt, D.J., Wood, N., Previs, M.J., Masterson, D.S., & Hondal, R.J.. (2020). Incorporation of alpha-methyl selenocysteine into thioredoxin reductase confers resistance to (i) oxidative inactivation and (ii) alkylation by reactive biological electrophiles. Submitted to: Biochemistry. *these authors contributed equally to this work. Remington, J.M., Liao, C., Ste.Marie, E.J., Sharafi, M., Ferrell, J.B., Hondal, R.J., Wargo, M., Schneebeli, S.T., Li, J.. (2020). A molecular basis of antimicrobial peptide synergy. Submitted to: Chemical Communication. ii DEDICATION I dedicate this dissertation to my parents, Greg and Julie Ste.Marie. Without them, none of this would have been possible. They are the utmost example of dedication and perseverance. iii ACKNOWLEDGMENTS First and foremost, I would like to thank the members of my committee, Dr. Robert Kelm, Dr. Matthew Liptak, and Dr. Jose Madalengoitia. Each of you has expressed genuine interest in my progress throughout my time here. The insight, advice, and encouragement you have provided is greatly appreciated. Collectively, you are a brilliant, well-rounded committee who I had the great pleasure of working with. Thank you! I also want to express my deepest gratitude to my advisor, Dr. Robert Hondal. Your mentorship, guidance, and unique ideas have helped me grow as a researcher beyond what I thought possible. Your dedication to your craft is inspiring, and you have given me every tool I need to succeed going forward. Thank you for challenging me with the lofty task of completing the numerous projects in this dissertation, and for your support along the way. Thank you for trusting me to work autonomously while providing encouragement and direction any time I needed it. Your unwavering mentorship and friendship have undoubtably shaped me into the researcher, chemist, and teacher I am today. To my fellow graduate students, thank you for the friendship and support you have provided me; there simply are not words to describe the comradery among the UVM graduate students. I especially want to thank my cohort who completed every milestone with me and shared in the challenges of earning this degree; without each of you, this journey would have been much more dismal. There are several people who I would like to thank specifically: Jessica Bocanegra, Joey Campbell, Kevin Fischer, and Bobby Tracey. I will be forever grateful for the friendships I have formed with each of you. I would also like to thank all the previous and current members of the Hondal research group. You were the best kind of colleagues to work with. Thank you for making iv our lab environment friendly, inspiring, and overall pleasant, even during times when our science was not particularly cooperative. To my small army of undergraduates, especially Gracyn Mose, Linnea Saunders, and Kaelyn Jenny, thank you for trusting my advice and direction; the opportunity to provide you mentorship has been among my most rewarding experiences. Dr. Erik Ruggles, thank you for your guidance and hands-on training in the lab. The training and advice you provided me was vital for the completion of this dissertation, especially as a HPLC mechanic. Without the unwavering support of my family, I would not be where I am today. Greg and Julie (Mom and Dad), words cannot describe the gratitude I have for you. You are sine qua non in every one of my achievements. You’ve both been a constant source of support, love, and encouragement throughout this journey, and I am eternally grateful. I rely on you for so much, but you somehow make that burden seem light. I hope to someday, in some small way, find a way to repay you for the countless sacrifices you have always made for us. Anna, Manny, and Gina; thank you for providing me laughter and comradery throughout my journey. You have been my confidants and best friends. To my grandparents, Raymond, Janine, Paul, and Norma; thank you for your never-ending love, support, and cookies. You have been my greatest cheerleaders, and your confidence in me has never faded. I hope I can continue to make you all proud. Finally, I want to thank my fiancé Eli Barrett for being my constant through times of great changes.
Recommended publications
  • Selenol-Based Nucleophilic Reaction for the Preparation of Reactive Oxygen Species-Responsive Amphiphilic Diblock Copolymers
    polymers Article Selenol-Based Nucleophilic Reaction for the Preparation of Reactive Oxygen Species-Responsive Amphiphilic Diblock Copolymers Xiaowei An, Weihong Lu, Jian Zhu * , Xiangqiang Pan * and Xiulin Zhu Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China; [email protected] (X.A.); [email protected] (W.L.); [email protected] (X.Z.) * Correspondence: [email protected] (J.Z.); [email protected] (X.P.); Tel.: +86-512-6588-0726 (J.Z.); +86-512-6588-3343 (X.P.) Received: 15 February 2019; Accepted: 5 May 2019; Published: 8 May 2019 Abstract: Selenide-containing amphiphilic copolymers have shown significant potential for application in drug release systems. Herein, we present a methodology for the design of a reactive oxygen species-responsive amphiphilic diblock selenide-labeled copolymer. This copolymer with controlled molecular weight and narrow molecular weight distribution was prepared by sequential organoselenium-mediated reversible addition fragmentation chain transfer (Se-RAFT) polymerization and selenol-based nucleophilic reaction. Nuclear magnetic resonance (NMR) and matrix-assisted laser desorption/ionization time-to-flight (MALDI-TOF) techniques were used to characterize its structure. Its corresponding nanomicelles successfully formed through self-assembly from the copolymer itself. Such nanomicelles could rapidly disassemble under oxidative conditions due to the fragmentation of the Se–C bond. Therefore, this type of nanomicelle based on selenide-labeled amphiphilic copolymers potentially provides a new platform for drug delivery. Keywords: RAFT; selenol; amphiphilic polymer; drug delivery 1. Introduction Compared with sulfur, selenium shows versatile properties owing to its larger atomic radius and relatively lower electronegativity [1].
    [Show full text]
  • Peptide Synthesis: Chemical Or Enzymatic
    Electronic Journal of Biotechnology ISSN: 0717-3458 Vol.10 No.2, Issue of April 15, 2007 © 2007 by Pontificia Universidad Católica de Valparaíso -- Chile Received June 6, 2006 / Accepted November 28, 2006 DOI: 10.2225/vol10-issue2-fulltext-13 REVIEW ARTICLE Peptide synthesis: chemical or enzymatic Fanny Guzmán Instituto de Biología Pontificia Universidad Católica de Valparaíso Avenida Brasil 2950 Valparaíso, Chile Fax: 56 32 212746 E-mail: [email protected] Sonia Barberis Facultad de Química, Bioquímica y Farmacia Universidad Nacional de San Luis Ejército de los Andes 950 (5700) San Luis, Argentina E-mail: [email protected] Andrés Illanes* Escuela de Ingeniería Bioquímica Pontificia Universidad Católica de Valparaíso Avenida Brasil 2147 Fax: 56 32 2273803 E-mail: [email protected] Financial support: This work was done within the framework of Project CYTED IV.22 Industrial Application of Proteolytic Enzymes from Higher Plants. Keywords: enzymatic synthesis, peptides, proteases, solid-phase synthesis. Abbreviations: CD: circular dichroism CLEC: cross linked enzyme crystals DDC: double dimer constructs ESI: electrospray ionization HOBT: hydroxybenzotriazole HPLC: high performance liquid hromatography KCS: kinetically controlled synthesis MALDI: matrix-assisted laser desorption ionization MAP: multiple antigen peptide system MS: mass spectrometry NMR: nuclear magnetic resonance SPS: solution phase synthesis SPPS: solid-phase peptide synthesis t-Boc: tert-butoxycarbonyl TCS: thermodynamically controlled synthesis TFA: trifluoroacetic acid Peptides are molecules of paramount importance in the medium, biocatalyst and substrate engineering, and fields of health care and nutrition. Several technologies recent advances and challenges in the field are analyzed. for their production are now available, among which Even though chemical synthesis is the most mature chemical and enzymatic synthesis are especially technology for peptide synthesis, lack of specificity and relevant.
    [Show full text]
  • Peptide Services090320.Ai
    FlexPeptideTM Ensures Delivery & Quality! cGMP Peptide: Up to kilograms can be synthesized Mirror-Image Peptide Drug Discovery Services (Cat.No. SC1211) GenScript constructs libraries with natural L-peptides, which are easily amendable. These libraries are then screened with synthetic mirror-image D-forms of the target proteins to identify potent leads that can guide the synthesis of their mirror-image D-peptides. Competitive Advantages Services Include Delivery Specifications Synthesis and purification of D-enantiomers of target protein Chemically synthesized and purified D-enantiomers of the target protein Synthesis and screening of L-peptide libraries Libraries of chemically synthesized L-peptides Construction and screening of L-peptide phage display libraries Libraries of L-peptide phage display Synthesis of D-enantiomers of isolated peptide leads D-enantiomers of the isolated L-peptide leads Functional characterization data of the leads (if applicable) QC reports Custom Recombinant Peptide Services (Cat.No. SC1082) Due to the fact that long peptides (> 150 residues) or complicated peptides (multiple disulfide bonds) are prohibitively expensive to synthesize chemically. GenScript has developed a proprietary recombinant peptide system that complements our standard chemical peptide synthesis service. The powerful combination of these two-protocol allows GenScript to provide our customers with any peptide of any length on any scale. Competitive Advantages Services Include Key Features • Any length • Superior precision • Any sequence • Outstanding procedure • Any scale • Scalable system Custom Peptide Services • Low cost • Batch-to-Batch consistency FlexPeptideTM Ensures Delivery & Quality! Recommended Purity Levels Standard Peptide Synthesis GenScript proposes a range of different purity levels to help you make the right choice for your application.
    [Show full text]
  • Synthesis of Proteins by Automated Flow Chemistry
    Synthesis of Proteins by Automated Flow Chemistry Authors: N. Hartrampf1, A. Saebi1†, M. Poskus1†, Z. P. Gates1, A. J. Callahan1, A. E. Cowfer1, S. Hanna1, S. Antilla1, C. K. Schissel1, A. J. Quartararo1, X. Ye1, A. J. Mijalis1,2, M. D. Simon1, A. Loas1, S. Liu1,3, C. Jessen4, T. E. Nielsen4 and B. L. Pentelute1* 5 Affiliations: 1 Massachusetts Institute of Technology, Department of Chemistry, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. 2 Current address: Harvard Medical School, Department of Genetics, 77 Avenue Louis Pasteur, Boston, 10 MA 02115, USA. 3 Current address: Department of Chemistry, East China Normal University, 3663 North Zhongshan Rd., Shanghai, 200062, China. 4 Novo Nordisk A/S, Novo Nordisk Park, DK-2760 Måløv, Denmark. *Correspondence to: [email protected] 15 † authors contributed equally. Abstract: Ribosomes produce most proteins of living cells in seconds. Here we report highly efficient 20 chemistry matched with an automated fast-flow instrument for the direct manufacturing of peptide chains up to 164 amino acids over 328 consecutive reactions. The machine is rapid - the peptide chain elongation is complete in hours. We demonstrate the utility of this approach by the chemical synthesis of nine different protein chains that represent enzymes, structural units, and regulatory factors. After purification and folding, the synthetic materials display biophysical and enzymatic 25 properties comparable to the biologically expressed proteins. High-fidelity automated flow chemistry is an alternative for producing single-domain proteins without the ribosome. One Sentence Summary: A benchtop automated machine synthesizes protein chains in hours. 30 Main Text: Mechanical pumps, valves, solid supports and computers have transformed the way we perform chemical reactions.
    [Show full text]
  • A Scalable Process for the Synthesis of 1,2-Dialkyldiselanes and 1-Alkaneselenols
    This is a repository copy of A Scalable Process for the Synthesis of 1,2-Dialkyldiselanes and 1-Alkaneselenols. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/152805/ Version: Accepted Version Article: Cooksey, JP, Kocieński, PJ and Blacker, AJ orcid.org/0000-0003-4898-2712 (2019) A Scalable Process for the Synthesis of 1,2-Dialkyldiselanes and 1-Alkaneselenols. Organic Process Research & Development, 23 (11). pp. 2571-2575. ISSN 1083-6160 https://doi.org/10.1021/acs.oprd.9b00380 © 2019 American Chemical Society. This document is the Accepted Manuscript version of a Published Work that appeared in final form in Organic Process Research and Development, copyright © American Chemical Society, after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.oprd.9b00380 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ A Scalable Process for the Synthesis of 1,2-Dialkyldiselanes and 1- Alkaneselenols John P.
    [Show full text]
  • Methylselenol Produced in Vivo from Methylseleninic Acid Or Dimethyl Diselenide Induces Toxic Protein Aggregation in Saccharomyces Cerevisiae
    International Journal of Molecular Sciences Article Methylselenol Produced In Vivo from Methylseleninic Acid or Dimethyl Diselenide Induces Toxic Protein Aggregation in Saccharomyces cerevisiae Marc Dauplais 1, Katarzyna Bierla 2, Coralie Maizeray 1, Roxane Lestini 3 , Ryszard Lobinski 2,4,5, Pierre Plateau 1, Joanna Szpunar 2 and Myriam Lazard 1,* 1 Laboratoire de Biologie Structurale de la Cellule, BIOC, École Polytechnique, CNRS-UMR7654, IP Paris, 91128 Palaiseau CEDEX, France; [email protected] (M.D.); [email protected] (C.M.); [email protected] (P.P.) 2 IPREM UMR5254, E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie Pour l’Environnement et les Matériaux, CNRS, Université de Pau et des Pays de l’Adour, Hélioparc, 64053 Pau, France; [email protected] (K.B.); [email protected] (R.L.); [email protected] (J.S.) 3 Laboratoire d’Optique et Biosciences, École Polytechnique, CNRS UMR7645—INSERM U1182, IP Paris, 91128 Palaiseau CEDEX, France; [email protected] 4 Laboratory of Molecular Dietetics, I.M. Sechenov First Moscow State Medical University, 19048 Moscow, Russia 5 Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warszawa, Poland * Correspondence: [email protected] Abstract: Methylselenol (MeSeH) has been suggested to be a critical metabolite for anticancer activity Citation: Dauplais, M.; Bierla, K.; of selenium, although the mechanisms underlying its activity remain to be fully established. The aim Maizeray, C.; Lestini, R.; Lobinski, R.; of this study was to identify metabolic pathways of MeSeH in Saccharomyces cerevisiae to decipher the Plateau, P.; Szpunar, J.; Lazard, M.
    [Show full text]
  • Why Nature Chose Selenium Hans J
    Reviews pubs.acs.org/acschemicalbiology Why Nature Chose Selenium Hans J. Reich*, ‡ and Robert J. Hondal*,† † University of Vermont, Department of Biochemistry, 89 Beaumont Ave, Given Laboratory, Room B413, Burlington, Vermont 05405, United States ‡ University of WisconsinMadison, Department of Chemistry, 1101 University Avenue, Madison, Wisconsin 53706, United States ABSTRACT: The authors were asked by the Editors of ACS Chemical Biology to write an article titled “Why Nature Chose Selenium” for the occasion of the upcoming bicentennial of the discovery of selenium by the Swedish chemist Jöns Jacob Berzelius in 1817 and styled after the famous work of Frank Westheimer on the biological chemistry of phosphate [Westheimer, F. H. (1987) Why Nature Chose Phosphates, Science 235, 1173−1178]. This work gives a history of the important discoveries of the biological processes that selenium participates in, and a point-by-point comparison of the chemistry of selenium with the atom it replaces in biology, sulfur. This analysis shows that redox chemistry is the largest chemical difference between the two chalcogens. This difference is very large for both one-electron and two-electron redox reactions. Much of this difference is due to the inability of selenium to form π bonds of all types. The outer valence electrons of selenium are also more loosely held than those of sulfur. As a result, selenium is a better nucleophile and will react with reactive oxygen species faster than sulfur, but the resulting lack of π-bond character in the Se−O bond means that the Se-oxide can be much more readily reduced in comparison to S-oxides.
    [Show full text]
  • Catalysis of Peroxide Reduction by Fast Reacting Protein Thiols Focus Review †,‡ †,‡ ‡,§ ‡,§ ∥ Ari Zeida, Madia Trujillo, Gerardo Ferrer-Sueta, Ana Denicola, Darío A
    Review Cite This: Chem. Rev. 2019, 119, 10829−10855 pubs.acs.org/CR Catalysis of Peroxide Reduction by Fast Reacting Protein Thiols Focus Review †,‡ †,‡ ‡,§ ‡,§ ∥ Ari Zeida, Madia Trujillo, Gerardo Ferrer-Sueta, Ana Denicola, Darío A. Estrin, and Rafael Radi*,†,‡ † ‡ § Departamento de Bioquímica, Centro de Investigaciones Biomedicaś (CEINBIO), Facultad de Medicina, and Laboratorio de Fisicoquímica Biologica,́ Facultad de Ciencias, Universidad de la Republica,́ 11800 Montevideo, Uruguay ∥ Departamento de Química Inorganica,́ Analítica y Química-Física and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 2160 Buenos Aires, Argentina ABSTRACT: Life on Earth evolved in the presence of hydrogen peroxide, and other peroxides also emerged before and with the rise of aerobic metabolism. They were considered only as toxic byproducts for many years. Nowadays, peroxides are also regarded as metabolic products that play essential physiological cellular roles. Organisms have developed efficient mechanisms to metabolize peroxides, mostly based on two kinds of redox chemistry, catalases/peroxidases that depend on the heme prosthetic group to afford peroxide reduction and thiol-based peroxidases that support their redox activities on specialized fast reacting cysteine/selenocysteine (Cys/Sec) residues. Among the last group, glutathione peroxidases (GPxs) and peroxiredoxins (Prxs) are the most widespread and abundant families, and they are the leitmotif of this review. After presenting the properties and roles of different peroxides in biology, we discuss the chemical mechanisms of peroxide reduction by low molecular weight thiols, Prxs, GPxs, and other thiol-based peroxidases. Special attention is paid to the catalytic properties of Prxs and also to the importance and comparative outlook of the properties of Sec and its role in GPxs.
    [Show full text]
  • Peptide Synthesis and Modification As a Versatile Strategy for Probes Construction
    University of Pennsylvania ScholarlyCommons Master of Chemical Sciences Capstone Projects Department of Chemistry 8-11-2017 Peptide Synthesis and Modification as a ersatileV Strategy for Probes Construction Jieliang Wang University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/mcs_capstones Part of the Chemistry Commons Wang, Jieliang, "Peptide Synthesis and Modification as a ersatileV Strategy for Probes Construction" (2017). Master of Chemical Sciences Capstone Projects. 7. https://repository.upenn.edu/mcs_capstones/7 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/mcs_capstones/7 For more information, please contact [email protected]. Peptide Synthesis and Modification as a ersatileV Strategy for Probes Construction Abstract Peptide synthesis and modification is a ersatilev chemical biology strategy to construct probes and sensors of a variety of types of biological activity, including protein/protein interactions, protein localization, and proteolysis. In my thesis work, I have made probes for three distinct biological applications. To do so, I have used a combination of solid phase peptide synthesis (SPPS), native chemical ligation (NCL), protein expression, and S-alkylation to construct probes with desired functional groups, while minimizing the perturbation to the native structure. In the first project, I constructed photo- crosslinking probes to study the difference in protein-protein interactions of N-terminal acetylated (N-ac) histone H4 peptide versus non-acetylated histone H4 peptide. One protein was identified yb Western blot with binding preference to N-Ace histone H4 peptide. In the second separate project, I constructed probes to study the toxicity mechanism of proline/arginine dipeptide PRx from amyotrophic lateral sclerosis (ALS) associated gene C9ORF72.
    [Show full text]
  • Custom Peptide Services
    Innovative Peptide Solutions Custom Peptide Services Custom & Specialty Peptides Clinical Peptides Peptide Libraries Peptide Pools Peptide Arrays Peptidomimetic & Organic Synthesis Innovative Peptide Solutions JPT’s key technologies are: Custom & Specialty Peptides We are peptide experts with a track record of more than 20 years and offer the largest variety of peptide History chemistries, formats and modifications. JPT Peptide Technologies is a service provider located in Berlin, Germany that has achieved worldwide credi- PepMix™ bility for its commitment to rigorous quality standards Defined antigen spanning peptide pools to and a reputation for developing and implementing stimulate CD4+ and CD8+ T-cells. innovative peptide-based services and research tools for various applications. PepTrack™ Together with its US-subsidiary JPT serves its clientele Peptide libraries of individual peptides offering in the pharmaceutical and biotechnology industries as various specifications and optimization for different well as researchers in universities, governmental and types of assays. non-profit organizations. Clinical Peptides Custom peptides produced for the stringent require- ments of cellular therapy as well as vaccine and Technology & drug development. Application PepStar™ Over the past decade JPT has developed a portfolio of Peptide microarray platform for antibody epitope propietary technologies as well as innovative products dis covery, monitoring of humoral immune responses, and services that have helped to advance the develop- protein-protein interactions and enzyme profiling. ment of new immunotherapies, proteomics and drug discovery. SPOT High-throughput peptide synthesis for T-cell epitope discovery , neo epitope qualification and peptide lead Quality Assurance discovery. JPT is DIN EN ISO 9001:2015 certified and GCLP audited. SpikeTides™ Light and stable isotope-labeled or quantified peptides for mass spectrometry based proteomics assays.
    [Show full text]
  • Formation of Highly Ordered Self-Assembled
    Communication pubs.acs.org/JACS Formation of Highly Ordered Self-Assembled Monolayers of Alkynes on Au(111) Substrate ‡ ‡ § § Tomasz Zaba, Agnieszka Noworolska, Carleen Morris Bowers, Benjamin Breiten, § ‡ George M. Whitesides, and Piotr Cyganik*, ‡ Smoluchowski Institute of Physics, Jagiellonian University, ul. Reymonta 4, 30-059 Krakow, Poland § Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States *S Supporting Information ordered in two dimensionsa key requirement for high-quality ABSTRACT: Self-assembled monolayers (SAMs), pre- surface science. The most recent analyses of n-alkyl-based pared by reaction of terminal n-alkynes (HC SAMs on Au(111) indicate a “liquid-like” structure of the 6 4,5 C(CH2)nCH3, n = 5, 7, 9, and 11) with Au(111) at 60 monolayer, and XPS analyses of SAMs formed from alkynes ° C were characterized using scanning tunneling micros- suggest that these SAMs are sensitive to oxidation at an fl copy (STM), infrared re ection absorption spectroscopy undefined point in their formation; that is, oxidation occurs (IRRAS), X-ray photoelectron spectroscopy (XPS), and either during or after SAM formation (for example, by reaction contact angles of water. In contrast to previous of the AuC CR bond with O2). Contact angle analyses of spectroscopic studies of this type of SAMs, these increasing lengths of alkynes (HC C(CH2)nCH3, n = 5, 7, 9, combined microscopic and spectroscopic experiments 4 fi and 11) also suggest that the quality of these SAMs is lower con rm formation of highly ordered SAMs having packing than those based on n-alkanethiols. densities and molecular chain orientations very similar to Although SAMs have enabled studies of wetting,7,8 − those of alkanethiolates on Au(111).
    [Show full text]
  • Glycerol/Hypophosphorous Acid
    Tetrahedron Letters 54 (2013) 3215–3218 Contents lists available at SciVerse ScienceDirect Tetrahedron Letters journal homepage: www.elsevier.com/locate/tetlet Glycerol/hypophosphorous acid: an efficient system solvent-reducing agent for the synthesis of 2-organylselanyl pyridines ⇑ ⇑ Samuel Thurow, Rodrigo Webber, Gelson Perin, Eder J. Lenardão , Diego Alves Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, PO Box 354, 96010-900 Pelotas, RS, Brazil article info abstract Article history: We describe herein an efficient and simple method to synthesize 2-organylselanyl pyridines by reactions Received 25 February 2013 of 2-chloropyridines with organylselenols, generated in situ by reaction of diorganyl diselenides, using Revised 10 April 2013 glycerol as solvent and hypophosphorous acid (H3PO2) as reducing agent. Using this methodology, a Accepted 15 April 2013 range of selenium substituted pyridines was obtained in high yields. The system solvent-reducing agent Available online 20 April 2013 glycerol/H3PO2 can be easily recovered and reused for five times without loss of efficiency. Ó 2013 Elsevier Ltd. All rights reserved. Keywords: Organoselenium compounds Selenol Pyridines Glycerol Green solvent Pyridines are among the most found heterocyclic units in phar- 2 maceutically active compounds.1 Pyridine derivatives2 including 1) glycerol R nicotinamide (niacin), nicotine, nicotinamide adenine dinucleotide N2,90ºC r.t. RSe SeR + H3PO2 1 diphosphate (NADP), and pyridoxine (vitamin B6), for example, oc- R2 R N SeR 3 1a-k cupy biological key positions. In addition, pyridine derivatives are 3a-n 4 2) used as agrochemicals (e.g., picloram) and recently in complexes R1 N Cl 5 with magnetic properties. Due to their recognized biological activ- 2a-d ities, there is a continued interest in the synthesis of functionalized pyridines and their derivates.
    [Show full text]