Hexadecimal - Wikipedia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Donald Ross – the Early Years in America
Donald Ross – The Early Years in America This is the second in a series of Newsletter articles about the life and career of Donald J. Ross, the man who designed the golf course for Monroe Golf Club in 1923. Ross is generally acknowledged as the first person to ever earn a living as a golf architect and is credited with the design of almost 400 golf courses in the United States and Canada. In April of 1899, at the age of 27, Donald Ross arrived in Boston from Dornoch, Scotland. This was not only his first trip to the United States; it was likely his first trip outside of Scotland. He arrived in the States with less than $2.00 in his pocket and with only the promise of a job as keeper of the green at Oakley Golf Club. Oakley was the new name for a course founded by a group of wealthy Bostonians who decided to remake an existing 11-hole course. Ross had been the greenkeeper at Dornoch Golf Club in Scotland and was hired to be the new superintendent, golf pro and to lay out a new course for Oakley. Situated on a hilltop overlooking Boston, Oakley Golf Club enjoys much the same type land as Monroe; a gently rising glacier moraine, very sandy soil and excellent drainage. Ross put all his experiences to work. With the help of a civil engineer and a surveyor, Ross proceeded to design a virtually new course. It was short, less than 6,000 yards, typical for courses of that era. -
13054-Duodecimal.Pdf
Universal Multiple-Octet Coded Character Set International Organization for Standardization Organisation Internationale de Normalisation Международная организация по стандартизации Doc Type: Working Group Document Title: Proposal to encode Duodecimal Digit Forms in the UCS Author: Karl Pentzlin Status: Individual Contribution Action: For consideration by JTC1/SC2/WG2 and UTC Date: 2013-03-30 1. Introduction The duodecimal system (also called dozenal) is a positional numbering system using 12 as its base, similar to the well-known decimal (base 10) and hexadecimal (base 16) systems. Thus, it needs 12 digits, instead of ten digits like the decimal system. It is used by teachers to explain the decimal system by comparing it to an alternative, by hobbyists (see e.g. fig. 1), and by propagators who claim it being superior to the decimal system (mostly because thirds can be expressed by a finite number of digits in a "duodecimal point" presentation). • Besides mathematical and hobbyist publications, the duodecimal system has appeared as subject in the press (see e.g. [Bellos 2012] in the English newspaper "The Guardian" from 2012-12-12, where the lack of types to represent these digits correctly is explicitly stated). Such examples emphasize the need of the encoding of the digit forms proposed here. While it is common practice to represent the extra six digits needed for the hexadecimal system by the uppercase Latin capital letters A,B.C,D,E,F, there is no such established convention regarding the duodecimal system. Some proponents use the Latin letters T and E as the first letters of the English names of "ten" and "eleven" (which obviously is directly perceivable only for English speakers). -
Application Description PROCONTROL P 87TS01-E/R1313 Coupling Module
Application Description PROCONTROL P Communication Coupling Module Time Master Publication No. D KWL 6316 96 E, Edition 10/96 Replacing D KWL 6316 96 E, Edition 05/96 87TS01-E/R1313 Application Every 59th second, a DCF77 time receiver coupled to the 87TS01-E/ R1313 module through an RS232c interface, conĆ forming to the prescribed time data format and transfer protoĆ Within the PROCONTROL system, module 87TS01-E/R1313col, sends the complete time telegram of the following full minĆ functions as a master clock which is set by a radioute clock and, (over in the 60th second, sends a synchronization characĆ a serial interface; reception is from the DCF77 timeter. transmitĆ This synchronization character is evaluated, and the interĆ ter), and which needs to be synchronized. The timenal received clock in module 87TS01-E/R1313 is synchronized. from the radio clock is made available to the entire PROCONĆ TROL system and is used as system time. It isThe transmitted master clock follows a 5-msec-rhythm and is synchroĆ cyclically in the form of time telegrams. nized to the DCF77 time receiver every 60 sec. Disturbance signals are generated if the time receiver or the internal clock The time telegrams containing the system time mayshould be reĆ fail. If synchronization takes place every 60 sec, the ceived and processed by modules specifically designedmaster for clock tends to go slow by < 5 msec. In the event of a this purpose. failure of the time receiver, the typical inaccuracy of the internal master clock is 3.4 sec/24 hrs. If an inaccuracy of a maximum of ± 1 sec is detected, the master clock is immediately switched over to the time received from the DCF77 time receiver. -
Positional Notation Or Trigonometry [2, 13]
The Greatest Mathematical Discovery? David H. Bailey∗ Jonathan M. Borweiny April 24, 2011 1 Introduction Question: What mathematical discovery more than 1500 years ago: • Is one of the greatest, if not the greatest, single discovery in the field of mathematics? • Involved three subtle ideas that eluded the greatest minds of antiquity, even geniuses such as Archimedes? • Was fiercely resisted in Europe for hundreds of years after its discovery? • Even today, in historical treatments of mathematics, is often dismissed with scant mention, or else is ascribed to the wrong source? Answer: Our modern system of positional decimal notation with zero, to- gether with the basic arithmetic computational schemes, which were discov- ered in India prior to 500 CE. ∗Bailey: Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. Email: [email protected]. This work was supported by the Director, Office of Computational and Technology Research, Division of Mathematical, Information, and Computational Sciences of the U.S. Department of Energy, under contract number DE-AC02-05CH11231. yCentre for Computer Assisted Research Mathematics and its Applications (CARMA), University of Newcastle, Callaghan, NSW 2308, Australia. Email: [email protected]. 1 2 Why? As the 19th century mathematician Pierre-Simon Laplace explained: It is India that gave us the ingenious method of expressing all numbers by means of ten symbols, each symbol receiving a value of position as well as an absolute value; a profound and important idea which appears so simple to us now that we ignore its true merit. But its very sim- plicity and the great ease which it has lent to all computations put our arithmetic in the first rank of useful inventions; and we shall appre- ciate the grandeur of this achievement the more when we remember that it escaped the genius of Archimedes and Apollonius, two of the greatest men produced by antiquity. -
Zero Displacement Ternary Number System: the Most Economical Way of Representing Numbers
Revista de Ciências da Computação, Volume III, Ano III, 2008, nº3 Zero Displacement Ternary Number System: the most economical way of representing numbers Fernando Guilherme Silvano Lobo Pimentel , Bank of Portugal, Email: [email protected] Abstract This paper concerns the efficiency of number systems. Following the identification of the most economical conventional integer number system, from a solid criteria, an improvement to such system’s representation economy is proposed which combines the representation efficiency of positional number systems without 0 with the possibility of representing the number 0. A modification to base 3 without 0 makes it possible to obtain a new number system which, according to the identified optimization criteria, becomes the most economic among all integer ones. Key Words: Positional Number Systems, Efficiency, Zero Resumo Este artigo aborda a questão da eficiência de sistemas de números. Partindo da identificação da mais económica base inteira de números de acordo com um critério preestabelecido, propõe-se um melhoramento à economia de representação nessa mesma base através da combinação da eficiência de representação de sistemas de números posicionais sem o zero com a possibilidade de representar o número zero. Uma modificação à base 3 sem zero permite a obtenção de um novo sistema de números que, de acordo com o critério de optimização identificado, é o sistema de representação mais económico entre os sistemas de números inteiros. Palavras-Chave: Sistemas de Números Posicionais, Eficiência, Zero 1 Introduction Counting systems are an indispensable tool in Computing Science. For reasons that are both technological and user friendliness, the performance of information processing depends heavily on the adopted numbering system. -
GPS170PEX User Manual
Technical Information Operating Instructions GPS170PEX Contact Information Meinberg Funkuhren GmbH & Co. KG Lange Wand 9 D-31812 Bad Pyrmont Phone: ++49 52 81 - 9309-0 Fax: ++49 52 81 - 9309-30 Internet: http://www.meinberg.de Email: [email protected] September 16, 2009 Table of Contents Contact Information............................................................................. 2 Content of the USB stick ..................................................................... 5 General information............................................................................. 6 PCI Express (PCIe) .............................................................................. 7 Block diagram GPS170PEX ................................................................ 8 GPS170PEX features ........................................................................... 9 Time zone and daylight saving .................................................. 9 Asynchronous serial ports ........................................................ 10 Time capture inputs.................................................................. 10 Pulse and frequency outputs .................................................... 10 DCF77 emulation ..................................................................... 12 Connectors and LEDs in the rear slot cover ...................................... 13 Installing the GPS170PEX in your computer.................................... 14 Configuring the 9 pin connector .............................................. 14 Mounting the -
The Hexadecimal Number System and Memory Addressing
C5537_App C_1107_03/16/2005 APPENDIX C The Hexadecimal Number System and Memory Addressing nderstanding the number system and the coding system that computers use to U store data and communicate with each other is fundamental to understanding how computers work. Early attempts to invent an electronic computing device met with disappointing results as long as inventors tried to use the decimal number sys- tem, with the digits 0–9. Then John Atanasoff proposed using a coding system that expressed everything in terms of different sequences of only two numerals: one repre- sented by the presence of a charge and one represented by the absence of a charge. The numbering system that can be supported by the expression of only two numerals is called base 2, or binary; it was invented by Ada Lovelace many years before, using the numerals 0 and 1. Under Atanasoff’s design, all numbers and other characters would be converted to this binary number system, and all storage, comparisons, and arithmetic would be done using it. Even today, this is one of the basic principles of computers. Every character or number entered into a computer is first converted into a series of 0s and 1s. Many coding schemes and techniques have been invented to manipulate these 0s and 1s, called bits for binary digits. The most widespread binary coding scheme for microcomputers, which is recog- nized as the microcomputer standard, is called ASCII (American Standard Code for Information Interchange). (Appendix B lists the binary code for the basic 127- character set.) In ASCII, each character is assigned an 8-bit code called a byte. -
Duodecimal Bulletin Vol
The Duodecimal Bulletin Bulletin Duodecimal The Vol. 4a; № 2; Year 11B6; Exercise 1. Fill in the missing numerals. You may change the others on a separate sheet of paper. 1 1 1 1 2 2 2 2 ■ Volume Volume nada 3 zero. one. two. three.trio 3 1 1 4 a ; (58.) 1 1 2 3 2 2 ■ Number Number 2 sevenito four. five. six. seven. 2 ; 1 ■ Whole Number Number Whole 2 2 1 2 3 99 3 ; (117.) eight. nine. ________.damas caballeros________. All About Our New Numbers 99;Whole Number ISSN 0046-0826 Whole Number nine dozen nine (117.) ◆ Volume four dozen ten (58.) ◆ № 2 The Dozenal Society of America is a voluntary nonprofit educational corporation, organized for the conduct of research and education of the public in the use of base twelve in calculations, mathematics, weights and measures, and other branches of pure and applied science Basic Membership dues are $18 (USD), Supporting Mem- bership dues are $36 (USD) for one calendar year. ••Contents•• Student membership is $3 (USD) per year. The page numbers appear in the format Volume·Number·Page TheDuodecimal Bulletin is an official publication of President’s Message 4a·2·03 The DOZENAL Society of America, Inc. An Error in Arithmetic · Jean Kelly 4a·2·04 5106 Hampton Avenue, Suite 205 Saint Louis, mo 63109-3115 The Opposed Principles · Reprint · Ralph Beard 4a·2·05 Officers Eugene Maxwell “Skip” Scifres · dsa № 11; 4a·2·08 Board Chair Jay Schiffman Presenting Symbology · An Editorial 4a·2·09 President Michael De Vlieger Problem Corner · Prof. -
The “Dirty Dozen” Tax Scams Plus 1
The “Dirty Dozen” Tax Scams Plus 1 Betty M. Thorne and Judson P. Stryker Stetson University DeLand, Florida, USA betty.thorne @stetson.edu [email protected] Executive Summary Tax scams, data breaches, and identity fraud impact consumers, financial institutions, large and small businesses, government agencies, and nearly everyone in the twenty-first century. The Internal Revenue Service (IRS) annually issues its top 12 list of tax scams, known as the “dirty dozen tax scams.” The number one tax scam on the IRS 2014 list is the serious crime of identity theft. The 2014 list also includes telephone scams, phishing, false promises of “free money,” return preparer fraud, hiding income offshore, impersonation of charitable organizations, false income, expenses, or exemptions, frivolous arguments, false wage claims, abusive tax structures, misuse of trusts and identity theft. This paper discusses each of these scams and how taxpayers may be able to protect themselves from becoming a victim of tax fraud and other forms of identity fraud. An actual identity theft nightmare is included in this paper along with suggestions on how to recover from identity theft. Key Words: identity theft, identity fraud, tax fraud, scams, refund fraud, phishing Introduction Top Ten Lists and Dirty Dozen Lists have circulated for many years on various topics of local, national and international interest or concern. Some lists are for entertainment, such as David Letterman’s humorous “top 10 lists” on a variety of jovial subjects. They have given us an opportunity to smile and at times even made us laugh. Other “top ten lists” and “dirty dozen” lists address issues such as health and tax scams. -
The Chinese Rod Numeral Legacy and Its Impact on Mathematics* Lam Lay Yong Mathematics Department National University of Singapore
The Chinese Rod Numeral Legacy and its Impact on Mathematics* Lam Lay Yong Mathematics Department National University of Singapore First, let me explain the Chinese rod numeral system. Since the Warring States period {480 B.C. to 221 B.C.) to the 17th century A.D. the Chinese used a bundle of straight rods for computation. These rods, usually made from bamboo though they could be made from other materials such as bone, wood, iron, ivory and jade, were used to form the numerals 1 to 9 as follows: 1 2 3 4 5 6 7 8 9 II Ill Ill I IIIII T II Note that for numerals 6 to 9, a horizontal rod represents the quantity five. A numeral system which uses place values with ten as base requires only nine signs. Any numeral of such a system is formed from among these nine signs which are placed in specific place positions relative to each other. Our present numeral system, commonly known as the Hindu-Arabic numeral system, is based on this concept; the value of each numeral determines the choice of digits from the nine signs 1, 2, ... , 9 anq their place positions. The place positions are called units, tens, hundreds, thousands, and so on, and each is occupied by at most one digit. The Chinese rod system employs the same concept. However, since its nine signs are formed from rod tallies, if a number such as 34 were repre sented as Jll\IU , this would inevitably lead to ambiguity and confusion. To * Text of Presidential Address delivered at the Society's Annual General Meeting on 20 March 1987. -
Abstract of Counting Systems of Papua New Guinea and Oceania
Abstract of http://www.uog.ac.pg/glec/thesis/ch1web/ABSTRACT.htm Abstract of Counting Systems of Papua New Guinea and Oceania by Glendon A. Lean In modern technological societies we take the existence of numbers and the act of counting for granted: they occur in most everyday activities. They are regarded as being sufficiently important to warrant their occupying a substantial part of the primary school curriculum. Most of us, however, would find it difficult to answer with any authority several basic questions about number and counting. For example, how and when did numbers arise in human cultures: are they relatively recent inventions or are they an ancient feature of language? Is counting an important part of all cultures or only of some? Do all cultures count in essentially the same ways? In English, for example, we use what is known as a base 10 counting system and this is true of other European languages. Indeed our view of counting and number tends to be very much a Eurocentric one and yet the large majority the languages spoken in the world - about 4500 - are not European in nature but are the languages of the indigenous peoples of the Pacific, Africa, and the Americas. If we take these into account we obtain a quite different picture of counting systems from that of the Eurocentric view. This study, which attempts to answer these questions, is the culmination of more than twenty years on the counting systems of the indigenous and largely unwritten languages of the Pacific region and it involved extensive fieldwork as well as the consultation of published and rare unpublished sources. -
1X Basic Properties of Number Words
NUMERICALS :COUNTING , MEASURING AND CLASSIFYING SUSAN ROTHSTEIN Bar-Ilan University 1x Basic properties of number words In this paper, I discuss three different semantic uses of numerical expressions. In their first use, numerical expressions are numerals, or names for numbers. They occur in direct counting situations (one, two, three… ) and in mathematical statements such as (1a). Numericals have a second predicative interpretation as numerical or cardinal adjectives, as in (1b). Some numericals have a third use as numerical classifiers as in (1c): (1) a. Six is bigger than two. b. Three girls, four boys, six cats. c. Hundreds of people gathered in the square. In part one, I review the two basic uses of numericals, as numerals and adjectives. Part two summarizes results from Rothstein 2009, which show that numericals are also used as numerals in measure constructions such as two kilos of flour. Part three discusses numerical classifiers. In parts two and three, we bring data from Modern Hebrew which support the syntactic structures and compositional analyses proposed. Finally we distinguish three varieties of pseudopartitive constructions, each with different interpretations of the numerical: In measure pseudopartitives such as three kilos of books , three is a numeral, in individuating pseudopartitives such as three boxes of books , three is a numerical adjective, and in numerical pseudopartitives such as hundreds of books, hundreds is a numerical classifier . 1.1 x Basic meanings for number word 1.1.1 x Number words are names for numbers Numericals occur bare as numerals in direct counting contexts in which we count objects (one, two, three ) and answer questions such as how many N are there? and in statements such as (1a) 527 528 Rothstein and (2).