Bayes Theorem and Bayesianism 27 February 2016.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Bayes Theorem and Bayesianism 27 February 2016.Pdf K.D. Hoover Phil 693S Causation 27 February 2016 Some Notes on Bayesianism Bayes’ Theorem Bayes Theorem is based on conditional probability: (1) P(HE) = P(H|E)P(E) = P(E|H)P(H); hence (2) P(H|E) = P(E|H)P(H)/P(E) Bayes’ Theorem An example: Suppose that there is a test for HIV. Let , E+ = test is positive; E– = test is negative; H+ = patient has HIV; H– = patient does not have HIV. Suppose that for a person who actually is HIV positive, the test is 95 percent correct – that is, P(E+|H+) = 0.95 = the rate of true positives; and, therefore P(E–|H+) = 1 – P(E+|H+) = 0.05 = the rate of false negatives; and suppose for a person who is actually HIV negative, the test is also 95 percent correct – that is, P(E–|H–) = 0.95 = the rate of true negatives; and, therefore P(E+|H–) = 1 – P(E–|H–) = 0.05 = the rate of false positives; Further suppose that on the basis of a survey of the population, our best estimate of the prevalence of HIV in the population is 3/10 percent, so that: P(H+) = 0.003; P(H–) = 1 – P(H+) = 0.997 Suppose that you are worried about your HIV status and take a test that comes back positive (E+). What is your chance of actually having HIV – i.e., what is P(H+|E+)? Apply Bayes’ theorem: (3) P(H+|E+) = P(E+|H+)P(H+)/P(E+) We are missing one piece of information – P(E+); but it can be calculated P(E+) = P(E+|H+)P(H+) + P(E+|H–)P(H–) = 0.95 0.003 + 0.05 0.997 = 0.0527. Thus, 1 K.D. Hoover Phil 693S Causation 27 February 2016 (4) P(H+|E+) = P(E+|H+)P(H+)/P(E+) = 0.95 0.003/0.0527 = 0.0541. Given the relatively high accuracy of the HIV test – it is correct 95 percent of the time when the patient is actually HIV positive – this is a surprisingly low value. The intuition is this: There are two ways to get a positive test result (E+) – either you really have HIV or you get a false positive. The rate of false positives is low (5 percent), but since HIV is rare (i.e., H– is common – 997 percent), but 5 percent of almost the whole population is much larger than 95 percent of a very small segment of the population. Thus, of all the people who obtain a positive test result, most will do so falsely. Since HIV is rare (i.e., H+ is itself rare), then even a very accurate test will turn up positive only a small number of times, and more people will have a positive test result as a result of a false positive than as a result of actually having the disease. Bayesian Epistemology Bayesian epistemology is based on the idea that probabilities are not about the frequency of actual occurrences in the world (nor about propensities of other facts in the world) but rather measures of epistemological warrant. On some interpretations, they are measures of degree of justified belief. For example, the calculation in (4) of the value of P(H+|E+) can be interpreted as the degree of belief that you are justified in assigning to the hypothesis that you have HIV given the evidence of a positive test. The Bayesian interpretation of Bayes Theorem treats it as a relationship between a prior belief expressed as probability and a posteriori belief expressed as a probability based on acquired evidence. Bayes theorem in (2) can be rearranged: (5) posteriori probability (= P(H|E)) = support prior probability = ([P(E|H)/P(E)] P(H)). Whereas before we thought of H as a variable taking the values {HIV positive, HIV negative, and E as a variable taking the values {test positive, test negative}, now we think of H more generally as a hypothesis taking the values {true, false} and E as a variable taking the values {supports, does not support}. The probabilities P(H+) and P(H–) were justified through estimates of the actual prevalence of HIV in the population. But on most versions of Bayesianism, these probabilities are not facts in the world but expressions of degrees of belief about facts in the world. In the HIV example, we were concerned not about the proportion of people in the country with HIV, but the likelihood that you yourself are HIV positive. We might use the actual distribution of HIV in the country and the assumption that you are as likely as the next person to be positive as a means of forming our initial belief (P(H+) = 0.003); but in fact your belief is whatever happens to be with or without justification. Bayesian epistemology is about how your beliefs should change in the face of evidence. What (4) tells you then, is that a positive test should alter your judgment of the likelihood substantially to 5.41 percent, which 2 K.D. Hoover Phil 693S Causation 27 February 2016 albeit substantial is not as much as you might have feared given the 95 percent accuracy of the test. Of course you need not assume that your chances of having HIV are the same as the general population. Suppose that you have not engaged in any behaviors that are known risk factors. You might then hold a prior that is very low. For example, if your prior is P(H+) = 0.0001, then ceteris paribus the analogous calculation to (4) yields a posterior of 0.0019 – i.e., 2/10 percent versus a little less than 5½ percent in (4). Or if you are worried about your behavior, you might believe that your chances are more like 1 in 4. Then, the analogous calculation to (4) yields a posterior probability of 86 percent of actually being HIV positive. On a subjective interpretation of Bayesian epistemology, the prior is your own belief, and it may be initially set anywhere on any basis (e.g., from frequency data or from your hopes or from your fears). But the central discipline of Bayesian epistemology is that you should use Bayes’ theorem to update your belief with the new information. Suppose that you take one HIV test that turns out positive. Then when you take a second test, the posterior from the first test becomes the prior for the second test – that is, P(H+|E+) for test 1 P(H+) for test 2. A sequence of tests would, therefore, generate a sequence of reevaluations of your beliefs – this is Bayesian updating. Thus, with the initial prior of P(H+) = 0.003, you got a posterior of 0.0541. If that is taken to be the new prior, we have to recalculate P(E+), since it depends on the new value of P(H+). Now if we take another test that turns out positive, we apply Bayes’ theorem again with the updated prior to get an updated posterior P(H+|E+) = 0.5207. Thus, two independent positive tests for HIV would shift your beliefs radically. After four such tests you would be more than 99 percent certain that you were infected. One property of the Bayesian updating rule is that, no matter what your prior, the evidence eventually dominates your initial belief. So, in the initial example, you would become 99 percent certain after four positive tests. If you had started with an optimistic prior P(H+) = 0.0001, it would take more tests – but not many more – to reach the same certainty; whereas, if you were pessimistic (P(H+) = 0.25), it would take only two tests to reach 99 percent certainty. But on any of these assumptions, the evidence – faster or slower – eventually converges to the same result. Bayesian epistemologists often hold such convergence up as an answer to those who worry that the approach is too subjective: we all eventually reach the same conclusion, no matter where we start. 3 .
Recommended publications
  • The Open Handbook of Formal Epistemology
    THEOPENHANDBOOKOFFORMALEPISTEMOLOGY Richard Pettigrew &Jonathan Weisberg,Eds. THEOPENHANDBOOKOFFORMAL EPISTEMOLOGY Richard Pettigrew &Jonathan Weisberg,Eds. Published open access by PhilPapers, 2019 All entries copyright © their respective authors and licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. LISTOFCONTRIBUTORS R. A. Briggs Stanford University Michael Caie University of Toronto Kenny Easwaran Texas A&M University Konstantin Genin University of Toronto Franz Huber University of Toronto Jason Konek University of Bristol Hanti Lin University of California, Davis Anna Mahtani London School of Economics Johanna Thoma London School of Economics Michael G. Titelbaum University of Wisconsin, Madison Sylvia Wenmackers Katholieke Universiteit Leuven iii For our teachers Overall, and ultimately, mathematical methods are necessary for philosophical progress. — Hannes Leitgeb There is no mathematical substitute for philosophy. — Saul Kripke PREFACE In formal epistemology, we use mathematical methods to explore the questions of epistemology and rational choice. What can we know? What should we believe and how strongly? How should we act based on our beliefs and values? We begin by modelling phenomena like knowledge, belief, and desire using mathematical machinery, just as a biologist might model the fluc- tuations of a pair of competing populations, or a physicist might model the turbulence of a fluid passing through a small aperture. Then, we ex- plore, discover, and justify the laws governing those phenomena, using the precision that mathematical machinery affords. For example, we might represent a person by the strengths of their beliefs, and we might measure these using real numbers, which we call credences. Having done this, we might ask what the norms are that govern that person when we represent them in that way.
    [Show full text]
  • University of Oklahoma Graduate College The
    UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE THE VIRTUES OF BAYESIAN EPISTEMOLOGY A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By MARY FRANCES GWIN Norman, Oklahoma 2011 THE VIRTUES OF BAYESIAN EPISTEMOLOGY A DISSERTATION APPROVED FOR THE DEPARTMENT OF PHILOSOPHY BY ______________________________ Dr. James Hawthorne, Chair ______________________________ Dr. Chris Swoyer ______________________________ Dr. Wayne Riggs ______________________________ Dr. Steve Ellis ______________________________ Dr. Peter Barker © Copyright by MARY GWIN 2011 All Rights Reserved. For Ted How I wish you were here. Acknowledgements I would like to thank Dr. James Hawthorne for his help in seeing me through the process of writing my dissertation. Without his help and encouragement, I am not sure that I would have been able to complete my dissertation. Jim is an excellent logician, scholar, and dissertation director. He is also a kind person. I am very lucky to have had the opportunity to work with him. I cannot thank him enough for all that he has given me. I would also like to thank my friends Patty, Liz, Doren, Murry, Becky, Jim, Rebecca, Mike, Barb, Susanne, Blythe, Eric, Ty, Rosie, Bob, Judy, Lorraine, Paulo, Lawrence, Scott, Kyle, Pat, Carole, Joseph, Ken, Karen, Jerry, Ray, and Daniel. Without their encouragement, none of this would have been possible. iv Table of Contents Acknowledgments iv Abstract vi Chapter 1: Introduction 1 Chapter 2: Bayesian Confirmation Theory 9 Chapter 3: Rational Analysis: Bayesian Logic and the Human Agent 40 Chapter 4: Why Virtue Epistemology? 82 Chapter 5: Reliability, Credit, Virtue 122 Chapter 6: Epistemic Virtues, Prior Probabilities, and Norms for Human Performance 145 Bibliography 171 v Abstract The aim of this dissertation is to address the intersection of two normative epistemologies, Bayesian confirmation theory (BCT) and virtue epistemology (VE).
    [Show full text]
  • Inference to the Best Explanation, Bayesianism, and Knowledge
    Inference to the Best Explanation, Bayesianism, and Knowledge Alexander Bird Abstract How do we reconcile the claim of Bayesianism to be a correct normative the- ory of scientific reasoning with the explanationists’ claim that Inference to the Best Explanation provides a correct description of our inferential practices? I first develop Peter Lipton’s approach to compatibilism and then argue that three challenges remain, focusing in particular on the idea that IBE can lead to knowl- edge. Answering those challenges requires renouncing standard Bayesianism’s commitment to personalism, while also going beyond objective Bayesianism regarding the constraints on good priors. The result is a non-standard, super- objective Bayesianism that identifies probabilities with evaluations of plausibil- ity in the light of the evidence, conforming to Williamson’s account of evidential probability. Keywords explanationism, IBE, Bayesianism, evidential probability, knowledge, plausibility, credences. 1 Introduction How do scientists reason? How ought they reason? These two questions, the first descriptive and the second normative, are very different. However, if one thinks, as a scientific realist might, that scientists on the whole reason as they ought to then one will expect the two questions to have very similar answers. That fact bears on debates between Bayesians and explanationists. When we evaluate a scientific hypothesis, we may find that the evidence supports the hypoth- esis to some degree, but not to such a degree that we would be willing to assert out-
    [Show full text]
  • Evidential Probability and Objective Bayesian Epistemology
    Evidential Probability and Objective Bayesian Epistemology Gregory Wheeler, CENTRIA, New University of Lisbon Jon Williamson, Philosophy, University of Kent To appear in Prasanta S. Bandyopadhyay and Malcolm Forster (eds): Handbook of the Philosophy of Statistics, Elsevier Draft of July 16, 2010 Abstract In this chapter we draw connections between two seemingly opposing approaches to probability and statistics: evidential probability on the one hand and objective Bayesian epistemology on the other. Contents 1 Introduction2 2 Evidential Probability2 2.1 Motivation..............................2 2.2 Calculating Evidential Probability.................6 3 Second-order Evidential Probability9 3.1 Motivation..............................9 3.2 Calculating Second-order EP.................... 11 4 Objective Bayesian Epistemology 15 4.1 Motivation.............................. 15 4.2 Calculating Objective Bayesian Degrees of Belief......... 18 5 EP-Calibrated Objective Bayesianism 19 5.1 Motivation.............................. 19 5.2 Calculating EP-Calibrated Objective Bayesian Probabilities... 21 6 Conclusion 22 1 1 Introduction Evidential probability (EP), developed by Henry Kyburg, offers an account of the impact of statistical evidence on single-case probability. According to this theory, observed frequencies of repeatable outcomes determine a probability interval that can be associated with a proposition. After giving a comprehensive introduction to EP in x2, in x3 we describe a recent variant of this approach, second-order evidential probability (2oEP). This variant, introduced in Haenni et al.(2008), interprets a probability interval of EP as bounds on the sharp probability of the corresponding proposition. In turn, this sharp probability can itself be interpreted as the degree to which one ought to believe the proposition in question. At this stage we introduce objective Bayesian epistemology (OBE), a theory of how evidence helps determine appropriate degrees of belief (x4).
    [Show full text]
  • Quantitative Epidemiology: a Bayesian Perspective
    Quantitative Epidemiology: A Bayesian Perspective Alexander Eugene Zarebski ORCID 0000-0003-1824-7653 Doctor of Philosophy August 2019 Department of School of Mathematics and Statistics The thesis is being submitted in total fulfilment of the degree. The degree is not being completed under a jointly awarded degree. ii © Alexander Eugene Zarebski, 2019. iii Except where acknowledged in the allowed manner, the ma- terial presented in this thesis is, to the best of my knowledge, original and has not been submitted in whole or part for another degree in any university. Alexander Eugene Zarebski iv Abstract Influenza inflicts a substantial burden on society but accurate and timely forecasts of seasonal epidemics can help mitigate this burden by informing interventions to reduce transmission. Recently, both statistical (correlative) and mechanistic (causal) models have been used to forecast epidemics. However, since mechanistic models are based on the causal process underlying the epidemic they are poised to be more useful in the design of intervention strate- gies. This study investigate approaches to improve epidemic forecasting using mechanistic models. In particular, it reports on efforts to improve a forecasting system targeting seasonal influenza epidemics in major cities across Australia. To improve the forecasting system we first needed a way to benchmark its performance. We investigate model selection in the context of forecasting, deriving a novel method which extends the notion of Bayes factors to a predictive setting. Applying this methodology we found that accounting for seasonal variation in absolute humidity improves forecasts of seasonal influenza in Melbourne, Australia. This result holds even when accounting for the uncertainty in predicting seasonal variation in absolute humidity.
    [Show full text]
  • Bayesan Epistemology
    Bayesian Epistemology Olsson, Erik J Published in: Introduction to Formal Philosophy 2018 Document Version: Peer reviewed version (aka post-print) Link to publication Citation for published version (APA): Olsson, E. J. (2018). Bayesian Epistemology. In S. O. Hansson, & V. F. Hendricks (Eds.), Introduction to Formal Philosophy (pp. 431-442). (Springer undergraduate texts in philosophy). Springer. Total number of authors: 1 General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Read more about Creative commons licenses: https://creativecommons.org/licenses/ Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. LUND UNIVERSITY PO Box 117 221 00 Lund +46 46-222 00 00 Bayesian Epistemology Erik J. Olsson Abstract: Bayesian epistemology provides a formal framework within which concepts in traditional epistemology, in particular concepts relating to the justification of our beliefs, can be given precise definitions in terms of probability.
    [Show full text]
  • Reasons As Causes in Bayesian Epistemology Author(S): Clark Glymour and David Danks Source: the Journal of Philosophy, Vol
    Journal of Philosophy, Inc. Reasons as Causes in Bayesian Epistemology Author(s): Clark Glymour and David Danks Source: The Journal of Philosophy, Vol. 104, No. 9 (Sep., 2007), pp. 464-474 Published by: Journal of Philosophy, Inc. Stable URL: http://www.jstor.org/stable/20620044 . Accessed: 01/10/2013 12:24 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Journal of Philosophy, Inc. is collaborating with JSTOR to digitize, preserve and extend access to The Journal of Philosophy. http://www.jstor.org This content downloaded from 128.237.147.56 on Tue, 1 Oct 2013 12:24:32 PM All use subject to JSTOR Terms and Conditions 464 THE JOURNAL OF PHILOSOPHY REASONS AS CAUSES IN BAYESIAN EPISTEMOLOGY* In everyday matters, as well as in law, we allow that someone's reasons can be causes of her actions, and often are. That correct reasoning accords with Bayesian principles is now so widely held in philosophy, psychology, computer science, and elsewhere that the contrary is beginning to seem obtuse, or at best quaint. And that rational agents should learn about the world from energies striking sensory inputs?nerves in people?seems beyond question.
    [Show full text]
  • Evidential Probability and Objective Bayesian Epistemology
    EVIDENTIAL PROBABILITY AND OBJECTIVE BAYESIAN EPISTEMOLOGY Gregory Wheeler and Jon Williamson 1 INTRODUCTION Evidential probability (EP), developed by Henry Kyburg, offers an account of the impact of statistical evidence on single-case probability. According to this theory, observed frequencies of repeatable outcomes determine a probability interval that can be associated with a proposition. After giving a comprehensive introduction to EP in 2, in 3 we describe a recent variant of this approach, second-order evidential§ probability§ (2oEP). This variant, introduced in [Haenni et al., 2010], interprets a probability interval of EP as bounds on the sharp probability of the corresponding proposition. In turn, this sharp probability can itself be interpreted as the degree to which one ought to believe the proposition in question. At this stage we introduce objective Bayesian epistemology (OBE), a theory of how evidence helps determine appropriate degrees of belief ( 4). OBE might be thought of as a rival to the evidential probability approaches.§ However, we show in 5 that they can be viewed as complimentary: one can use the rules of EP to narrow§ down the degree to which one should believe a proposition to an interval, and then use the rules of OBE to help determine an appropriate degree of belief from within this interval. Hence bridges can be built between evidential probability and objective Bayesian epistemology. 2 EVIDENTIAL PROBABILITY 2.1 Motivation Rudolf Carnap [Carnap, 1962] drew a distinction between probability1, which concerned rational degrees of belief, and probability2, which concerned statistical regularities. Although he claimed that both notions of probability were crucial to scientific inference, Carnap practically ignored probability2 in the development of his systems of inductive logic.
    [Show full text]
  • The Role of Bayesian Philosophy Within Bayesian Model Selection
    The Role of Bayesian Philosophy within Bayesian Model Selection Jan Sprenger∗ 13 July 2012 Abstract Bayesian model selection has frequently been the focus of philosoph- ical inquiry (e.g., Forster 1995; Bandyopadhyay and Boik 1999; Dowe et al. 2007). This paper argues that Bayesian model selection procedures are very diverse in their inferential target and their justification, and substan- tiates this claim by means of case studies on three selected procedures: MML, BIC and DIC. Hence, there is no tight link between Bayesian model selection and Bayesian philosophy. Consequently, arguments for or against Bayesian reasoning based on properties of Bayesian model selection pro- cedures should be treated with great caution. 1. Introduction Model selection is a relatively young subfield of statistics that compares sta- tistical models on the basis of their structural properties and their fit to the data. The goal of model selection consists in comparing and appraising various candidate models on the basis of observed data.1 Following up on Forster and Sober's seminal (1994) paper, the problem of model selection attracted much attention in philosophy of science. The properties of various model selection procedures have been used to argue for general theses in philosophy of science, such as the replacement of truth by predictive accuracy as an achievable goal of science (Forster 2002), the predic- tion/accommodation problem (Hitchcock and Sober 2004), the realism/instrumentalism dichotomy (Mikkelson 2006; Sober 2008), and the aptness of Bayesian reasoning for statistical inference (Forster 1995; Bandyopadhyay et al. 1996; Bandyopad- hyay and Boik 1999; Dowe et al. 2007). This paper explores the extent to which Bayesian model selection procedures are anchored within Bayesian philosophy, and in particular their philosophical ∗Contact information: Tilburg Center for Logic and Philosophy of Science, Tilburg Univer- sity, P.O.
    [Show full text]
  • Computational Epistemology and the Limits of Rationality for Finite Reasoners by Danilo Fraga Dantas B.A
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PhilPapers ALMOST IDEAL: Computational Epistemology and the Limits of Rationality for Finite Reasoners By Danilo Fraga Dantas B.A. (Universidade Federal da Bahia) 2005 M.A. (Universidade Federal da Bahia) 2007 M.A. (Universidade Federal do Rio Grande do Sul) 2010 M.A. (University of California Davis) 2013 Dissertation Submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Philosophy in the Office of Graduate Studies of the University of California Davis Approved: Bernard Molyneux, Chair Hanti Lin Adam Sennet George J. Mattey II Almerindo Ojeda Committee in Charge 2016 -i- Para Emilly. -ii- Contents List of Figures . .v List of Tables . viii Abstract . ix Acknowledgments . xi Introduction 1 1 The limits of finite reasoning 14 1.1 Definitions . 17 1.2 Classical reasoners . 21 1.3 Nonmonotonic reasoners . 25 1.4 Stable beliefs . 31 1.5 Conclusions . 34 2 Ideal reasoners don't believe in zombies 35 2.1 Ideal negative conceivability . 37 2.2 Conclusive ideal conceiver . 41 2.3 Defeasible ideal conceiver . 47 2.4 Someone is conscious! . 51 2.5 Conclusions . 55 3 Achilles and the truth-goal 57 3.1 The truth-goal . 59 3.1.1 Truth-goal as the maximization of function g ............ 63 3.2 Maximum epistemic rationality . 67 3.2.1 Features of the function g model . 70 3.3 Discussion . 72 4 Computational epistemology 81 4.1 Efficient reasoning . 84 -iii- 4.2 Computational epistemology . 91 4.2.1 Class of problems .
    [Show full text]
  • Parameterizing Developmental Changes in Epistemic Trust
    Parameterizing developmental changes in epistemic trust Baxter S. Eaves Jr. Rutgers University–Newark Patrick Shafto Rutgers University–Newark Abstract Children rely on others for much of what they learn, and therefore must track who to trust for information. Researchers have debated whether to interpret children’s be- havior as inferences about informants’ knowledgeability only or as inferences about both knowledgeability and intent. We introduce a novel framework for integrating results across heterogeneous ages and methods. The framework allows application of a recent computational model to a set of results that span ages 8 months to adulthood and a variety of methods. The results show strong fits to specific find- ings in the literature trust, and correctly fails to fit one representative result from an adjacent literature. In the aggregate, the results show a clear development in children’s reasoning about informants’ intent and no appreciable changes in rea- soning about informants’ knowledgeability, confirming previous results. The results extend previous findings by modeling development over a much wider age range and identifying and explaining differences across methods. Keywords: Bayesian models, social learning, selective trust, epistemic trust Children face a difficult problem in learning about the world. There is much to learn and little time in which to learn it. In this context, the benefits of social learning are self-evident. Self-directed strategies are slow and cannot be used to acquire some knowledge (e.g. language). It is quicker to call upon on the knowledge of others. However, people do not always produce reliable data. A person may have inaccurate knowledge or may wish to deceive.
    [Show full text]
  • Being Realist About Bayes, and the Predictive Processing Theory of Mind
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PhilSci Archive Being Realist about Bayes, and the Predictive Processing Theory of Mind Matteo Colombo∗ Lee Elkiny Stephan Hartmannz July 19, 2018 Forthcoming in The British Journal for the Philosophy of Science Abstract Some naturalistic philosophers of mind subscribing to the predictive processing theory of mind have adopted a realist attitude towards the results of Bayesian cognitive science. In this paper, we argue that this realist attitude is unwarranted. The Bayesian research program in cognitive science does not possess special epistemic virtues over alternative approaches for explaining mental phenomena involving uncertainty. In particular, the Bayesian approach is not simpler, more unifying, or more rational than alternatives. It is also contentious that the Bayesian approach is overall better supported by the empirical evidence. So, to develop philosophical theories of mind on the basis of a realist interpretation of results from Bayesian cognitive science is unwarranted. Naturalistic philosophers of mind should instead adopt an anti-realist attitude towards these results and remain agnostic as to whether Bayesian models are true. For continuing on with an exclusive focus and praise of Bayes within debates about the predictive processing theory will impede progress in philosophical understanding of scientific practice in computational cognitive science as well as of the architecture of the mind. Keywords: Bayesian cognitive science, predictive processing, representing uncertainty, naturalistic philosophy of mind, scientific realism, underdetermination thesis 1. Introduction 2. From Uncertainty to Bayesian Brains ∗Tilburg Center for Logic, Ethics, and Philosophy of Science, Tilburg University, 5037 AB Tilburg (The Netherlands) – https://mteocolphi.wordpress.com – [email protected].
    [Show full text]