Amphibian Antimicrobial Peptides : Their Structures and Mechanisms of Action
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cancer and ER Stress Mutual Crosstalk Between Autophagy
Biomedicine & Pharmacotherapy 118 (2019) 109249 Contents lists available at ScienceDirect Biomedicine & Pharmacotherapy journal homepage: www.elsevier.com/locate/biopha Cancer and ER stress: Mutual crosstalk between autophagy, oxidative stress and inflammatory response T ⁎ Yuning Lina,1, Mei Jiangb,1, Wanjun Chena, Tiejian Zhaoa, Yanfei Weia, a Department of Physiology, Guangxi University of Chinese Medicine, Nanning, Guangxi 530001, China b Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou, 510080, China ARTICLE INFO ABSTRACT Keywords: The endoplasmic reticulum (ER) acts as a moving organelle with many important cellular functions. As the ER Endoplasmic reticulum stress lacks sufficient nutrients under pathological conditions leading to uncontrolled protein synthesis, aggregation of Cancer unfolded/misfolded proteins in the ER lumen causes the unfolded protein response (UPR) to be activated. Autophagy Chronic ER stress produces endogenous or exogenous damage to cells and activates UPR, which leads to im- Oxidative stress paired intracellular calcium and redox homeostasis. The UPR is capable of recognizing the accumulation of Inflammatory unfolded proteins in the ER. The protein response enhances the ability of the ER to fold proteins and causes apoptosis when the function of the ER fails to return to normal. In different malignancies, ER stress can effec- tively induce the occurrence of autophagy in cells because malignant tumor cells need to re-use their organelles to maintain growth. Autophagy simultaneously counteracts ER stress-induced ER expansion and has the effect of enhancing cell viability and non-apoptotic death. Oxidative stress also affects mitochondrial function of im- portant proteins through protein overload. -
Design and Study of Novel Antimicrobial Peptides with Proline Substitution
Design and Study of Novel Antimicrobial Peptides with Proline Substitution A dissertation presented to the faculty of the College of Arts and Sciences of Ohio University In partial fulfillment of the requirements for the degree Doctor of Philosophy Jing He November 2009 © 2009 Jing He. All Rights Reserved. 2 This dissertation titled Design and Study of Novel Antimicrobial Peptides with Proline Substitution by JING HE has been approved for the Department of Chemistry and Biochemistry and the College of Arts and Sciences by John F. Blazyk Professor of Biochemistry Benjamin M. Ogles Dean, College of Arts and Sciences 3 ABSTRACT HE, JING, Ph.D., November 2009, Chemistry Design and Study of Novel Antimicrobial Peptides with Proline Substitution (228 pp.) Director of Dissertation: John F. Blazyk Microorganism-related diseases and their resistance to conventional antibiotics are proliferating at an alarming rate and becoming a severe clinical problem. Therefore, it is urgent to develop novel approaches in antimicrobial therapy. Most living organisms produce and utilize at least some small peptides as part of their defensive system in combating infections by virulent pathogens. Research focusing on the structure and function of these antimicrobial peptides from diverse sources has gained a great number of interests in the past three decades. Generally, many naturally existing antimicrobial peptides are positively charged and have the potential to adopt either amphipathic α-helix or β-sheet conformation. In this project, based on preliminary studies of β-sheet-forming peptides developed in our lab, analogs were designed to investigate the effects of introducing a single leucine-to-proline substitution on the structure and function of the peptides. -
Cholesterol Reduces Pardaxin's Dynamics—A Barrel-Stave Mechanism of Membrane Disruption Investigated by Solid-State NMR
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1798 (2010) 223–227 Contents lists available at ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbamem Cholesterol reduces pardaxin's dynamics—a barrel-stave mechanism of membrane disruption investigated by solid-state NMR Ayyalusamy Ramamoorthy ⁎, Dong-Kuk Lee 1, Tennaru Narasimhaswamy 2, Ravi P.R. Nanga Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA article info abstract Article history: While high-resolution 3D structures reveal the locations of all atoms in a molecule, it is the dynamics that Received 9 June 2009 correlates the structure with the function of a biological molecule. The complete characterization of Received in revised form 11 August 2009 dynamics of a membrane protein is in general complex. In this study, we report the influence of dynamics on Accepted 15 August 2009 the channel-forming function of pardaxin using chemical shifts and dipolar couplings measured from 2D Available online 28 August 2009 broadband-PISEMA experiments on mechanically aligned phospholipids bilayers. Pardaxin is a 33-residue antimicrobial peptide originally isolated from the Red Sea Moses sole, Pardachirus marmoratus, which Keywords: Dynamic functions via either a carpet-type or barrel-stave mechanism depending on the membrane composition. Our Pardaxin results reveal that the presence of cholesterol significantly reduces the backbone motion and the tilt angle of Membrane orientation the C-terminal amphipathic helix of pardaxin. In addition, a correlation between the dynamics-induced Barrel-stave heterogeneity in the tilt of the C-terminal helix and the membrane disrupting activity of pardaxin by the Antimicrobial peptide barrel-stave mechanism is established. -
Tissue-Specific Delivery of CRISPR Therapeutics
International Journal of Molecular Sciences Review Tissue-Specific Delivery of CRISPR Therapeutics: Strategies and Mechanisms of Non-Viral Vectors Karim Shalaby 1 , Mustapha Aouida 1,* and Omar El-Agnaf 1,2,* 1 Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha 34110, Qatar; [email protected] 2 Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Doha 34110, Qatar * Correspondence: [email protected] (M.A.); [email protected] (O.E.-A.) Received: 12 September 2020; Accepted: 27 September 2020; Published: 5 October 2020 Abstract: The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) genome editing system has been the focus of intense research in the last decade due to its superior ability to desirably target and edit DNA sequences. The applicability of the CRISPR-Cas system to in vivo genome editing has acquired substantial credit for a future in vivo gene-based therapeutic. Challenges such as targeting the wrong tissue, undesirable genetic mutations, or immunogenic responses, need to be tackled before CRISPR-Cas systems can be translated for clinical use. Hence, there is an evident gap in the field for a strategy to enhance the specificity of delivery of CRISPR-Cas gene editing systems for in vivo applications. Current approaches using viral vectors do not address these main challenges and, therefore, strategies to develop non-viral delivery systems are being explored. Peptide-based systems represent an attractive approach to developing gene-based therapeutics due to their specificity of targeting, scale-up potential, lack of an immunogenic response and resistance to proteolysis. -
Lipopolysaccharide-Induced Neuroinflammation As A
International Journal of Molecular Sciences Review Lipopolysaccharide-Induced Neuroinflammation as a Bridge to Understand Neurodegeneration 1, 1, 2 Carla Ribeiro Alvares Batista y , Giovanni Freitas Gomes y, Eduardo Candelario-Jalil , 3, , 1, , Bernd L. Fiebich * y and Antonio Carlos Pinheiro de Oliveira * y 1 Department of Pharmacology, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, Belo Horizonte 31270-901, Brazil; [email protected] (C.R.A.B.); [email protected] (G.F.G.) 2 Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA; ecandelario@ufl.edu 3 Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany * Correspondence: bernd.fi[email protected] (B.L.F.); [email protected] or [email protected] (A.C.P.d.O.); Tel.: +49-761-270-68980 (B.L.F.); +55-31-3409-2727 (A.C.P.d.O.); Fax: +49-761-270-69170 (B.L.F.); +55-31-3409-2695 (A.C.P.d.O.) These authors contributed equally to this work. y Received: 4 April 2019; Accepted: 5 May 2019; Published: 9 May 2019 Abstract: A large body of experimental evidence suggests that neuroinflammation is a key pathological event triggering and perpetuating the neurodegenerative process associated with many neurological diseases. Therefore, different stimuli, such as lipopolysaccharide (LPS), are used to model neuroinflammation associated with neurodegeneration. By acting at its receptors, LPS activates various intracellular molecules, which alter the expression of a plethora of inflammatory mediators. These factors, in turn, initiate or contribute to the development of neurodegenerative processes. -
Ricin Poisoning Results from the Inhalation, Ingestion, Or Subcutaneous Injection of Very Small Quantities of Ricin, a Natural Product of the Castor Bean
Intoxicação por óleo de rícino e outros rícinos da mamona : papel salvador dos bloqueadores da ECA Ricin poisoning results from the inhalation, ingestion, or subcutaneous injection of very small quantities of ricin, a natural product of the castor bean. Less than 1 mg is sufficient to kill an average adult. Ricin is a 65 kD heterodimeric glycoprotein consisting of two chains, the A and the B chain, covalently linked by a disulfide (cystine) bond. Ricin is glycosylated, containing some 15 moles of mannose and 8 moles of N-acetylglucosamine per mole of ricin. The B chain binds to galactose-containing glycolipids and glycoproteins on the cell surface, and induces endocytosis of the holoprotein. Once inside the cell, ricin undergoes reverse transport from the Golgi to the ER. In the ER, the A chain unfolds and is translocated into the cytoplasm for degradation, as part of the ER-assisted degradation (ERAD) pathway. The A chains that elude proteasomal degradation in the cytoplasm bind to 28S rRNA on the large subunit of the ribosome, and depurinate it, removing adenine bases specifically. The net effect is that the large ribosomal subunit loses its tertiary structure, and protein synthesis (elongation) is halted. This is sufficient to induce apoptosis of the cell. Ricin is extremely potent; it is estimated that a single molecule can kill a cell. Ricin at smaller doses has a laxative effect, and is the active ingredient of castor oil, long used as a laxative. Death from ricin requires a lag period of 12-24 hours. Ricin affects the reticuloendothelial system primarily. -
Selective Resistance of Bone Marrow-Derived Hemopoietic Progenitor Cells to Gliotoxin
Proc. Nati. Acad. Sci. USA Vol. 84, pp. 3822-3825, June 1987 Immunology Selective resistance of bone marrow-derived hemopoietic progenitor cells to gliotoxin (epipolythiodioxopiperazines/bone marrow transplantation/graft-versus-host disease) A. MCTLLBACHER*, D. HUMEt, A. W. BRAITHWAITEt, P. WARING*, AND R. D. EICHNER* Departments of *Microbiology and tMedical and Clinical Sciences, John Curtin School of Medical Research, and tDepartment of Molecular Biology, Research School of Biological Sciences, Australian National University, Canberra ACT 2601, Australia Communicated by Frank Fenner, January 30, 1987 ABSTRACT The fungal metabolite gliotoxin at low con- DNA Extraction and Size Fractionation. The method has centrations prevents mitogen stimulation of mature lympho- been described in detail (12). In brief, CBA/H spleen cells cytes as a result of gliotoxin-induced genomic DNA degrada- and bone marrow cells were first erythrocyte depleted, tion. Bone marrow, on the other hand, contains a subpopula- pulsed with GT in Eagle's minimal essential medium F-15 tion ofcells resistant to gliotoxin at similar concentrations. This medium (GIBCO) for 1 hr at 370C at 106 cells/ml, washed, and population Includes the hemopoietic progenitor cells that grow then left incubating for 16-20 hr in F-15 containing 5% fetal in vitro in response to appropriate colony-stimulating factors calf serum. Cells were then lysed and treated with Pronase; and cells that form colonies in the spleens of lethally irradiated the DNA was extracted with phenol and chloroform and recipients. Gliotoxin treatment of lymph node cell-enriched finally precipitated with ethanol. After 4- to 8-hr RNAse bone marrow significantly delayed the onset of graft-versus- treatment (bovine pancreatic ribonuclease A, Sigma R-4875) host disease in fully allogeneic bone marrow chimeras. -
Staphylococcal Enterotoxins
Toxins 2010, 2, 2177-2197; doi:10.3390/toxins2082177 OPEN ACCESS toxins ISSN 2072-6651 www.mdpi.com/journal/toxins Review Staphylococcal Enterotoxins Irina V. Pinchuk 1, Ellen J. Beswick 2 and Victor E. Reyes 3,* 1 Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555-0655, USA; E-Mail: [email protected] 2 Department of Molecular Genetics & Microbiology, University of New Mexico, Albuquerque, NM 87131, USA; E-Mail: [email protected] 3 Departments of Pediatrics and Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555-0366, USA * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-409-772-3824; Fax: +1-409-772-1761. Received: 29 June 2010; in revised form: 9 August 2010 / Accepted: 12 August 2010 / Published: 18 August 2010 Abstract: Staphylococcus aureus (S. aureus) is a Gram positive bacterium that is carried by about one third of the general population and is responsible for common and serious diseases. These diseases include food poisoning and toxic shock syndrome, which are caused by exotoxins produced by S. aureus. Of the more than 20 Staphylococcal enterotoxins, SEA and SEB are the best characterized and are also regarded as superantigens because of their ability to bind to class II MHC molecules on antigen presenting cells and stimulate large populations of T cells that share variable regions on the chain of the T cell receptor. The result of this massive T cell activation is a cytokine bolus leading to an acute toxic shock. These proteins are highly resistant to denaturation, which allows them to remain intact in contaminated food and trigger disease outbreaks. -
Sequestered Alkaloid Defenses in the Dendrobatid Poison Frog Oophaga Pumilio Provide Variable Protection from Microbial Pathogens
John Carroll University Carroll Collected Masters Theses Theses, Essays, and Senior Honors Projects Summer 2016 SEQUESTERED ALKALOID DEFENSES IN THE DENDROBATID POISON FROG OOPHAGA PUMILIO PROVIDE VARIABLE PROTECTION FROM MICROBIAL PATHOGENS Kyle Hovey John Carroll University, [email protected] Follow this and additional works at: http://collected.jcu.edu/masterstheses Part of the Biology Commons Recommended Citation Hovey, Kyle, "SEQUESTERED ALKALOID DEFENSES IN THE DENDROBATID POISON FROG OOPHAGA PUMILIO PROVIDE VARIABLE PROTECTION FROM MICROBIAL PATHOGENS" (2016). Masters Theses. 19. http://collected.jcu.edu/masterstheses/19 This Thesis is brought to you for free and open access by the Theses, Essays, and Senior Honors Projects at Carroll Collected. It has been accepted for inclusion in Masters Theses by an authorized administrator of Carroll Collected. For more information, please contact [email protected]. SEQUESTERED ALKALOID DEFENSES IN THE DENDROBATID POISON FROG OOPHAGA PUMILIO PROVIDE VARIABLE PROTECTION FROM MICROBIAL PATHOGENS A Thesis Submitted to the Office of Graduate Studies College of Arts & Sciences of John Carroll University in Partial Fulfillment of the Requirements for the Degree of Master of Science By Kyle J. Hovey 2016 Table of Contents Abstract ................................................................................................................................1 Introduction ..........................................................................................................................3 Methods -
Medical Aspects of Biological Warfare
Staphylococcal Enterotoxin B and Related Toxins Chapter 17 STAPHYLOCOCCAL ENTEROTOXIN B AND RELATED TOXINS PRODUCED BY STAPHYLOCOCCUS AUREUS AND STREPTOCOCCUS PYOGENES KAMAL U. SAIKH, PhD*; ROBERT G. ULRICH, PhD†; and TERESA KRAKAUER, PhD‡ INTRODUCTION CHARACTERIZATION OF TOXINS HOST RESPONSE AND ANIMAL MODELS CLINICAL DISEASE Fever Respiratory Symptoms Headache Nausea and Vomiting Other Signs and Symptoms DETECTION AND DIAGNOSIS MEDICAL MANAGEMENT VACCINES DEVELOPMENT OF THERAPEUTICS SUMMARY *Microbiologist, Department of Immunology, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Maryland 21702 †Microbiologist, Department of Immunology, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Maryland 21702 ‡Microbiologist, Department of Immunology, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Maryland 21702 403 244-949 DLA DS.indb 403 6/4/18 11:58 AM Medical Aspects of Biological Warfare INTRODUCTION Staphylococcus aureus and Streptococcus pyogenes are shock syndrome (TSS) may result from exposure to any ubiquitous, gram-positive cocci that play an important of the superantigens through a nonenteric route. High role in numerous human illnesses such as food poison- dose, microgram-level exposures to staphylococcal en- ing, pharyngitis, toxic shock, autoimmune diseases, terotoxin B (SEB) will result in fatalities, and inhalation and skin and soft tissue infections. These common bac- exposure to nanogram or -
Anti-Cancer Natural Products and Their Bioactive Compounds Inducing ER Stress-Mediated Apoptosis: a Review
nutrients Review Anti-Cancer Natural Products and Their Bioactive Compounds Inducing ER Stress-Mediated Apoptosis: A Review Changmin Kim and Bonglee Kim * ID Department of Pathology, College of Korean Medicine, Graduate School, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-2-961-9217 Received: 25 June 2018; Accepted: 1 August 2018; Published: 4 August 2018 Abstract: Cancer is the second biggest cause of death worldwide. Despite a number of studies being conducted, the effective mechanism for treating cancer has not yet been fully understood. The tumor-microenvironment such as hypoxia, low nutrients could disturb function of endoplasmic reticulum (ER) to maintain cellular homeostasis, ultimately leading to the accumulation of unfolded proteins in ER, so-called ER stress. The ER stress has a close relation with cancer. ER stress initiates unfolded protein response (UPR) to re-establish ER homeostasis as an adaptive pathway in cancer. However, persistent ER stress triggers the apoptotic pathway. Therefore, blocking the adaptive pathway of ER stress or facilitating the apoptotic pathway could be an anti-cancer strategy. Recently, natural products and their derivatives have been reported to have anti-cancer effects via ER stress. Here, we address mechanisms of ER stress-mediated apoptosis and highlight strategies for cancer therapy by utilizing ER stress. Furthermore, we summarize anti-cancer activity of the natural products via ER stress in six major types of cancers globally (lung, breast, colorectal, gastric, prostate and liver cancer). This review deepens the understanding of ER stress mechanisms in major cancers as well as the suppressive impact of natural products against cancers via ER stress. -
Mechanism of Action of Cyclic Antimicrobial Peptides
MECHANISM OF ACTION OF CYCLIC ANTIMICROBIAL PEPTIDES Anna DÍAZ i CIRAC Dipòsit legal: GI-1303-2011 http://hdl.handle.net/10803/38252 ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX ha estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX. No s’autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora. ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La difusión de esta tesis por medio del servicio TDR ha sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR. No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la persona autora.