Protocols for Identifying Sanitary Sewer Overflows

Total Page:16

File Type:pdf, Size:1020Kb

Protocols for Identifying Sanitary Sewer Overflows PROTOCOLS FOR IDENTIFYING SANITARY SEWER OVERFLOWS American Society of Civil Engineers EPA Cooperative Agreement #CX 826097-01-0 June 2000 Protocols for Identifying Sanitary Sewer Overflows Prepared by Black & Veatch Corporation for American Society of Civil Engineers Under Cooperative Agreement with U.S. Environmental Protection Agency Office of Wastewater Management Washington, DC EPA Cooperative Agreement #CX 826097-01-0 June 2000 NOTICE The material in this document has been subject to U.S. Environmental Protection Agency technical and policy review and approved for publication. The views expressed by individual authors, however, are their own and do not necessarily reflect those of the U.S. Environmental Protection Agency. Protocols for Identifying Sanitary Sewer Overflows (SSOs) ASCE/EPA Cooperative Agreement # CX 826097-01-0 Table of Contents Table of Contents Page No. Acknowledgements..............................................................................................................vii Executive Summary............................................................................................................... 1 Phase 1...................................................................................................................... 1 Phase 2...................................................................................................................... 2 Abbreviations ............................................................................................................. 6 1.0 Introduction.............................................................................................................1-1 1.1 Objective .......................................................................................................1-1 1.2 Results or Benefits Expected...........................................................................1-1 1.3 Background....................................................................................................1-1 1.4 Approach.......................................................................................................1-3 1.4.1 Phase 1..............................................................................................1-3 1.1.1.1 Task 1: Literature Search....................................................1-3 1.1.1.2 Task 2: Information Collection............................................1-6 1.1.1.3 Task 3: Develop Comprehensive Set of Protocols ...............1-6 1.1.1.4 Task 4: Development of Guidance Manual..........................1-6 1.1.1.5 Task 5: Development of Web Page.....................................1-6 1.1.2 Phase 2..............................................................................................1-7 1.1.2.1 Task 6: Development of Informational Brochures.................1-7 1.1.2.2 Task 7: Dissemination of Informational Material...................1-7 2.0 Data Collection........................................................................................................2-1 2.1 Introduction....................................................................................................2-1 2.2 Literature Research.........................................................................................2-1 2.3 Agency Questionnaires ...................................................................................2-2 2.4 Data Processing..............................................................................................2-3 3.0 Data Analysis ..........................................................................................................3-1 3.1 Introduction....................................................................................................3-1 3.2 General Information........................................................................................3-1 3.3 Flow Information............................................................................................3-4 3.4 System Characteristics Information..................................................................3-5 3.5 Reported Wet Weather SSOs........................................................................3-5 3.6 Reported Dry Weather SSOs.........................................................................3-6 3.7 Routine Maintenance Data..............................................................................3-7 3.8 Inspection Methods and Status .......................................................................3-7 3.9 Ranking of Methods Used to Identify SSOs....................................................3-8 3.10 Status of Agency Protocols.............................................................................3-9 Final.doc i DRAFT 06/20/00 Protocols for Identifying Sanitary Sewer Overflows (SSOs) ASCE/EPA Cooperative Agreement # CX 826097-01-0 Table of Contents Table of Contents Page No. 3.11 Agency Narrative Response Evaluation.........................................................3-10 3.11.1 Response to SSOs...........................................................................3-13 3.11.2 Maintenance Problems......................................................................3-13 Final.doc ii DRAFT 06/20/00 Protocols for Identifying Sanitary Sewer Overflows (SSOs) ASCE/EPA Cooperative Agreement # CX 826097-01-0 Table of Contents Table of Contents Page No. 3.11.3 Activities to Prevent SSOs................................................................3-13 3.11.4 Limitations of SSO Findings Methods ...............................................3-14 3.11.5 Existing Protocols .............................................................................3-14 3.11.6 Methods of Identifying Locations of SSOs........................................3-14 3.11.7 Design Deficiencies...........................................................................3-15 3.12 Graphs of Agency Data ................................................................................3-15 4.0 Hydraulic Protocols .................................................................................................4-1 4.1 Objective .......................................................................................................4-1 4.2 Hydraulic Capacity Related Problems .............................................................4-1 4.3 Available Techniques......................................................................................4-2 4.3.1 Hydraulic Modeling ............................................................................4-2 1.4.2 Scattergraphs/Flow Monitoring...........................................................4-3 4.4 Methodology for Hydraulic Modeling..............................................................4-3 1.4.3 Review of Documents/Development of Inventory.................................4-4 1.4.4 Flow Analysis/Flow Monitoring...........................................................4-5 1.4.5 Building the Model..............................................................................4-8 1.4.6 Calibrating the Model.........................................................................4-8 1.4.7 Running the Model..............................................................................4-8 1.4.8 Evaluation of Model Output ................................................................4-8 4.4.1 Reporting of Findings..........................................................................4-8 4.5 Scattergraphs .................................................................................................4-9 5.0 Maintenance and Inspection Protocols .....................................................................5-1 5.1 Objective .......................................................................................................5-1 5.2 Maintenance Related Problems .......................................................................5-1 5.3 Available Techniques......................................................................................5-1 5.3.1 Customer and/or Public Complaint......................................................5-2 5.3.2 Visual Inspections after Overflows ......................................................5-2 5.3.3 Scheduled Maintenance Inspection......................................................5-3 5.3.4 GIS-Based Analysis of Past SSOs.....................................................5-3 5.3.5 Sanitary Sewer Management Systems .................................................5-4 5.3.6 Flow Monitoring.................................................................................5-6 5.3.7 Monitoring of Receiving Streams Sewage Indicators............................5-8 5.3.8 Event Notification Systems..................................................................5-8 5.3.9 Closed Circuit Television (CCTV) Inspection......................................5-8 5.3.10 Sewer Scanner and Evaluation Technology Surveys (SSET)................5-9 5.3.11 Surcharge Level Alarms/Remote Monitoring........................................5-9 5.3.12 Dye Tracing........................................................................................5-9 Final.doc iii DRAFT 06/20/00 Protocols for Identifying Sanitary Sewer Overflows (SSOs) ASCE/EPA Cooperative Agreement # CX 826097-01-0 Table of Contents Table of Contents Page No. 5.3.13 Smoke Testing..................................................................................5-10 5.3.14 Aerial Monitoring..............................................................................5-10
Recommended publications
  • A Model-Based Assessment of Infiltration and Inflow in the Scope of Controlling Separate Sanitary Overflows at Pumping Stations Olivier Raynaud, C
    A model-based assessment of infiltration and inflow in the scope of controlling separate sanitary overflows at pumping stations Olivier Raynaud, C. Joannis, Franck Schoefs, F. Billard To cite this version: Olivier Raynaud, C. Joannis, Franck Schoefs, F. Billard. A model-based assessment of infiltration and inflow in the scope of controlling separate sanitary overflows at pumping stations. 11thInter- national Conference on Urban Drainage (ICUD 08), 2008, Edinburgh (Sotland), United Kingdom. hal-01007760 HAL Id: hal-01007760 https://hal.archives-ouvertes.fr/hal-01007760 Submitted on 18 Nov 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A model-based assessment of infiltration and inflow in the scope of controlling separate sanitary overflows at pumping stations O. Raynaud1, C. Joannis1, F. Schoefs2, F. Billard3 1Laboratoire Central des Ponts et Chaussées, Route de Bouaye, B.P 4129, 44 341 Bouguenais Cedex, France 2Institut de Recherche en Génie Civil et Mécanique (Gém), Nantes, France 3Nantes Métropole, Direction de l’assainissement, Nantes, France ABSTRACT Infiltration & Inflow (I&I) are a major cause for separate sanitary sewers overflows (SSOs). A proper planning of actions for controlling SSOs needs a precise quantification of these events, as well as an identification of the respective contributions of infiltration into sewer and inappropriate connection of runoff water to sanitary sewers.
    [Show full text]
  • Infiltration/Inflow Task Force Report
    INFILTRATION/INFLOW TASK FORCE REPORT A GUIDANCE DOCUMENT FOR MWRA MEMBER SEWER COMMUNITIES AND REGIONAL STAKEHOLDERS MARCH 2001 INFILTRATION/INFLOW TASK FORCE REPORT A GUIDANCE DOCUMENT FOR MWRA MEMBER SEWER COMMUNITIES AND REGIONAL STAKEHOLDERS MARCH 2001 Executive Summary This report is the product of the Infiltration/Inflow (I/I) Task Force. It has been developed through the cooperative efforts of the 43 Massachusetts Water Resources Authority (MWRA) member sewer communities, MWRA Advisory Board, The Wastewater Advisory Committee (WAC) to the MWRA, Charles River Watershed Association (CRWA), Fore River Watershed Association (FRWA), Mystic River Watershed Association (MRWA), Neponset River Watershed Association (NRWA), South Shore Chamber of Commerce (SSCC), Massachusetts Department of Environmental Protection (DEP), United States Environmental Protection Agency (EPA), and MWRA. The I/I Task Force recommends implementation of the regional I/I reduction goals and implementation strategies detailed in this report. The report outlines a regional I/I reduction plan with appropriate burdens and benefits for stakeholders. The report is intended to be a guidance document for use by local sewer communities, as well as other regional stakeholders, who may tailor appropriate aspects of the report recommendations to their unique situations. Severe storms in October 1996 and June 1998 led to the unusual circumstance of numerous sanitary sewer overflows (SSOs) from local and MWRA collection systems. In the aftermath of these events, EPA and DEP began an aggressive effort to make MWRA regulate flows from community sewer systems. MWRA recommended cooperative efforts by local collection system operators, as well as regulators and environmental advocates, would be more effective than a prescriptive, enforcement based approach.
    [Show full text]
  • Graham Park Sewage Pumping Station and Force Main Improvement Project
    Graham Park Sewage Pumping Station and Force Main Improvements Project Number: SPS112 Project Summary Project Commencement: Anticipated Start of Construction - Spring 2019 Project Description: Replacement of an existing antiquated Sewage Pumping Station (SPS) and force main (FM), and raise the SPS control building and equipment above the 100-year flood plain elevation. Scope of Work: This project will consist of installing a new submersible SPS with new controls, motors, emergency generator, by-pass connection on FM, and new flow metering equipment. The proposed pump control enclosure will be about 12’ in height and will be approximately 7’ by 13’ in size consisting of a faux-brick façade. The facility will be enclosed with an 8’ high chain-link fence with barbed-wire and locked for security. Additionally, the project will provide emergency backup supply and protect pump station facilities from storm surge flooding. Project benefits: The project will improve service reliability, safety conditions, and provide permanent back-up power. Project impact on residents/customers Noise associated with construction. Construction trucks accessing the SPS. Daily cleanup during construction to remove dust and dirt. Potential impact on traffic: Our standard roadway and traffic matters are outlined below. The Construction Contractor will be required to comply with Department of Environmental Quality (DEQ) Erosion and Sediment Control requirements to ensure all construction traffic does not track dirt on roads. The Service Authority will include in the construction contract a provision for fees to be assessed if the Construction Contractor does not comply with these requirements. Regular project updates to the impact of traffic will be listed on the website Graham Park Project.
    [Show full text]
  • Pump Station Design Guidelines – Second Edition
    Pump Station Design Guidelines – Second Edition Jensen Engineered Systems 825 Steneri Way Sparks, NV 89431 For design assistance call (855)468-5600 ©2012 Jensen Precast JensenEngineeredSystems.com TABLE OF CONTENTS INTRODUCTION ............................................................................................................................................................. 3 PURPOSE OF THIS GUIDE ........................................................................................................................................... 3 OVERVIEW OF A TYPICAL JES SUBMERSIBLE LIFT STATION ....................................................................................... 3 DESIGN PROCESS ....................................................................................................................................................... 3 BASIC PUMP SELECTION ............................................................................................................................................... 5 THE SYSTEM CURVE ................................................................................................................................................... 5 STATIC LOSSES....................................................................................................................................................... 5 FRICTION LOSSES .................................................................................................................................................. 6 TOTAL DYNAMIC HEAD ........................................................................................................................................
    [Show full text]
  • Sanitary Sewer Overflow Corrective Action Plan/Engineering Report
    FAYETTEVILLE PUBLIC UTILITIES WATER AND SEWER DEPARTMENT SANITARY SEWER OVERFLOW CORRECTIVE ACTION PLAN ENGINEERING REPORT 408 College Street, West Fayetteville, TN 37334 (931)433-1522 CONSOLIDATED TECHNOLOGIES, INC. Engineers in Water and Earth Sciences Nashville, Tennessee TABLE OF CONTENTS Page 1 INTRODUCTION 1.1 Background and Purpose Scope 2 EXISTING SEWER SYSTEM 2.1 Gravity Sewers 2.2 Pumping Stations 2.2 Wastewater Treatment Plant 2.3 3 EXISTING WASTEWATER TREATMENT PLANT 3.1 Plant Design Data 3.2 Influent Pump Station 3.2 Headworks 3.2 Aeration Basins 3.3 Secondary Clarifiers 3.3 Return Sludge Pump Station 3.3 Disinfection Facilities 3.4 Sludge Digestion and Holding Facilities 3.4 Sludge Disposal Site 3.4 Drying Beds 3.5 Staff 3.5 Operating Review 3.5 4 PREVIOUS SEWER SYSTEM OVERFLOWS (SSO’s) 4.1 Existing Problems 4.2 5 EXISTING AND FUTURE SEWER FLOWS 5.1 Flow Measurement Data 5.2 Projection of Future Flows 5.4 6 PLAN FOR I/I REDUCTION AND ELIMINATION OF SSO’s 6.1 New Construction Sewer System Rehabilitation 7 RECOMMENDED CAPITAL IMPROVEMENTS 7.1 Projects Currently Under Design/Construction 7.2 Projects Planned for Construction 7.3 Project Schedule 7.6 Project Maps LIST OF TABLES 2.1 Pump Station Information 2.3 3.1 Discharge Monitoring Reports Summary 3.5 4.1 Overflows/Bypasses 4.2 5.1 Flow Monitoring Sites 5.2 TABLE OF CONTENTS (Continued) LIST OF TABLES (Continued) Page 5.2 Historical Sewer and Water Customers 5.4 5.3 Future Flow Projections 5.5 7.1 Project Schedule 7.6 Follows Page LIST OF FIGURES 2.1 General Map 2.2 3.1 Site
    [Show full text]
  • Inflow and Infiltration Reduction in Sanitary Sewers
    Appendix E-4 – Inflow and Infiltration Reduction in Sanitary Sewers INFLOW AND INFILTRATION REDUCTION IN SANITARY SEWERS D.1 Introduction to RDII in Sanitary Sewers A properly designed, operated and maintained sanitary sewer system is meant to collect and convey all of the sewage that flows into it to a wastewater treatment plant. Rainfall dependent infiltration and inflow (RDII) into sanitary sewer systems has long been recognized as a major source of operating problems that cause poor performance of many sewer systems including system overflows. The extent of infiltration also correlates with the condition of aging sewers. The three major components of wet-weather wastewater flow into a sanitary system – base wastewater flow (BWWF), groundwater infiltration (GWI), and RDII are illustrated in Figure D-1 and are discussed below. Figure D-1: Three components of wet-weather wastewater flow BWWF, often called base sanitary flow, is the residential, commercial, institutional, and industrial flow discharged to a sanitary sewer system for collection and treatment. BWWF normally varies with water use patterns within a service area throughout a 24-hour period with higher flows during the morning period and lower during the night. In most cases, the average daily BWWF is more or less constant during a given day, but varies monthly and seasonally. BWWF often represents a significant portion of the flows treated at wastewater treatment facilities. GWI represents the infiltration of groundwater that enters the collection system through leaking pipes, pipe joints, and manhole walls. GWI varies throughout the year, often trending higher in late winter and spring as groundwater levels and soil moisture levels rise, and subsiding in late summer or after an extended dry period.
    [Show full text]
  • Section 9 Sewer Collection Systems
    SECTION 9 SEWER COLLECTION SYSTEMS TABLE OF CONTENTS 9.1 PURPOSE AND DEFINITIONS .......................................................................................... 1 9.1.1 Purpose ........................................................................................................................ 1 9.1.2 DOU Sewer System ...................................................................................................... 1 9.1.3 Definitions ..................................................................................................................... 2 9.2 GENERAL REQUIREMENTS ........................................................................................... 11 9.2.1 Authority and Responsibility ....................................................................................... 11 9.2.2 Disclaimer ................................................................................................................... 11 9.2.3 Acceptance ................................................................................................................. 12 9.2.4 Variances .................................................................................................................... 12 9.2.5 Gravity vs. Pumped Systems ...................................................................................... 12 9.2.6 New Sewer Systems ................................................................................................... 13 9.2.7 Diversion of Flows .....................................................................................................
    [Show full text]
  • Sanitary Sewer & Pumping Station Manual
    SANITARY SEWER AND PUMPING STATION MANUAL FOR SPRINGFIELD WATER AND SEWER COMMISSION Last Revised: _July 20, 2017______________ Page 1 TABLE OF CONTENTS Title Section Number General 1 Drawing Requirements 2 Construction Procedures 3 Flow Determination 4 Computer Modeling 5 Sanitary Sewers 6 Pump Stations 7 Appendices A – Checklist B – Construction Specifications C – Standard Drawings Page 2 SECTION 1 – GENERAL 1.1 General................................................................ 4 1.2 Purpose................................................................ 4 1.3 Structure of the Manual................................................ 4 1.4 Definitions............................................................ 4 1.5 References............................................................. 9 Page 3 1.1 General The Sanitary Sewer and Pumping Station Manual is for the design and construction of infrastructure. The specific subjects of these manuals are: • Procedures Manual for Infrastructure Development • Sanitary Sewer and Pumping Station • Structures • Geotechnical • Construction Inspection 1.2 Purpose The purpose of this manual is to provide information regarding design and construction requirements for sanitary sewers, pumping stations, and force mains in Springfield, Kentucky. The goal is to provide uniform design and construction standards. The end result will be public infrastructure that is cost effective and maintainable by the Springfield Water and Sewer Commission (SWSC)in the long term. 1.3 Structure of the Manual The manual
    [Show full text]
  • A Case Study of a Small Diameter Gravity Sewerage System in Zolkiewka Commune, Poland
    water Article A Case Study of a Small Diameter Gravity Sewerage System in Zolkiewka Commune, Poland Tadeusz Nawrot *, Radosław Matz, Ryszard Błazejewski˙ and Marcin Spychała Department of Hydraulic and Sanitary Engineering, Poznan University of Life Sciences, Pi ˛atkowskaSt. 94A, 60-649 Pozna´n,Poland; [email protected] (R.M.); [email protected] (R.B.); [email protected] (M.S.) * Correspondence: [email protected]; Tel.: +48-61-848-77-29 Received: 31 July 2018; Accepted: 27 September 2018; Published: 29 September 2018 Abstract: This article presents a small diameter gravity sewerage system in a rural area. In this system, domestic wastewater was preliminarily treated in septic tanks equipped with outlet filters, so the effluent features were similar to those of clear water. Additionally, some outlets were equipped with floating-ball check valves to avoid backflow. One of the pressure mains was used as a gravity collector conveying septic tank effluent in the direction of the pumping station during pump idle time. The operation of the system was simulated using SWMM computer code. The simulation results were validated for data obtained from part of a sewerage system in Kolonia Zolkiew and Rozki village consisting of two pumping stations and 86 serviced households using polyethylene pipes of outer diameter 50–63 mm. The results of the measurement of the outflows from one pumping station are presented. The simulation results showed good agreement with the empirical data, especially after several simulation days. The greatest discrepancy during the start-up period was the consequence of the initial conditions describing the empty pipework.
    [Show full text]
  • PART VI - SANITARY SEWER SYSTEM DESIGN CRITERIA (Public & Private)
    PART VI - SANITARY SEWER SYSTEM DESIGN CRITERIA (Public & Private) A. Definitions a Main - is that portion of the sewer system between manholes, or between manhole and the end of the main line provided with a lamphole. b Lateral - is that portion of the sewer system which is connected to the main and which serves one parcel or building. B. Size Criteria 1. The gravity sewer main lines shall be a minimum of eight inch (8") in diameter except that dead end lines of less than 300 feet can be 6 inches in diameter. Laterals shall be a minimum of 4" in diameter for single family residences and 6" for commercial, duplex and multi-family lots. 2. Laterals shall be placed at least 3' below top of curb grade elevation with 2% minimum slope and with a cleanout located per City Standard Detail S-1. 3. Minimum slopes for various pipe diameters shall be as shown in the following table. Pipe slopes less than those listed shall not be used without the approval from the City. Pipe Diameter (in) Slope (%) Slope ft/ft 6 0.50 0.0050 8 0.35 0.0035 10 0.25 0.0025 12 0.20 0.0020 15 0.15 0.0015 18 0.12 0.0012 4. The sewer mains shall be designed with the sewer flowing 3/4 full at peak flow condition or d/D = 0.75 where d is the depth of flow and D is the diameter of sewer pipe. 5. For gravity flow, use the Manning formula. The minimum design velocity shall be 2 fps for the design flow, and the design "n" factor shall be 0.013.
    [Show full text]
  • Evaluation of Sanitary Sewer Overflows and Unpermitted Discharges Associated with Hurricanes Hermine & Matthew
    EVALUATION OF SANITARY SEWER OVERFLOWS AND UNPERMITTED DISCHARGES ASSOCIATED WITH HURRICANES HERMINE & MATTHEW JANUARY 6, 2017 THIS PAGE WAS LEFT BLANK INTENTIONALLY EVALUATION OF SANITARY SEWER OVERFLOWS AND UNPERMITTED DISCHARGES ASSOCIATED WITH HURRICANES HERMINE & MATTHEW Financial Project No.: January 6, 2017 PR9792143-V2 RS&H No.: 302-0032-000 Prepared by RS&H, Inc. at the direction of the Florida Department of Environmental Protection ii THIS PAGE WAS LEFT BLANK INTENTIONALLY TABLE OF CONTENTS Chapter 1 INTRODUCTION ............................................................................................................................................................... 1 1.1 SCOPE OF THE EVALUATIONS..................................................................................................................................... 1 1.2 METHODOLOGY ............................................................................................................................................................... 2 1.3 DOCUMENT OVERVIEW ................................................................................................................................................ 2 Chapter 2 STORMWATER AND WATER LEVEL ANALYSIS .................................................................................................... 3 2.1 PRECIPITATION DATA .................................................................................................................................................... 3 2.1.1 Hurricane Hermine ...................................................................................................................................................
    [Show full text]
  • Appendix C Emergency Procedures
    Appendix C: Emergency Procedures APPENDIX C EMERGENCY PROCEDURES This appendix contains generic standard operation procedures (SOPs) for emergency collection system activities. These generic SOPs can be adapted to fit specific collection system needs. They are not presented as inclusive of all situations or circumstances. Please contact the appropriate state or federal environmental regulatory agency for guidance on your state’s specific emergency circumstances and procedures. Partially or Totally Blocked Siphon C-3 Wastewater Pump Station Alarms—General Response Actions C-5 Pumping Station Failure Caused by Force-Main Break Inside the Drywell, Pump or Valve Failure. (Wetwell/Drywell Type Station) C-7 Pumping Station Failure Caused by Force-Main Break Inside Valve Pit, Pump or Valve Failure. (Submersible Type Application) C-9 Pumping Station Failure Caused by Secondary Power Failure During Power Outage C-11 Sewer Blockage or Surcharging into Basement C-13 Overflowing Sewer Manhole Resulting from Surcharged Trunk Sewer (No backup into building) C-17 Sewage Force-Main Break (residential neighborhood) C-19 Sewage Force-Main Break (cross country easement non-residential area) C-23 Sewer Main Break/Collapse C-25 Air Release and Vacuum Relief Valve Failure C-27 Cavities and Depressions in Streets and Lawns C-29 C-1 This page is intentionally blank. Appendix C: Emergency Procedures PROBLEM: Partially or Totally Blocked Siphon EMERGENCY PROCEDURES: • Dispatch sewer crew to failing siphon immediately. • Immediately have jet-flushing vehicle brought to the site if a blockage is discovered. • If the cause of a blockage is unknown use a single port cutting nozzle and attach the nozzle to the jet-flushing machine.
    [Show full text]