Species Distributions and Climate Change:Current Patterns and Future Scenarios for Biodiversity

Total Page:16

File Type:pdf, Size:1020Kb

Species Distributions and Climate Change:Current Patterns and Future Scenarios for Biodiversity Species distributions and climate change:current patterns and future scenarios for biodiversity Hof, Christian Publication date: 2010 Document version Publisher's PDF, also known as Version of record Citation for published version (APA): Hof, C. (2010). Species distributions and climate change:current patterns and future scenarios for biodiversity. Museum Tusculanum. Download date: 05. Oct. 2021 DEPARTMENT OF BIOLOGY FACULTY OF SCIENCE UNIVERSITY OF COPENHAGEN Species distributions and climate change: current patterns and future scenarios for biodiversity A dissertation submitted to the University of Copenhagen in accordance with the requirements of the degree of PhD at the Faculty of Science, Department of Biology, to be defended publicly before a panel of examiners by Christian Hof February 2010 Supervised by Prof. Dr. Carsten Rahbek and Prof. Dr. Miguel B. Araújo “It is now clear that climate change is the major new threat that will confront biodiversity this century.” Lovejoy & Hannah 2005 Preface This thesis is the result of a three-year PhD project which was jointly based at the Center for Macroecology, Evolution and Climate, Department of Biology, University of Copenhagen (Denmark) and the Biodiversity and Global Change Lab, Department of Biodiversity and Evolutionary Biology, National Museum of Natural Sciences (CSIC), Madrid (Spain). The project was jointly supervised by Prof. Dr. Carsten Rahbek (Copenhagen) and Prof. Dr. Miguel B. Araújo (Madrid). The PhD project was temporally split into two equal parts performed at the two work places mentioned above. The project was funded by an internationalization stipend from the Danish Agency for Science, Technology and Innovation, administered by the University of Copenhagen. The thesis consists of two parts. The first part is a synopsis which gives an overview of the background and the objectives of the thesis, summarizes and discusses the main findings, and outlines some perspectives for future research. The second part consists of five manuscripts, written as scientific papers, which comprise the core work of the PhD project. Finally, three supplementary chapters document some additional work on topics related to the objectives of the thesis. Christian Hof Copenhagen, February 2010 Contents Summary ...................................................................................................................... 9 Resumé ........................................................................................................................ 11 Zusammenfassung................................................................................................... 13 PART 1 Synopsis ....................................................................................................................... 15 1. Introduction ....................................................................................................... 17 1.1 Species distributions and climate change ................................................... 17 1.2 The temporal stability of the climatic niche ............................................... 18 1.3 Dispersal and habitat stability..................................................................... 19 1.4 Objectives of the thesis............................................................................... 20 2. Summary and discussion of main findings ..................................................... 20 2.1 Potential impacts of climate change and its interactions with other threats on biodiversity............................................................................................ 20 2.2 Phylogenetic signal in climatic niche similarity......................................... 23 2.3 The influence of habitat stability on dispersal ability: Spatial patterns of freshwater diversity and the equilibrium of species distributions with contemporary climate ................................................................................. 25 3. Perspectives........................................................................................................ 27 3.2 Habitats, dispersal and climate change....................................................... 29 3.3 Ecological niches: What are we measuring? .............................................. 30 3.4 Interaction of different threats: challenges for conservation...................... 31 References................................................................................................................ 32 Acknowledgements.................................................................................................. 43 PART 2 Chapter I...................................................................................................................... 49 Rethinking species’ ability to cope with rapid climate change Chapter II.................................................................................................................... 57 Future threats for global amphibian diversity Chapter III.................................................................................................................. 97 Phylogenetic signals in the climatic niches of the world’s amphibians Chapter IV ................................................................................................................ 125 Habitat availability cannot explain the species richness patterns of European lentic and lotic freshwater animals Chapter V .................................................................................................................. 149 The effect of habitat stability on dispersal and species’ ability to track climate change APPENDIX Supplementary chapter A ..................................................................................... 171 Latitudinal variation of diversity in European freshwater animals is not concordant across habitat types Supplementary chapter B ..................................................................................... 181 Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change Supplementary chapter C ..................................................................................... 193 Range size patterns in European freshwater trematodes Curriculum vitae.................................................................................................... 217 9 Summary How does climate change affect biodiversity? – Answering this question is one of the most important tasks in current ecological research. Earth has been warming by 0.7°C during the last 100 years, and the consequences are already apparent in biotic systems. For example, species are responding by shifts of their distributional ranges, which affects the spatial patterns of species richness and turnover. Global temperatures are projected to rise by 1.8 - 4°C until the end of the century; hence climate change will most likely leave further imprints on species and ecosystems. This PhD thesis aims to contribute to a better understanding of the impacts of climate change on species distributions and spatial patterns of biodiversity. Contemporary climate change is assumed to be one of the major future threats for biodiversity, due to its supposedly unprecedented velocity. On the contrary, recent studies suggest that climatic changes during and after the Pleistocene may have been much faster than commonly assumed. In one of the studies of this thesis I discuss the consequences of these findings for species and ecosystems. Since these rapid climate change events did not cause a broad-spectrum mass extinction, one might assume that most species may also be able to successfully cope with contemporary climate change. However, current ecosystems are heavily modified by humans. Among other factors, habitat destruction and fragmentation caused by anthropogenic land-use changes negatively affect species’ strategies to cope with climate change. Therefore, although we need to rethink species’ abilities to cope with rapid climate change, the interactions of different threats impose severe challenges for biodiversity. In a global assessment of future threats for amphibian diversity, I investigate the geography of climate change, land-use change and the fungal pathogen Batrachochytrium dendrobatidis (Bd). Results indicated that the regions with highest projected climate and land-use change impacts show a strong tendency of congruence, but show little overlap with regions of high Bd prevalence. Overall, two-thirds of the areas harboring the richest amphibian faunas may be heavily impacted by at least one of the major threats by 2080. The stability of the climatic niche influences the need for a species to track climate change via dispersal, or its potential to adapt to novel climatic conditions. I therefore explore the phylogenetic signal in climatic niches of the world’s amphibians, which serves as a surrogate quantification of niche stability. Results indicate an overall tendency of phylogenetic signal to be present in realised climatic niches, but signal strength varies across biogeographical regions and among amphibian orders. The ability to successfully track climatic changes depends on dispersal, which is in turn influenced by ecological adaptations, such as the affiliation with a certain habitat type. A common hypothesis is that species adapted to less persistent habitats have evolved stronger dispersal abilities. Two studies of my thesis provide evidence for this hypothesis: (1) geographical distributions of dragonflies adapted
Recommended publications
  • Environmental Factors Influencing Odonata Communities of Three Mediterranean Rivers: Kebir-East, Seybouse, and Rhumel Wadis, Northeastern Algeria
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by I-Revues Revue d’Ecologie (Terre et Vie), Vol. 72 (3), 2017 : 314-329 ENVIRONMENTAL FACTORS INFLUENCING ODONATA COMMUNITIES OF THREE MEDITERRANEAN RIVERS: KEBIR-EAST, SEYBOUSE, AND RHUMEL WADIS, NORTHEASTERN ALGERIA 1,2 1,2,3 Amina YALLES SATHA & Boudjéma SAMRAOUI 1 Laboratoire de Conservation des Zones Humides, University of Guelma, Guelma, Algeria. E-mails: [email protected] & [email protected] 2 University of 08 mai 1945, Guelma, Algeria 3 Biology Department, University of Annaba, Annaba, Algeria RÉSUMÉ.— Facteurs environnementaux influençant les communautés d’Odonates de trois rivières méditerranéennes : les oueds Kebir-Est, Seybouse et Rumel, nord-est algérien.— Les Odonates sont une composante importante des peuplements des milieux lotiques et leur abondance et diversité renseignent sur l’intégrité écologique de ces hydrosystèmes. L’inventaire odonatologique de trois oueds majeurs algériens : Kebir- Est, Seybouse et Rhumel, a permis l’identification de 40 espèces. Nos résultats révèlent la présence de Calopteryx exul, endémique maghrébin, dans l’oued Seybouse et semblent confirmer l’extinction de la population type dans l’oued Rhumel où l’espèce avait été découverte au XIXe siècle. Nos résultats indiquent également l’expansion de plusieurs espèces: Coenagrion caerulescens, Orthetrum nitidinerve, Trithemis kirbyi et Urothemis edwardsii dont la population relictuelle est en danger critique d’extinction. La mesure de diverses variables physicochimiques (altitude, température, conductivité, etc.) nous a permis d’explorer une possible co-structure entre les jeux de données faunistiques et de variables environnementales. L’analyse des données indique que la richesse spécifique est, selon l’oued, variablement correlée à l’hydropériode, à la conductivité et à la température de l’eau, suggérant son utilité dans l’évaluation de l’intégrité écologique des cours d’eau méditerranéens.
    [Show full text]
  • 1 June 2021 Researchgate: Researchgate.Net/Profile
    DAVID OUTOMURO PRIEDE, PH.D. CURRICULUM VITAE June 2021 Researchgate: researchgate.net/profile/David_Outomuro ORCID: orcid.org/0000-0002-1296-7273 EDUCATION Ph.D. 2011 University of Oviedo, Spain (Biology). Summa cum laude. (Dr. Francisco J. Ocharan) B.S. 2005 University of Oviedo, Spain (Biology). Valedictorian. PROFESSIONAL EXPERIENCE Aug 2017- Aug 2021 Postdoctoral researcher, Dept. Biological Sciences, University of Cincinnati, USA (Dr. Nathan Morehouse) Jul 2015-Jun 2017 Postdoctoral researcher, Evolutionary Biology Centre, Uppsala University, Sweden (Drs. Frank Johansson, Anders Ödeen, & Karin Nordström) Jul 2014-Jul 2015 Visiting Professor, Dept. Ciencias Biológicas, Universidad de los Andes, Colombia Nov 2011-Dec 2013 Postdoctoral researcher, Evolutionary Biology Centre, Uppsala University, Sweden (Dr. Frank Johansson) Jun 2006-May 2010 Graduate researcher and Teaching assistant, Dept. Biología de Organismos y Sistemas, University of Oviedo, Spain (Dr. Francisco J. Ocharan) Jul 2005-Aug 2005 Intern, Servicio Regional de Investigación y Desarrollo Agroalimentario de Asturias (SERIDA), Spain (Dr. Isabel Feito Díaz) Sep 2004-Jun 2005 Undergraduate research fellow, Dept. Biología de Organismos y Sistemas, University of Oviedo, Spain (Dr. Francisco J. Ocharan) RESEARCH INTERESTS I am a behavioral ecologist, interested in the micro- and macroevolutionary processes that promote diversity. My research has explored questions on the evolution of color signals, color vision, and flight morphology. I am particularly interested in understanding the evolution of color signals, how they are perceived by intended and unintended receivers and the role of these audiences in driving population and species divergence. I also study the evolution of flight morphology because wings are large conspicuous body surfaces that can be also used as motion signal vehicles for intra- and interspecific communication.
    [Show full text]
  • Tesis Doctoral Esther Soler Mo
    Facultat de Ciències Biològiques Institut Cavanilles de Biodiversitat i Biologia Evolutiva Programa de Doctorado de Biodiversidad y Biología Evolutiva ESTRUCTURA DE COMUNIDADES DE ODONATA EN SISTEMAS MEDITERRÁNEOS Tesis Doctoral Esther Soler Monzó Directores: Marcos Méndez Iglesias Joaquín Baixeras Almela Valencia, 2015 Marcos Méndez Iglesias, Profesor Titular de Universidad del Departamento de Biología y Geología de la Universidad Rey Juan Carlos, y Joaquín Baixeras Almela, Profesor Titular de Universidad del Instituto Cavanilles de Biodiversidad y Biología Evolutiva de la Universidad de Valencia CERTIFICAN: que el trabajo de investigación desarrollado en la memoria de tesis doctoral: “Estructura de comunidades de Odonata en sistemas mediterráneos”, es apto para ser presentado por Esther Soler Monzó ante el Tribunal que en su día se consigne, para aspirar al Grado de Doctor por la Universidad de Valencia. VºBº Director Tesis VºBº Director Tesis Dr. Marcos Méndez Iglesias Dr. Joaquín Baixeras Almela a Espe. Let the rain come down and wash away my tears Let it fill my soul and drown my tears Let it shatter the walls for a new sun A new day has come A new day has come. CÉLINE DION ποταμοῖς τοῖς αὐτοῖς ἐμβαίνομεν τε καὶ οὐκ ἐμβαίνομεν, εἶμεν τε καὶ οὐκ εἶμεν τε. En los mismos ríos entramos y no entramos, [pues] somos y no somos [los mismos]. HERÁCLITO, en Diels-Kranz, Die Fragmente Vorsokratiker, 22 B12. Agradecimientos Me ha costado mucho tiempo y esfuerzo llegar hasta aquí pero sin la ayuda de mucha gente no lo hubiese conseguido. Así que dedicarles un trocito de papel es lo mínimo que puedo hacer.
    [Show full text]
  • Critical Species of Odonata in Europe
    See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/228966602 Critical species of Odonata in Europe ARTICLE in INTERNATIONAL JOURNAL OF ODONATOLOGY · JULY 2004 Impact Factor: 0.5 · DOI: 10.1080/13887890.2004.9748223 CITATIONS DOWNLOADS VIEWS 25 181 148 5 AUTHORS, INCLUDING: Adolfo Cordero-Rivera University of Vigo 151 PUBLICATIONS 1,594 CITATIONS SEE PROFILE Frank Suhling Technische Universität Braun… 79 PUBLICATIONS 793 CITATIONS SEE PROFILE Available from: Frank Suhling Retrieved on: 13 September 2015 Guardians of the watershed. Global status of dragonflies: critical species, threat and conservation Critical species of Odonata in Europe Göran Sahlén 1, Rafal Bernard 2, Adolfo Cordero Rivera 3, Robert Ketelaar 4 & Frank Suhling 5 1 Ecology and Environmental Science, Halmstad University, P.O. Box 823, SE-30118 Halmstad, Sweden. <[email protected]> 2 Department of General Zoology, Adam Mickiewicz University, Fredry 10, PO-61-701 Poznan, Poland. <[email protected]> 3 Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, EUET Forestal, Campus Universitario, ES-36005 Pontevedra, Spain. <[email protected]> 4 Dutch Butterfly Conservation. Current address: Dutch Society for the Preservation of Nature, P.O. Box 494, NL-5613 CM, Eindhoven, The Netherlands. <[email protected]> 5 Institute of Geoecology, Dpt of Environmental System Analysis, Technical University of Braunschweig, Langer Kamp 19c, D-38102 Braunschweig, Germany. <[email protected]> Key words: Odonata, dragonfly, IUCN, FFH directive, endemic species, threatened species, conservation, Europe. Abstract The status of the odonate fauna of Europe is fairly well known, but the current IUCN Red List presents only six species out of ca 130, two of which are actually out of danger today.
    [Show full text]
  • The Dragonfly Fauna of the Aude Department (France): Contribution of the ECOO 2014 Post-Congress Field Trip
    Tome 32, fascicule 1, juin 2016 9 The dragonfly fauna of the Aude department (France): contribution of the ECOO 2014 post-congress field trip Par Jean ICHTER 1, Régis KRIEG-JACQUIER 2 & Geert DE KNIJF 3 1 11, rue Michelet, F-94200 Ivry-sur-Seine, France; [email protected] 2 18, rue de la Maconne, F-73000 Barberaz, France; [email protected] 3 Research Institute for Nature and Forest, Rue de Clinique 25, B-1070 Brussels, Belgium; [email protected] Received 8 October 2015 / Revised and accepted 10 mai 2016 Keywords: ATLAS ,AUDE DEPARTMENT ,ECOO 2014, EUROPEAN CONGRESS ON ODONATOLOGY ,FRANCE ,LANGUEDOC -R OUSSILLON ,ODONATA , COENAGRION MERCURIALE ,GOMPHUS FLAVIPES ,GOMPHUS GRASLINII , GOMPHUS SIMILLIMUS ,ONYCHOGOMPHUS UNCATUS , CORDULEGASTER BIDENTATA ,MACROMIA SPLENDENS ,OXYGASTRA CURTISII ,TRITHEMIS ANNULATA . Mots-clés : A TLAS ,AUDE (11), CONGRÈS EUROPÉEN D 'ODONATOLOGIE ,ECOO 2014, FRANCE , L ANGUEDOC -R OUSSILLON ,ODONATES , COENAGRION MERCURIALE ,GOMPHUS FLAVIPES ,GOMPHUS GRASLINII ,GOMPHUS SIMILLIMUS , ONYCHOGOMPHUS UNCATUS ,CORDULEGASTER BIDENTATA ,M ACROMIA SPLENDENS ,OXYGASTRA CURTISII ,TRITHEMIS ANNULATA . Summary – After the third European Congress of Odonatology (ECOO) which took place from 11 to 17 July in Montpellier (France), 21 odonatologists from six countries participated in the week-long field trip that was organised in the Aude department. This area was chosen as it is under- surveyed and offered the participants the possibility to discover the Languedoc-Roussillon region and the dragonfly fauna of southern France. In summary, 43 sites were investigated involving 385 records and 45 dragonfly species. These records could be added to the regional database. No less than five species mentioned in the Habitats Directive ( Coenagrion mercuriale , Gomphus flavipes , G.
    [Show full text]
  • IDF-Report 86
    IDF International Dragonfly Fund - Report Journal of the International Dragonfly Fund 1-28 Oleg E. Kosterin On the Odonata of North Kazakhstan Province. I. First data on Petropavlovsk. Published: 10.10.2015 29-46 Oleg E. Kosterin Odonata registered on a short excursion to Kyshtovka District, Novosibirsk Province, Russia. Published: 21.10.2015 86 ISSN 1435-3393 The International Dragonfly Fund (IDF) is a scientific society founded in 1996 for the impro- vement of odonatological knowledge and the protection of species. Internet: http://www.dragonflyfund.org/ This series intends to publish studies promoted by IDF and to facilitate cost-efficient and ra- pid dissemination of odonatological data.. Editorial Work: Martin Schorr Layout: Martin Schorr IDF-home page: Holger Hunger Indexed: Zoological Record, Thomson Reuters, UK Printing: Colour Connection GmbH, Frankfurt Impressum: Publisher: International Dragonfly Fund e.V., Schulstr. 7B, 54314 Zerf, Germany. E-mail: [email protected] Responsible editor: Martin Schorr Cover picture: Aristocypha fulgipennis, Cambodia, Ratanakiri Provi. 2/6/2013 Photographer: Oleg E. Kosterin Published 10.10.2015 On the Odonata of North Kazakhstan Province. I. First data on Petropavlovsk Oleg E. Kosterin Institute of Cytology & Genetics SB RAS, Acad. Lavrentyev ave. 10, Novosibirsk, 630090, Russia; Novosibirsk State University, Pirogova str. 2, Novosibirsk, 630090, Russia. E-mail: [email protected] Abstract The fauna of Odonata of the environs of Petropavlovsk, North Kazakhstan, was for the first time examined on two short trips in late June and mid August 2015. Thirty five species were revealed. Coenagrion ecornutum was recorded in Kazakhstan for the first time, Gomphus vulgatissimus the second time and Stylurus flavipes the third time.
    [Show full text]
  • Driven Color Lightness and Body Size Variation Scale to Local Assemblages of European Odonata but Are Modified by Propensity for Dispersal
    Received: 2 April 2020 | Revised: 26 June 2020 | Accepted: 29 June 2020 DOI: 10.1002/ece3.6596 ORIGINAL RESEARCH Temperature-driven color lightness and body size variation scale to local assemblages of European Odonata but are modified by propensity for dispersal Daniel Acquah-Lamptey1 | Martin Brändle1 | Roland Brandl1 | Stefan Pinkert1,2 1Faculty of Biology, Department of Ecology – Animal Ecology, Philipps-Universität Abstract Marburg, Marburg, Germany 1. Previous macrophysiological studies suggested that temperature-driven color 2 Ecology & Evolutionary Biology, Yale lightness and body size variations strongly influence biogeographical patterns in University, New Haven, CT, USA ectotherms. However, these trait–environment relationships scale to local assem- Correspondence blages and the extent to which they can be modified by dispersal remains largely Daniel Acquah-Lamptey, Faculty of Biology, Department of Ecology – Animal Ecology, unexplored. We test whether the predictions of the thermal melanism hypoth- Philipps-Universität Marburg, Karl-von- esis and the Bergmann's rule hold for local assemblages. We also assess whether Frisch-Straße 8, 35043 Marburg, Germany. Email: [email protected] these trait–environment relationships are more important for species adapted to less stable (lentic) habitats, due to their greater dispersal propensity compared to those adapted to stable (lotic) habitats. 2. We quantified the color lightness and body volume of 99 European dragon- and damselflies (Odonata) and combined these trait information with survey data for 518 local assemblages across Europe. Based on this continent-wide yet spatially explicit dataset, we tested for effects temperature and precipitation on the color lightness and body volume of local assemblages and assessed differences in their relative importance and strength between lentic and lotic assemblages, while ac- counting for spatial and phylogenetic autocorrelation.
    [Show full text]
  • New Data on the Distribution of Orthetrum Trinacria in the Algarve, Southern Portugal (Odonata: Libellulidae) 77-87 ©Ges
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Libellula Jahr/Year: 2012 Band/Volume: 31 Autor(en)/Author(s): Loureiro Nuno de Santos Artikel/Article: New data on the distribution of Orthetrum trinacria in the Algarve, southern Portugal (Odonata: Libellulidae) 77-87 ©Ges. deutschspr. Odonatologen e.V.; download www.libellula.org/libellula/ und www.zobodat.at Distribution of Orthetrum trinacria in the Algarve 30. Juli 201277 New data on the distribution of Orthetrum trinacria in the Algarve, southern Portugal (Odonata: Libellulidae) Nuno de Santos Loureiro 1,2 1 Centre for Environmental Biology - ADC 2 Universidade do Algarve, Campus de Gambelas, P-8005-139 Faro, <[email protected]> Abstract Data on the occurrence of Orthetrum trinacria in the Algarve were published for the first time in 2002, and since then the species was considered uncommon and showing a limited distribution in the region. Between March and October 2011 I carried out a systematic survey, gathered unpublished records from different sources dating from 2007 to 2011, and concluded that the species is nowadays widespread in the Algarve, living in many permanent lentic systems. A large number of artificial ponds recently built and scattered throughout the region, plus the dispersion capacity of the species, as well as global warm- ing, are potential causes to explain this apparent colonization, but additionally an increase in field research should not be underestimated. Zusammenfassung Neue Daten zur Verbreitung von Orthetrum trinacria in der Algarve, Südportugal (Odo- nata: Libellulidae) – Daten zur Verbreitung von O. trinacria im südportugiesischen Dis- trikt Algarve wurden erstmals 2002 publiziert.
    [Show full text]
  • How Suitable Are Man-Made Water Bodies As Habitats for Odonata?
    Knowl. Manag. Aquat. Ecosyst. 2020, 421, 13 Knowledge & © M. Vilenica et al., Published by EDP Sciences 2020 Management of Aquatic https://doi.org/10.1051/kmae/2020008 Ecosystems Journal fully supported by Office www.kmae-journal.org français de la biodiversité RESEARCH PAPER How suitable are man-made water bodies as habitats for Odonata? Marina Vilenica1, Ivana Pozojević2, Natalija Vučković2 and Zlatko Mihaljević2,* 1 University of Zagreb, Faculty of Teacher Education, Trg Matice hrvatske 12, Petrinja, Croatia 2 University of Zagreb, Faculty of Science, Department of Biology, Rooseveltov trg 6, Zagreb, Croatia Received: 2 December 2019 / Accepted: 27 February 2020 Abstract – Many studies have reported a negative impact of freshwater habitat modification on biota. Nevertheless, some man-made water bodies have proven to be valuable for biodiversity conservation as they can harbour many species. We investigated 36 man-made water bodies to determine their suitability as habitats for Odonata. Larvae were sampled in littoral, during the summer months of 2016 and 2017. At each sampling site, ten samples were collected using a benthos hand net. A total of 21 Odonata species was recorded. Odonata assemblages mainly consisted of common widespread species. Yet, at Vlačine Reservoir, located in the Dinaric Western Balkan ecoregion, we also recorded a rare and endangered Mediterranean species, Lindenia tetraphylla (Vander Linden, 1825). Aquatic and riparian vegetation, water level fluctuations and dissolved oxygen concentration had the highest influence on Odonata, showing that man- made water bodies with a well-developed riparian zone and aquatic vegetation, and with low daily and seasonal water level fluctuations, can provide suitable habitats for diverse Odonata species.
    [Show full text]
  • Dragonf Lies and Damself Lies of Europe
    Dragonf lies and Damself lies of Europe A scientific approach to the identification of European Odonata without capture A simple yet detailed guide suitable both for beginners and more expert readers who wish to improve their knowledge of the order Odonata. This book contains images and photographs of all the European species having a stable population, with chapters about their anatomy, biology, behaviour, distribution range and period of flight, plus basic information about the vagrants with only a few sightings reported. On the whole, 143 reported species and over lies of Europe lies and Damself Dragonf 600 photographs are included. Published by WBA Project Srl CARLO GALLIANI, ROBERTO SCHERINI, ALIDA PIGLIA © 2017 Verona - Italy WBA Books ISSN 1973-7815 ISBN 97888903323-6-4 Supporting Institutions CONTENTS Preface 5 © WBA Project - Verona (Italy) Odonates: an introduction to the order 6 WBA HANDBOOKS 7 Dragonflies and Damselflies of Europe Systematics 7 ISSN 1973-7815 Anatomy of Odonates 9 ISBN 97888903323-6-4 Biology 14 Editorial Board: Ludivina Barrientos-Lozano, Ciudad Victoria (Mexico), Achille Casale, Sassari Mating and oviposition 23 (Italy), Mauro Daccordi, Verona (Italy), Pier Mauro Giachino, Torino (Italy), Laura Guidolin, Oviposition 34 Padova (Italy), Roy Kleukers, Leiden (Holland), Bruno Massa, Palermo (Italy), Giovanni Onore, Quito (Ecuador), Giuseppe Bartolomeo Osella, l’Aquila (Italy), Stewart B. Peck, Ottawa (Cana- Predators and preys 41 da), Fidel Alejandro Roig, Mendoza (Argentina), Jose Maria Salgado Costas, Leon (Spain), Fabio Pathogens and parasites 45 Stoch, Roma (Italy), Mauro Tretiach, Trieste (Italy), Dante Vailati, Brescia (Italy). Dichromism, androchromy and secondary homochromy 47 Editor-in-chief: Pier Mauro Giachino Particular situations in the daily life of a dragonfly 48 Managing Editor: Gianfranco Caoduro Warming up the wings 50 Translation: Alida Piglia Text revision: Michael L.
    [Show full text]
  • Key to the Species of the Orthetrum Newman, 1833 (Odonata, Libellulidae) with a New Record Species in Iraq
    Asmaa Hassan Al-Hashmi et al. Bull. Iraq nat. Hist. Mus. DOI: http://dx.doi.org/10.26842/binhm.7.2018.15.1.0015 July, (2018) 15 (1): 15-29 KEY TO THE SPECIES OF THE ORTHETRUM NEWMAN, 1833 (ODONATA, LIBELLULIDAE) WITH A NEW RECORD SPECIES IN IRAQ Asmaa Hassan Al-Hashmi* Hana H. Al-Saffar** and Razzaq Shalan Augul** *Department of Biology, College of Science, Al Mustansiriyah University, Baghdad, Iraq **Iraq Natural History Research Center and Museum, University of Baghdad, Baghdad, Iraq *Corresponding author: [email protected] *[email protected] Received Date: 09 January 2018 Accepted Date: 21 January 2018 ABSTRACT This paper provides an identification key to the species of Orthetrum Newman, 1833 (Odonata, Libellulidae), including six species that were collected from different localities in Iraq. The species of O. anceps (Schneider, 1845) is registered as a new record in Iraq; the most important characters which are used in diagnostic key are included. Key words: Iraq, Libellulidae, New record, Odonata, Orthetrum. INTRODUCTION The dragonfly insects belonging to the Odonata, are abundant and of worldwide distribution (Corbet, 1980); the genus of Orthetrum Newman, 1833 under the guild of Anisoptera in Libellulidae family, is the biggest one of dragonfly world-wide (Manwar et al., 2012), and this genus is a very large one, spread across the old world (Watson et al., 1991). The genus of Orthetrum contains about sixty of species worldwide (Dijkstra and Kalkman, 2012). This genus is characterized by: sectors of arculus in fore wings with a differentiated merger before encounter arculus; bases of hind wings without blackish-brown markings; ever any accessive cross-veins to the bridge (Fraser, 1936).
    [Show full text]
  • Ecography ECOG-02578 Pinkert, S., Brandl, R
    Ecography ECOG-02578 Pinkert, S., Brandl, R. and Zeuss, D. 2016. Colour lightness of dragonfly assemblages across North America and Europe. – Ecography doi: 10.1111/ecog.02578 Supplementary material Appendix 1 Figures A1–A12, Table A1 and A2 1 Figure A1. Scatterplots between female and male colour lightness of 44 North American (Needham et al. 2000) and 19 European (Askew 1988) dragonfly species. Note that colour lightness of females and males is highly correlated. 2 Figure A2. Correlation of the average colour lightness of European dragonfly species illustrated in both Askew (1988) and Dijkstra and Lewington (2006). Average colour lightness ranges from 0 (absolute black) to 255 (pure white). Note that the extracted colour values of dorsal dragonfly drawings from both sources are highly correlated. 3 Figure A3. Frequency distribution of the average colour lightness of 152 North American and 74 European dragonfly species. Average colour lightness ranges from 0 (absolute black) to 255 (pure white). Rugs at the abscissa indicate the value of each species. Note that colour values are from different sources (North America: Needham et al. 2000, Europe: Askew 1988), and hence absolute values are not directly comparable. 4 Figure A4. Scatterplots of single ordinary least-squares regressions between average colour lightness of 8,127 North American dragonfly assemblages and mean temperature of the warmest quarter. Red dots represent assemblages that were excluded from the analysis because they contained less than five species. Note that those assemblages that were excluded scatter more than those with more than five species (c.f. the coefficients of determination) due to the inherent effect of very low sampling sizes.
    [Show full text]