Plastic Waste
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Compelling Facts About Plastics 2009 an Analysis of European Plastics Production, Demand and Recovery for 2008
The Compelling Facts About Plastics 2009 An analysis of European plastics production, demand and recovery for 2008 1 2008 – At a glance Global production fell back in 2008 to 245 million tonnes from 260 in 2007 on the back of the financial crisis. The plastics industry experienced a dramatic 3rd and 4th quarter triggered by the economic crisis – more for those serving capital markets and less in daily consumables. Europe produced 60 million tonnes and remained a major region contributing about 25% of the global total. The plastics industry – plastic producers, converters and machine manufacturers – employed 1.6 million people and many times more in industries depending on plastics for their business. The plastics producers and converters also contributed together around 13 billion € in trade surplus to EU27 which helped to reduce the 242 billion € trade deficit for the whole industry in 2008. Demand by European converters fell back 7.5% to 48.5 million tonnes in 2008. Waste generation increased by just under 1%. Both recycling and energy recovery increased to drive total recovery rate for plastics to 51.3% and disposal at landfill down to 48.7% thereby opening up a gap of 2.6%. Recycling increased by 4.3% over 2007, a lower year-on-year increase than in recent years, reflecting the severe impact of the economic crisis on this sector. Energy recovery increased 3.6% over 2007. Seven of the EU Member States plus Norway and Switzerland recover more than 80% of their used plastics. These countries adopt an integrated resource management strategy using a range of complementary options to address each different waste stream with the best environmental and economic option. -
Improving Resource Efficency to Combat Marine Plastic Litter
Improving Resource Efficency to Combat Marine Plastic Litter Issue Brief Prepared by the OECD as input for the 2019 G20 Ministerial Meeting on Energy Transitions and Global Environment for Sustainable Growth January 2019 Organisation for Economic Co-operation and Development │ 2 1. Introduction 1.1. Persistent growth in resource use is creating widespread environmental damage: marine plastics litter is a prominent example 1. Recent decades have seen unprecedented growth in demand for natural resources and the materials derived from them. Around 80 billion tonnes of minerals, fossil fuels, and biomass were fed into the global economy in 2015 and, in the absence of policy action, this will increase with ongoing population growth and improving standards of living. Modelling undertaken by the OECD suggests that resource use will more than double by 2060 under business as usual.1 2. The extraction, use, and disposal of natural resources at these scales is creating significant environmental pressure, with serious consequences for ecosystem health, economic growth, and human well-being. Biodiversity loss and climate change are perhaps the two most high-profile examples. However, nowhere are the damages associated with rapidly growing material use more visible than in the case of plastics pollution, which is now ubiquitous across much of the Earth’s surface. Plastic is present in all the world’s ocean basins, including around remote islands, the poles and in the deep seas, and an additional 5 to 13 million tonnes are estimated to be introduced every year to the oceans.2 This material will only decompose over the course of hundreds, if not thousands, of years. -
Waste Generated and Treated in Europe
2003 EDITION Waste generated and treated in Europe Data 1990-2001 THEME 8 Environment EUROPEAN and DETAILED TABLES DETAILED COMMISSION 8energy Europe Direct is a service to help you find answers to your questions about the European Union New freephone number: 00 800 6 7 8 9 10 11 A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server (http://europa.eu.int). Luxembourg: Office for Official Publications of the European Communities, 2003 ISBN 92-894-6355-4 © European Communities, 2003 Acknowledgements: This publication was prepared under the responsibility of Rainer Muthmann, Head of Unit E5, Environment and sustainable development, Eurostat Publication editors: Karin Jordan, Eurostat Christian Heidorn, Eurostat Consultants: Marta de Medina Rosales Thierry Leroy National Statistical Institutes: We would like to thank all the colleagues from the National Statistical Institutes that have contributed with information. Further information: Karin Jordan Tel.: ++ 352 4301 32308 Fax: ++ 352 4301 30039 E-mail: [email protected] Christian Heidorn Tel.: ++ 352 4301 35271 Fax: ++ 352 4301 30039 E-mail: [email protected] The views expressed in this publication are those of the authors and do not necessarily reflect the opinion of the European Commission. 4 Waste generated and treated in Europe Table of contents Summary........................................................................................................................................ -
Improving Plastics Management: Trends, Policy Responses, and the Role of International Co-Operation and Trade
Improving Plastics Management: Trends, policy responses, and the role of international co-operation and trade POLICY PERSPECTIVES OECD ENVIRONMENT POLICY PAPER NO. 12 OECD . 3 This Policy Paper comprises the Background Report prepared by the OECD for the G7 Environment, Energy and Oceans Ministers. It provides an overview of current plastics production and use, the environmental impacts that this is generating and identifies the reasons for currently low plastics recycling rates, as well as what can be done about it. Disclaimers This paper is published under the responsibility of the Secretary-General of the OECD. The opinions expressed and the arguments employed herein do not necessarily reflect the official views of OECD member countries. This document and any map included herein are without prejudice to the status of or sovereignty over any territory, to the delimitation of international frontiers and boundaries and to the name of any territory, city or area. For Israel, change is measured between 1997-99 and 2009-11. The statistical data for Israel are supplied by and under the responsibility of the relevant Israeli authorities. The use of such data by the OECD is without prejudice to the status of the Golan Heights, East Jerusalem and Israeli settlements in the West Bank under the terms of international law. Copyright You can copy, download or print OECD content for your own use, and you can include excerpts from OECD publications, databases and multimedia products in your own documents, presentations, blogs, websites and teaching materials, provided that suitable acknowledgment of OECD as source and copyright owner is given. -
A Benefit–Cost Analysis of Food and Biodegradable Waste Treatment
sustainability Article A Benefit–Cost Analysis of Food and Biodegradable Waste Treatment Alternatives: The Case of Oita City, Japan Micky A. Babalola Graduate School of Education, Hiroshima University, 1-1-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739 8524, Japan; [email protected] Received: 27 January 2020; Accepted: 23 February 2020; Published: 3 March 2020 Abstract: As the generation of food scrap, kitchen, and biodegradable wastes increases, the proper handling of these wastes is becoming an increasingly significant concern for most cities in Japan. A substantial fraction of food and biodegradable waste (FBW) ends up in the incinerator. Therefore, an analytic hierarchy process (AHP) benefit–cost analysis technique was employed in this study to compare different FBW treatment technologies and select the most appropriate FBW disposal technology for Oita City. The four FBW treatment options considered were those recommended by the Japanese Food Waste Recycling Law: anaerobic digestion, compost, landfill, and incineration, which is currently in use. The fundamental AHP was separated into two hierarchy structures for benefit analysis and cost analysis. The criteria used in these two analyses were value added, safety, efficiency, and social benefits for benefit analysis, and cost of energy, cost of operation and maintenance, environmental constraints, and disamenity for cost analysis. The results showed that anaerobic digestion had the highest overall benefit while composting had the least cost overall. The benefit–cost ratio result showed that anaerobic digestion is the most suitable treatment alternative, followed by composting and incineration, with landfill being the least favored. The study recommends that composting could be combined with anaerobic digestion as an optimal FBW management option in Oita City. -
Bio-Waste in Europe — Turning Challenges Into Opportunities
EEA Report No 04/2020 Bio-waste in Europe — turning challenges into opportunities ISSN 1977-8449 EEA Report No 04/2020 Bio-waste in Europe — turning challenges into opportunities Cover design: EEA Cover photo: © Brendan Killeen Layout: Rosendahls a/s Legal notice The contents of this publication do not necessarily reflect the official opinions of the European Commission or other institutions of the European Union. Neither the European Environment Agency nor any person or company acting on behalf of the Agency is responsible for the use that may be made of the information contained in this report. Brexit notice The withdrawal of the United Kingdom from the European Union did not affect the production of this report. Data reported by the United Kingdom are included in all analyses and assessments contained herein, unless otherwise indicated. Copyright notice © European Environment Agency, 2020 Reproduction is authorised provided the source is acknowledged. More information on the European Union is available on the Internet (http://europa.eu). Luxembourg: Publications Office of the European Union, 2020 ISBN 978-92-9480-223-1 ISSN 1977-8449 doi:10.2800/630938 European Environment Agency Kongens Nytorv 6 1050 Copenhagen K Denmark Tel.: +45 33 36 71 00 Internet: eea.europa.eu Enquiries: eea.europa.eu/enquiries Contents Contents Authors and acknowledgements .............................................................................................. 4 Key messages ............................................................................................................................. -
Tracking the Global Generation and Exports of E-Waste. Do Existing 2 Estimates Add Up? 3
1 Tracking the global generation and exports of e-waste. Do existing 2 estimates add up? 3 4 Knut Breivik 1,2,*, James M. Armitage 3, Frank Wania 3, Kevin C. Jones 4 5 1 Norwegian Institute for Air Research, Box 100, NO-2027 Kjeller, Norway 6 2 Department of Chemistry, University of Oslo, Box 1033, NO-0315 Oslo, Norway 7 3 Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military 8 Trail, Toronto, Ontario, Canada, M1C 1A4 9 4 Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK 10 *Corresponding author: Norwegian Institute for Air Research, Box 100, NO-2027, Kjeller, Norway, tel.: 11 +47 63 89 80 00; e-mail: [email protected] 12 13 Abstract 14 15 The transport of discarded electronic and electrical appliances (e-waste) to developing regions has 16 received considerable attention, but it is difficult to assess the significance of this issue without a 17 quantitative understanding of the amounts involved. The main objective of this study is to track the 18 global transport of e-wastes by compiling and constraining existing estimates of the amount of e-waste 19 generated domestically in each country MGEN, exported from countries belonging to the Organization for 20 Economic Cooperation and Development (OECD) MEXP, and imported in countries outside of the OECD 21 MIMP. Reference year is 2005 and all estimates are given with an uncertainty range. Estimates of MGEN 22 obtained by apportioning a global total of ~35,000 kt (range 20,000-50,000 kt) based on a nation’s gross 23 domestic product agree well with independent estimates of MGEN for individual countries. -
Determining Factors of Waste Management in Japan
Shimamoto K. DETERMINING FACTORS OF WASTE MANAGEMENT IN JAPAN DETERMINING FACTORS OF WASTE MANAGEMENT IN JAPAN Kenichi SHIMAMOTO Konan University, Hirao School of Management, Japan [email protected] Abstract The volume of waste produced is a major concern for Japan and has heightened the interest in waste management and recycling. This paper examines the factors that impact the municipal solid waste per capita and the recycle rate, applying panel data from 2001 to 2014 for each prefecture in Japan. The results first find that regions with a higher share of female population have a lower municipal solid waste per capita and a higher recycle rate, both at significant levels. The second finding is that a higher share of senior citizens population also has a significantly lower municipal solid waste per capita. On the other hand, the results show that higher gross domestic product and higher rate of educational attainment results in greater municipal solid waste per capita and lower recycle rate at a significant level. Results indicated that regions with robust financial indicators have significantly higher recycle rates. 3 / August 2019 August / 3 Keywords: municipal solid waste per capita, recycle rate, gross domestic product per capita, financial strength, demographic variables. 1. INTRODUCTION With the development of economic activities and increase in consumption, there is growing social concern over the increased production of waste and heightened interest in recycling. This social concern and interest also apply to Japan (Ministry of the Environment, 2016). This paper will examine Volume 14 Issue 14 Volume the factors that impact the behaviours concerning waste and recycling. -
PLASTIC WASTE MANAGEMENT Turning Challenges Into Opportunities
December 2020 PLASTIC WASTE MANAGEMENT Turning Challenges Into Opportunities THE ENERGY AND RESOURCES INSTITUTE Creating Innovative Solutions for a Sustainable Future © COPYRIGHT The material in this publication is copyrighted. Content from this discussion paper may be used for non-commercial purposes, provided it is attributed to the source. This publication does not advocate or criticize any kind of plastic industry. Authors Suneel Pandey, Senior Fellow and Director, Environment & Waste Management Division, TERI Sourabh Manuja, Fellow, Centre for Waste Management, Environment & Waste Management Division, TERI Advisor Dr Syamal Kumar Sarkar, Distinguished Fellow & Program Director, TERI Suggested Format for Citation Pandey,S. and Manuja,S. 2020. Plastic Waste Management-Turning Challenges into Opportunities. New Delhi: The Energy and Resources Institute TERI Press Abhas Mukherjee Rajiv Sharma Published by The Energy and Resources Institute, New Delhi, India FOR MORE INFORMATION Project monitoring cell, The Energy and Resources Institute, Darbari Seth Block, IHC Complex, Lodhi Road, New Delhi 110 003, India | Tel.: +91 11 2468 2100 or 2468 2111 | Fax: +91 11 2468 2144 or 2468 2145 Email: [email protected] | Web: www.teriin.org 2 ∞ Plastic Waste Management: Turning Challenges Into Opportunities CONTENTS 1. PLASTIC WASTE—HOW BIG IS THE ISSUE? ............................................................5 Increasing Plastic Demand ..................................................................................... 5 Increasing Plastic Waste -
Case Studies of Advanced Construction and Demolition Waste(CDW) Recycling Initiatives and Technologies in JAPAN”
Case studies of Advanced Construction and Demolition waste(CDW) Recycling initiatives and technologies In JAPAN March,2019 Promotion Council for Recycling Construction Materials and Wastes Introductory notes on “Case studies of Advanced Construction and Demolition waste(CDW) Recycling initiatives and technologies In JAPAN” We act as the world top runner in terms of the policy system, actual recycli n g rate, and recycle technologies in the course of challenging to the Construction and Demolition waste (CDW) Recycling of Japan. (Refer to the description of following pages.) The Promotion Council for Recycling Construction Materials and Wastes has pushed forward various activities, such as preparation of this “Case Studies”, etc. With these activities, the academic, business, and government will deliver jointly the informat ion on advanced CDW recycling initiatives and technologi e s in Japan from Tokyo to all sections of Japan and further to the world. Such activities were motivated by the opportunity of Japan attracting the world attentions because of The 2020 Tokyo Olympic and Paralympic Games This “Case Studeis” has been compiled through cooperation of those concern ed and will be reviewed as required from time to time. Note that this “ Case Studeis” is available in PDF form from the following address: https://www.suishinkaigi.jp/en/works. html March, 2019 Promotion Council for Recycling Construction Materials and Wastes (Secret ariat; Advanced Construction Technology Center (ACTEC)) Construction and Demolition Waste(CDW) Recycling -
Current Situation and Development of Kitchen Waste Treatment in China
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Available online at www.sciencedirect.com ScienceDirect Procedia Environmental Sciences 31 ( 2016 ) 40 – 49 The Tenth International Conference on Waste Management and Technology (ICWMT) Current situation and development of kitchen waste treatment in China Yangyang Li a,b,*, Yiying Jina, Jinhui Lia, Yixing Chena, Yingyi Gongc, Yuezhong Lidˈ d Jinfeng Zhang a. School of Environment, Tsinghua University, Beijing 100084, China b, Key Laboratory for Solid Waste Management and Environment Safety (Tsinghua University), Ministry of Education of China, Tsinghua University, Beijing 100084, China c. Key laboratory of thermal engineering, Department of Thermal Engineering, Tsinghua University, Beijing 100084, China d. Jiangsu Welle Environmental Co,.Ltd, Changzhou, 213125, China Abstract More than 30 million tons of kitchen wastes (KW) are produced in China every year. Approximately 80% of the collected KW has been directly utilized as feedstuff in pig farms in China, which is facing strict restrictions by China's Ministry of Agriculture due to concerns of foot and mouth disease, and raw materials for illegal extraction of hogwash oil, which is unsanitary and can cause serious illness. In addition, the universal concern on environmental protection, resource utilization and food safety has brought increasing research on KW processing technology. According to the policy perspective on promoting the recycling application and resource saving of KW, developing resource-saving and environment-friendly society as well as circular economy and protecting the ecological environment in both China (FAGAIHUANZI [2010] No. 1020) and other countries, it is required especially in China that the construction of pilot projects should be conducted overall planning and combinational optimization to enhance resource-oriented utilization and harmless treatment of three phases in KW, including oil, solid and liquid phase (FAGAIHUANZI [2010] No. -
The Potential Benefits of Introducing Informal Recyclers and Organic Waste Recovery to a Current Waste Management System
resources Article The Potential Benefits of Introducing Informal Recyclers and Organic Waste Recovery to a Current Waste Management System: The Case Study of Santiago de Chile Ailyn Rojas C. 1, Helmut Yabar 2,*, Takeshi Mizunoya 2 and Yoshiro Higano 2 ID 1 Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; [email protected] 2 Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; [email protected] (T.M.); [email protected] (Y.H.) * Correspondence: [email protected]; Tel.: +81-29-853-4958 Received: 14 January 2018; Accepted: 24 February 2018; Published: 2 March 2018 Abstract: Chile has experienced rapid economic growth in recent decades. However, this economic growth has been accompanied by a huge increase in waste generation. Although the country has historically put emphasis on appropriate final disposal of waste through landfill, the environmental problems generated by this activity have shown that it is necessary to improve the national solid waste management approach. Santiago, the capital of Chile, generates about 43% of the national solid waste. A study conducted by the Ministry of the Environment in 2011 found that 14% of the waste generated in the capital is recycled, mostly thanks to local campaigns and collection by the informal sector (scavengers). While in 2009 the government set a target to recycle 25% of municipal inorganic waste by 2020, there is no information on the implementation process to reach this target. Most importantly, the law has not established specific recycling rates for target materials, and, has not taken into consideration organic waste recovery, which accounts for 48% of the total waste stream.