Harmonic Dynamics of the Abelian Sandpile
Harmonic dynamics of the abelian sandpile Moritz Langa,1 and Mikhail Shkolnikova aInstitute of Science and Technology Austria, 3400 Klosterneuburg, Austria Edited by Yuval Peres, Microsoft Research, Redmond, WA, and approved January 3, 2019 (received for review July 12, 2018) The abelian sandpile is a cellular automaton which serves as “avalanche.” Due to the loss of particles at the boundaries of the the archetypical model to study self-organized criticality, a phe- domain, this process eventually terminates (ref. 4, theorem 1), nomenon occurring in various biological, physical, and social pro- and the “relaxed” sandpile reaches a stable configuration which cesses. Its recurrent configurations form an abelian group, whose is independent of the order of topplings (ref. 3, p. 13). The distri- identity is a fractal composed of self-similar patches. Here, we ana- bution of avalanche sizes—the total number of topplings after a lyze the evolution of the sandpile identity under harmonic fields random particle drop—follows a power law (1) and is thus scale of different orders. We show that this evolution corresponds to invariant. However, the critical exponent for this power law is yet periodic cycles through the abelian group characterized by the unknown (5). smooth transformation and apparent conservation of the patches Soon after the introduction of the sandpile model (1), it was constituting the identity. The dynamics induced by second- and observed that the set of stable configurations can be divided third-order harmonics resemble smooth stretchings and transla- into two classes, recurrent and transient ones (6). Thereby, a tions, respectively,while the ones induced by fourth-order harmon- stable configuration is recurrent if it appears infinitely often ics resemble magnifications and rotations.
[Show full text]