000000111.Sbu.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Copy on Write Based File Systems Performance Analysis and Implementation
Copy On Write Based File Systems Performance Analysis And Implementation Sakis Kasampalis Kongens Lyngby 2010 IMM-MSC-2010-63 Technical University of Denmark Department Of Informatics Building 321, DK-2800 Kongens Lyngby, Denmark Phone +45 45253351, Fax +45 45882673 [email protected] www.imm.dtu.dk Abstract In this work I am focusing on Copy On Write based file systems. Copy On Write is used on modern file systems for providing (1) metadata and data consistency using transactional semantics, (2) cheap and instant backups using snapshots and clones. This thesis is divided into two main parts. The first part focuses on the design and performance of Copy On Write based file systems. Recent efforts aiming at creating a Copy On Write based file system are ZFS, Btrfs, ext3cow, Hammer, and LLFS. My work focuses only on ZFS and Btrfs, since they support the most advanced features. The main goals of ZFS and Btrfs are to offer a scalable, fault tolerant, and easy to administrate file system. I evaluate the performance and scalability of ZFS and Btrfs. The evaluation includes studying their design and testing their performance and scalability against a set of recommended file system benchmarks. Most computers are already based on multi-core and multiple processor architec- tures. Because of that, the need for using concurrent programming models has increased. Transactions can be very helpful for supporting concurrent program- ming models, which ensure that system updates are consistent. Unfortunately, the majority of operating systems and file systems either do not support trans- actions at all, or they simply do not expose them to the users. -
VIA RAID Configurations
VIA RAID configurations The motherboard includes a high performance IDE RAID controller integrated in the VIA VT8237R southbridge chipset. It supports RAID 0, RAID 1 and JBOD with two independent Serial ATA channels. RAID 0 (called Data striping) optimizes two identical hard disk drives to read and write data in parallel, interleaved stacks. Two hard disks perform the same work as a single drive but at a sustained data transfer rate, double that of a single disk alone, thus improving data access and storage. Use of two new identical hard disk drives is required for this setup. RAID 1 (called Data mirroring) copies and maintains an identical image of data from one drive to a second drive. If one drive fails, the disk array management software directs all applications to the surviving drive as it contains a complete copy of the data in the other drive. This RAID configuration provides data protection and increases fault tolerance to the entire system. Use two new drives or use an existing drive and a new drive for this setup. The new drive must be of the same size or larger than the existing drive. JBOD (Spanning) stands for Just a Bunch of Disks and refers to hard disk drives that are not yet configured as a RAID set. This configuration stores the same data redundantly on multiple disks that appear as a single disk on the operating system. Spanning does not deliver any advantage over using separate disks independently and does not provide fault tolerance or other RAID performance benefits. If you use either Windows® XP or Windows® 2000 operating system (OS), copy first the RAID driver from the support CD to a floppy disk before creating RAID configurations. -
D:\Documents and Settings\Steph
P45D3 Platinum Series MS-7513 (v1.X) Mainboard G52-75131X1 i Copyright Notice The material in this document is the intellectual property of MICRO-STAR INTERNATIONAL. We take every care in the preparation of this document, but no guarantee is given as to the correctness of its contents. Our products are under continual improvement and we reserve the right to make changes without notice. Trademarks All trademarks are the properties of their respective owners. NVIDIA, the NVIDIA logo, DualNet, and nForce are registered trademarks or trade- marks of NVIDIA Corporation in the United States and/or other countries. AMD, Athlon™, Athlon™ XP, Thoroughbred™, and Duron™ are registered trade- marks of AMD Corporation. Intel® and Pentium® are registered trademarks of Intel Corporation. PS/2 and OS®/2 are registered trademarks of International Business Machines Corporation. Windows® 95/98/2000/NT/XP/Vista are registered trademarks of Microsoft Corporation. Netware® is a registered trademark of Novell, Inc. Award® is a registered trademark of Phoenix Technologies Ltd. AMI® is a registered trademark of American Megatrends Inc. Revision History Revision Revision History Date V1.0 First release for PCB 1.X March 2008 (P45D3 Platinum) Technical Support If a problem arises with your system and no solution can be obtained from the user’s manual, please contact your place of purchase or local distributor. Alternatively, please try the following help resources for further guidance. Visit the MSI website for FAQ, technical guide, BIOS updates, driver updates, and other information: http://global.msi.com.tw/index.php? func=faqIndex Contact our technical staff at: http://support.msi.com.tw/ ii Safety Instructions 1. -
Designing Disk Arrays for High Data Reliability
Designing Disk Arrays for High Data Reliability Garth A. Gibson School of Computer Science Carnegie Mellon University 5000 Forbes Ave., Pittsbugh PA 15213 David A. Patterson Computer Science Division Electrical Engineering and Computer Sciences University of California at Berkeley Berkeley, CA 94720 hhhhhhhhhhhhhhhhhhhhhhhhhhhhh This research was funded by NSF grant MIP-8715235, NASA/DARPA grant NAG 2-591, a Computer Measurement Group fellowship, and an IBM predoctoral fellowship. 1 Proposed running head: Designing Disk Arrays for High Data Reliability Please forward communication to: Garth A. Gibson School of Computer Science Carnegie Mellon University 5000 Forbes Ave. Pittsburgh PA 15213-3890 412-268-5890 FAX 412-681-5739 [email protected] ABSTRACT Redundancy based on a parity encoding has been proposed for insuring that disk arrays provide highly reliable data. Parity-based redundancy will tolerate many independent and dependent disk failures (shared support hardware) without on-line spare disks and many more such failures with on-line spare disks. This paper explores the design of reliable, redundant disk arrays. In the context of a 70 disk strawman array, it presents and applies analytic and simulation models for the time until data is lost. It shows how to balance requirements for high data reliability against the overhead cost of redundant data, on-line spares, and on-site repair personnel in terms of an array's architecture, its component reliabilities, and its repair policies. 2 Recent advances in computing speeds can be matched by the I/O performance afforded by parallelism in striped disk arrays [12, 13, 24]. Arrays of small disks further utilize advances in the technology of the magnetic recording industry to provide cost-effective I/O systems based on disk striping [19]. -
Membrane: Operating System Support for Restartable File Systems Swaminathan Sundararaman, Sriram Subramanian, Abhishek Rajimwale, Andrea C
Membrane: Operating System Support for Restartable File Systems Swaminathan Sundararaman, Sriram Subramanian, Abhishek Rajimwale, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Michael M. Swift Computer Sciences Department, University of Wisconsin, Madison Abstract and most complex code bases in the kernel. Further, We introduce Membrane, a set of changes to the oper- file systems are still under active development, and new ating system to support restartable file systems. Mem- ones are introduced quite frequently. For example, Linux brane allows an operating system to tolerate a broad has many established file systems, including ext2 [34], class of file system failures and does so while remain- ext3 [35], reiserfs [27], and still there is great interest in ing transparent to running applications; upon failure, the next-generation file systems such as Linux ext4 and btrfs. file system restarts, its state is restored, and pending ap- Thus, file systems are large, complex, and under develop- plication requests are serviced as if no failure had oc- ment, the perfect storm for numerous bugs to arise. curred. Membrane provides transparent recovery through Because of the likely presence of flaws in their imple- a lightweight logging and checkpoint infrastructure, and mentation, it is critical to consider how to recover from includes novel techniques to improve performance and file system crashes as well. Unfortunately, we cannot di- correctness of its fault-anticipation and recovery machin- rectly apply previous work from the device-driver litera- ery. We tested Membrane with ext2, ext3, and VFAT. ture to improving file-system fault recovery. File systems, Through experimentation, we show that Membrane in- unlike device drivers, are extremely stateful, as they man- duces little performance overhead and can tolerate a wide age vast amounts of both in-memory and persistent data; range of file system crashes. -
Disk Array Data Organizations and RAID
Guest Lecture for 15-440 Disk Array Data Organizations and RAID October 2010, Greg Ganger © 1 Plan for today Why have multiple disks? Storage capacity, performance capacity, reliability Load distribution problem and approaches disk striping Fault tolerance replication parity-based protection “RAID” and the Disk Array Matrix Rebuild October 2010, Greg Ganger © 2 Why multi-disk systems? A single storage device may not provide enough storage capacity, performance capacity, reliability So, what is the simplest arrangement? October 2010, Greg Ganger © 3 Just a bunch of disks (JBOD) A0 B0 C0 D0 A1 B1 C1 D1 A2 B2 C2 D2 A3 B3 C3 D3 Yes, it’s a goofy name industry really does sell “JBOD enclosures” October 2010, Greg Ganger © 4 Disk Subsystem Load Balancing I/O requests are almost never evenly distributed Some data is requested more than other data Depends on the apps, usage, time, … October 2010, Greg Ganger © 5 Disk Subsystem Load Balancing I/O requests are almost never evenly distributed Some data is requested more than other data Depends on the apps, usage, time, … What is the right data-to-disk assignment policy? Common approach: Fixed data placement Your data is on disk X, period! For good reasons too: you bought it or you’re paying more … Fancy: Dynamic data placement If some of your files are accessed a lot, the admin (or even system) may separate the “hot” files across multiple disks In this scenario, entire files systems (or even files) are manually moved by the system admin to specific disks October 2010, Greg -
Identify Storage Technologies and Understand RAID
LESSON 4.1_4.2 98-365 Windows Server Administration Fundamentals IdentifyIdentify StorageStorage TechnologiesTechnologies andand UnderstandUnderstand RAIDRAID LESSON 4.1_4.2 98-365 Windows Server Administration Fundamentals Lesson Overview In this lesson, you will learn: Local storage options Network storage options Redundant Array of Independent Disk (RAID) options LESSON 4.1_4.2 98-365 Windows Server Administration Fundamentals Anticipatory Set List three different RAID configurations. Which of these three bus types has the fastest transfer speed? o Parallel ATA (PATA) o Serial ATA (SATA) o USB 2.0 LESSON 4.1_4.2 98-365 Windows Server Administration Fundamentals Local Storage Options Local storage options can range from a simple single disk to a Redundant Array of Independent Disks (RAID). Local storage options can be broken down into bus types: o Serial Advanced Technology Attachment (SATA) o Integrated Drive Electronics (IDE, now called Parallel ATA or PATA) o Small Computer System Interface (SCSI) o Serial Attached SCSI (SAS) LESSON 4.1_4.2 98-365 Windows Server Administration Fundamentals Local Storage Options SATA drives have taken the place of the tradition PATA drives. SATA have several advantages over PATA: o Reduced cable bulk and cost o Faster and more efficient data transfer o Hot-swapping technology LESSON 4.1_4.2 98-365 Windows Server Administration Fundamentals Local Storage Options (continued) SAS drives have taken the place of the traditional SCSI and Ultra SCSI drives in server class machines. SAS have several -
6 O--C/?__I RAID-II: Design and Implementation Of
f r : NASA-CR-192911 I I /N --6 o--c/?__i _ /f( RAID-II: Design and Implementation of a/t 't Large Scale Disk Array Controller R.H. Katz, P.M. Chen, A.L. Drapeau, E.K. Lee, K. Lutz, E.L. Miller, S. Seshan, D.A. Patterson r u i (NASA-CR-192911) RAID-Z: DESIGN N93-25233 AND IMPLEMENTATION OF A LARGE SCALE u DISK ARRAY CONTROLLER (California i Univ.) 18 p Unclas J II ! G3160 0158657 ! I i I \ i O"-_ Y'O J i!i111 ,= -, • • ,°. °.° o.o I I Report No. UCB/CSD-92-705 "-----! I October 1992 _,'_-_,_ i i I , " Computer Science Division (EECS) University of California, Berkeley Berkeley, California 94720 RAID-II: Design and Implementation of a Large Scale Disk Array Controller 1 R. H. Katz P. M. Chen, A. L Drapeau, E. K. Lee, K. Lutz, E. L Miller, S. Seshan, D. A. Patterson Computer Science Division Electrical Engineering and Computer Science Department University of California, Berkeley Berkeley, CA 94720 Abstract: We describe the implementation of a large scale disk array controller and subsystem incorporating over 100 high performance 3.5" disk chives. It is designed to provide 40 MB/s sustained performance and 40 GB capacity in three 19" racks. The array controller forms an integral part of a file server that attaches to a Gb/s local area network. The controller implements a high bandwidth interconnect between an interleaved memory, an XOR calculation engine, the network interface (HIPPI), and the disk interfaces (SCSI). The system is now functionally operational, and we are tuning its performance. -
The Complete Freebsd
The Complete FreeBSD® If you find errors in this book, please report them to Greg Lehey <grog@Free- BSD.org> for inclusion in the errata list. The Complete FreeBSD® Fourth Edition Tenth anniversary version, 24 February 2006 Greg Lehey The Complete FreeBSD® by Greg Lehey <[email protected]> Copyright © 1996, 1997, 1999, 2002, 2003, 2006 by Greg Lehey. This book is licensed under the Creative Commons “Attribution-NonCommercial-ShareAlike 2.5” license. The full text is located at http://creativecommons.org/licenses/by-nc-sa/2.5/legalcode. You are free: • to copy, distribute, display, and perform the work • to make derivative works under the following conditions: • Attribution. You must attribute the work in the manner specified by the author or licensor. • Noncommercial. You may not use this work for commercial purposes. This clause is modified from the original by the provision: You may use this book for commercial purposes if you pay me the sum of USD 20 per copy printed (whether sold or not). You must also agree to allow inspection of printing records and other material necessary to confirm the royalty sums. The purpose of this clause is to make it attractive to negotiate sensible royalties before printing. • Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under a license identical to this one. • For any reuse or distribution, you must make clear to others the license terms of this work. • Any of these conditions can be waived if you get permission from the copyright holder. Your fair use and other rights are in no way affected by the above. -
Freebsd Handbook
FreeBSD Handbook http://www.freebsd.org/doc/en_US.ISO8859-1/books/han... FreeBSD Handbook The FreeBSD Documentation Project Copyright © 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 The FreeBSD Documentation Project Welcome to FreeBSD! This handbook covers the installation and day to day use of FreeBSD 8.3-RELEASE and FreeBSD 9.1-RELEASE. This manual is a work in progress and is the work of many individuals. As such, some sections may become dated and require updating. If you are interested in helping out with this project, send email to the FreeBSD documentation project mailing list. The latest version of this document is always available from the FreeBSD web site (previous versions of this handbook can be obtained from http://docs.FreeBSD.org/doc/). It may also be downloaded in a variety of formats and compression options from the FreeBSD FTP server or one of the numerous mirror sites. If you would prefer to have a hard copy of the handbook, you can purchase one at the FreeBSD Mall. You may also want to search the handbook. REDISTRIBUTION AND USE IN SOURCE (XML DOCBOOK) AND 'COMPILED' FORMS (XML, HTML, PDF, POSTSCRIPT, RTF AND SO FORTH) WITH OR WITHOUT MODIFICATION, ARE PERMITTED PROVIDED THAT THE FOLLOWING CONDITIONS ARE MET: 1. REDISTRIBUTIONS OF SOURCE CODE (XML DOCBOOK) MUST RETAIN THE ABOVE COPYRIGHT NOTICE, THIS LIST OF CONDITIONS AND THE FOLLOWING DISCLAIMER AS THE FIRST LINES OF THIS FILE UNMODIFIED. 2. REDISTRIBUTIONS IN COMPILED FORM (TRANSFORMED TO OTHER DTDS, CONVERTED TO PDF, POSTSCRIPT, RTF AND OTHER FORMATS) MUST REPRODUCE THE ABOVE COPYRIGHT NOTICE, THIS LIST OF CONDITIONS AND THE FOLLOWING DISCLAIMER IN THE DOCUMENTATION AND/OR OTHER MATERIALS PROVIDED WITH THE DISTRIBUTION. -
A File System Level Snapshot in Ext4
Computer Engineering and Intelligent Systems www.iiste.org ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) Vol 2, No.8, 2011 A File System Level Snapshot In Ext4 Uma Nagaraj Computer Engineering Department, Pune University, MAE, Alandi Pune, Maharashtra 412105, India E-mail: [email protected] Ganesh Patil Computer Engineering Department, Pune University, MAE, Alandi Pune, Maharashtra 412105, India E-mail: [email protected] Swapnil Gaikwad Computer Engineering Department, Pune University, MAE, Alandi Pune, Maharashtra 412105, India E-mail: [email protected] Akshay Nehe Computer Engineering Department, Pune University, MAE, Alandi Pune, Maharashtra 412105, India E-mail: [email protected] Ashish Mayekar Computer Engineering Department, Pune University, MAE, Alandi Pune, Maharashtra 412105, India E-mail: [email protected] Received: 2011-10-20 Accepted: 2011-10-29 Published:2011-11-04 Abstract Snapshot makes a copy of current working system. Creating a snapshot with some processing and overheads is important to provide the reliable data service during backup. There are two types of snapshot techniques: volume-based approach and system-based approach. The volume-based Logical Volume Manager provides compact space usability, but requires some space to save snapshot and makes system with extra overheads. The system-based Snapshot works better than volume based. The file system based Snapshot does not need reserve space for snapshot. Therefore, the system-based Snapshot is considered a good solution in the computer environment where large-scale space management capability is not that critical. However, such snapshot feature is available in Linux kernel 2.2, 2.6 in EXT3 file system. In this paper, we proposed a system-based snapshot for the ext4 system in Linux kernel 2.6 or higher. -
Techsmart Representatives
Wave TechSmart representatives RAID BASICS ARE YOUR SECURITY SOLUTIONS FAULT TOLERANT? Redundant Array of Independent Disks (RAID) is a Enclosure: The "box" which contains the controller, storage technology used to improve the processing drives/drive trays and bays, power supplies, and fans is capability of storage systems. This technology is called an "enclosure." The enclosure includes various designed to provide reliability in disk array systems and controls, ports, and other features used to connect the to take advantage of the performance gains offered by RAID to a host for example. an array of mulple disks over single-disk storage. Wave RepresentaCves has experience with both high- RAID’s two primary underlying concepts are (1) that performance compuCng and enterprise storage, providing distribuCng data over mulple hard drives improves soluCons to large financial instuCons to research performance and (2) that using mulple drives properly laboratories. The security industry adopted superior allows for any one drive to fail without loss of data and compuCng and storage technologies aGer the transiCon without system downCme. In the event of a disk from analog systems to IP based networks. This failure, disk access will conCnue normally and the failure evoluCon has created robust and resilient systems that will be transparent to the host system. can handle high bandwidth from video surveillance soluCons to availability for access control and emergency Originally designed and implemented for SCSI drives, communicaCons. RAID principles have been applied to SATA and SAS drives in many video systems. Redundancy of any system, especially of components that have a lower tolerance in MTBF makes sense.