Passive Seismic Interferometry in the Real World: Application with Microseismic and Traffic Noise
Total Page:16
File Type:pdf, Size:1020Kb
Passive seismic interferometry in the real world: Application with microseismic and traffic noise By Yang Zhao A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Engineering - Civil and Environmental Engineering in the Graduate Division of the University of California, Berkeley Committee in charge: Professor James W. Rector III, Chair Professor Steven D. Glaser Professor Doug Dreger Fall 2013 Passive seismic interferometry in the real world: Application with microseismic and traffic noise © 2013 by Yang Zhao Abstract Passive seismic interferometry in the real world: Application with microseismic and traffic noise by Yang Zhao Doctor of Philosophy in Civil and Environmental Engineering University of California, Berkeley Professor James Rector III, Chair The past decade witnessed rapid development of the theory of passive seismic interferometry followed by numerous applications of interferometric approaches in seismic exploration and exploitation. Developments conclusively demonstrates that a stack of cross- correlations of traces recorded by two receivers over sources appropriately distributed in three-dimensional heterogeneous earth can retrieve a signal that would be observed at one receiver if another acted as a source of seismic waves. The main objective of this dissertation was to review the mathematical proof of passive seismic interferometry, and to develop innovative applications using microseismicity induced by hydraulic fracturing and near-surface void characterization. We began this dissertation with the definitions and mathematical proof of Green’s function representation, together with the description of the physical mechanisms of passive seismic interferometry. Selected computational methods of passive seismic interferometry are also included. The first application was to extract body waves and perform anisotropy analysis from passive downhole microseismic noise acquired in hydrocarbon-bearing reservoirs. We demonstrate the ability to retrieve various cross-well and VSP-type data from noise for a number of acquisition geometries, providing crucial information for constructing velocity models and estimating local stress/strain and anisotropic parameters. An important advantage compared to traditional studies of microseismicity induced by hydraulic fracturing appear to 1 possess wide spatial apertures, allowing the successful reconstruction of waves that travel directly between the downhole receivers. The second application is to image subsurface voids by measuring variations in the amplitude of seismic surface waves generated by motor vehicles. Our key innovation is based on the cross-correlation of surface wavefields and studying the resulting power spectra, looking for shadows caused by the scattering effects of a void. We are able to conclude that measuring scattered surface waves generated by motor vehicles is a better tool for finding underground voids comparing to conventional techniques based on phase/amplitude distortion using active sources. We expect the number of applications of passive interferometry in microseismic/near surface characterization to grow once practitioners recognize its value and begin using the method. 2 Table of Contents Chapter 1 ............................................................................................................................................... 1 1.1 History and Development ............................................................................................................. 1 1.2 Theory .......................................................................................................................................... 2 1.3 Applications ................................................................................................................................. 3 1.5 References .................................................................................................................................... 5 Chapter 2 ............................................................................................................................................... 8 2.1 Summary ...................................................................................................................................... 8 2.2 1D Passive Wave Interferometry ................................................................................................. 8 2.3 2D and 3D Passive Wave Interferometry ................................................................................... 15 2.4 Interferometric computational methods ..................................................................................... 21 2.4.1. Cross-correlation ................................................................................................................ 22 2.4.2 Cross-Sign ........................................................................................................................... 23 2.4.3 Deconvolution ..................................................................................................................... 24 2.4.4. Cross-Coherence ................................................................................................................ 24 2.5 Conclusion .................................................................................................................................. 26 Chapter 3 ............................................................................................................................................. 30 3.1 Summary .................................................................................................................................... 30 3.2 Introduction ................................................................................................................................ 30 3.3 The Geology ............................................................................................................................... 31 3.4 Computations ............................................................................................................................. 33 3.5 Synthetics Study ......................................................................................................................... 34 3.6 Zero-offset VSP .......................................................................................................................... 36 3.7 Direct measurement of the horizontal velocity .......................................................................... 41 3. 8 Shear-wave cross-well survey ................................................................................................... 44 3. 9 Shear-wave splitting .................................................................................................................. 47 3.10 Concluding remarks and remaining issues ............................................................................... 53 3.11 References ................................................................................................................................ 56 Chapter 4 ............................................................................................................................................. 58 4.1 Summary .................................................................................................................................... 58 4.2 Introduction ................................................................................................................................ 58 4.3 Computations ............................................................................................................................. 59 4.4 Experimental Results .................................................................................................................. 60 4.4.1 Modeling Results ................................................................................................................. 60 i 4.4.2 First Field Experiment: seismic signal of cars .................................................................... 64 4.4.3 Second Field Experiment: Detection of a septic tank.......................................................... 67 4.4.4 Third Experiment: railroad tunnel ....................................................................................... 69 4.5 Conclusion .................................................................................................................................. 71 4.6 Reference .................................................................................................................................... 73 Chapter 5 ............................................................................................................................................. 75 5.1 Summary .................................................................................................................................... 75 5.2 Conclusions of Microseismic Interferometry ............................................................................. 75 5.3 Conclusions of Passive Interferometry for Finding Voids Using Traffic Noises ....................... 76 5.4 The Future .................................................................................................................................. 76 5.5 Limitations ................................................................................................................................. 76 5.5 Reference ...................................................................................................................................