On “asymptotically flat” space–times with G2–invariant Cauchy surfaces B.K. Berger∗ P.T. Chru´sciel† V. Moncrief‡ Institute for Theoretical Physics University of California Santa Barbara, California 93106–4030 gr-qc/9404005 Abstract In this paper we study space-times which evolve out of Cauchy data (Σ, 3g, K) invariant under the action of a two-dimensional commutative Lie group. Moreover (Σ, 3g, K) are assumed to satisfy certain complete- ness and asymptotic flatness conditions in spacelike directions. We show that asymptotic flatness and energy conditions exclude all topologies and 3 group actions except for a cylindrically symmetric R , or a periodic iden- tification thereof along the z–axis. We prove that asymptotic flatness, en- ergy conditions and cylindrical symmetry exclude the existence of compact trapped surfaces. Finally we show that the recent results of Christodoulou and Tahvildar–Zadeh concerning global existence of a class of wave–maps imply that strong cosmic censorship holds in the class of asymptotically flat cylindrically symmetric electro–vacuum space–times. ∗Permanent address: Department of Physics, Oakland University, Rochester MI 48309. Supported in part by an NSF grant # PHY 89–04035 to the ITP, UCSB and NSF grants # PHY–9107162 and PHY–9305599 to Oakland University. e–mail:
[email protected] †On leave from the Institute of Mathematics of the Polish Academy of Sciences. Supported in part by a KBN grant # 2 1047 9101, an NSF grant # PHY 89–04035 to the ITP, UCSB, and the Alexander von Humboldt Foundation. e–mail:
[email protected]. Present address: Max Planck Institut f¨ur Astrophysik, Karl Schwarzschild Str.