Progress Report I: March 2017
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Exploratory Trip to Democratic Republic of the Congo, August 20 – September 15, 2004
Exploratory Trip to Democratic Republic of the Congo, August 20 – September 15, 2004 Trip Report for International Programs Office, USDA Forest Service, Washington, D.C. Final version: December 15, 2004 Bruce G. Marcot, USDA Forest Service Pacific Northwest Research Station, 620 S.W. Main St., Suite 400, Portland, Oregon 97205, 503-808-2010, [email protected] Rick Alexander, USDA Forest Service Forest Service Pacific Southwest Region, 1323 Club Dr., Vallejo CA 94592, 707 562-9014, [email protected] CONTENTS 1 Summary ……………………………………………………………………………………… 4 2 Introduction and Setting ………………………………………………………….…………… 5 3 Terms of Reference ……………………….…………………...……………………………… 5 4 Team Members and Contacts ………………………………………………….……………… 6 5 Team Schedule and Itinerary …………………………………………..….………...………… 6 6 Challenges to Community Forestry ...…………………………………………….…………… 7 6.1 Use of Community Options and Investment Tools (COAIT) ……………………… 7 6.2 Feasibility and Desirability of Lac Tumba Communities Engaging in Sustainable Timber Harvesting ..……………………………………….….…… 10 7 Conclusions, Recommendations, and Opportunities ..………………………...……………... 15 7.1 Overall Conclusions ...……………………………………………….………….…. 15 7.2 Recommendations …………………………………………………….…………… 19 7.2.1 Potential further involvement by FS .…………………………...………. 19 7.2.2 Aiding village communities under the IRM COAIT process .………..… 20 7.2.3 IRM’s community forest management program ..…………………...….. 23 7.2.4 USAID and CARPE .………………………………………….………… 26 7.2.5 Implementation Decrees under the 2002 Forestry Code ……………….. 28 8 Specific Observations ..……………………………………………...…………………….…. 32 8.1 Wildlife and Biodiversity …………………………………………..……………… 32 8.1.1 Endangered wildlife and the bushmeat trade .………………………..…. 32 8.1.2 Wildlife of young and old forests .…………………………………...…. 34 8.1.3 Forest trees and their associations .………………………………….….. 37 8.1.4 Caterpillars and trees .……………………………………………….….. 38 8.1.5 Islands and trees …………………………………………………….….. 39 8.1.6 Army ants ………………..………………………….…………………. -
Goliath Frogs Build Nests for Spawning – the Reason for Their Gigantism? Marvin Schäfera, Sedrick Junior Tsekanéb, F
JOURNAL OF NATURAL HISTORY 2019, VOL. 53, NOS. 21–22, 1263–1276 https://doi.org/10.1080/00222933.2019.1642528 Goliath frogs build nests for spawning – the reason for their gigantism? Marvin Schäfera, Sedrick Junior Tsekanéb, F. Arnaud M. Tchassemb, Sanja Drakulića,b,c, Marina Kamenib, Nono L. Gonwouob and Mark-Oliver Rödel a,b,c aMuseum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany; bFaculty of Science, Laboratory of Zoology, University of Yaoundé I, Yaoundé, Cameroon; cFrogs & Friends, Berlin, Germany ABSTRACT ARTICLE HISTORY In contrast to its popularity, astonishingly few facts have become Received 16 April 2019 known about the biology of the Goliath Frog, Conraua goliath.We Accepted 7 July 2019 herein report the so far unknown construction of nests as spawning KEYWORDS sites by this species. On the Mpoula River, Littoral District, West Amphibia; Anura; Cameroon; Cameroon we identified 19 nests along a 400 m section. Nests Conraua goliath; Conrauidae; could be classified into three types. Type 1 constitutes rock pools parental care that were cleared by the frogs from detritus and leaf-litter; type 2 constitutes existing washouts at the riverbanks that were cleared from leaf-litter and/or expanded, and type 3 were depressions dug by the frogs into gravel riverbanks. The cleaning and digging activ- ities of the frogs included removal of small to larger items, ranging from sand and leaves to larger stones. In all nest types eggs and tadpoles of C. goliath were detected. All nest types were used for egg deposition several times, and could comprise up to three distinct cohorts of tadpoles. -
Protected Area Management Plan Development - SAPO NATIONAL PARK
Technical Assistance Report Protected Area Management Plan Development - SAPO NATIONAL PARK - Sapo National Park -Vision Statement By the year 2010, a fully restored biodiversity, and well-maintained, properly managed Sapo National Park, with increased public understanding and acceptance, and improved quality of life in communities surrounding the Park. A Cooperative Accomplishment of USDA Forest Service, Forestry Development Authority and Conservation International Steve Anderson and Dennis Gordon- USDA Forest Service May 29, 2005 to June 17, 2005 - 1 - USDA Forest Service, Forestry Development Authority and Conservation International Protected Area Development Management Plan Development Technical Assistance Report Steve Anderson and Dennis Gordon 17 June 2005 Goal Provide support to the FDA, CI and FFI to review and update the Sapo NP management plan, establish a management plan template, develop a program of activities for implementing the plan, and train FDA staff in developing future management plans. Summary Week 1 – Arrived in Monrovia on 29 May and met with Forestry Development Authority (FDA) staff and our two counterpart hosts, Theo Freeman and Morris Kamara, heads of the Wildlife Conservation and Protected Area Management and Protected Area Management respectively. We decided to concentrate on the immediate implementation needs for Sapo NP rather than a revision of existing management plan. The four of us, along with Tyler Christie of Conservation International (CI), worked in the CI office on the following topics: FDA Immediate -
3Systematics and Diversity of Extant Amphibians
Systematics and Diversity of 3 Extant Amphibians he three extant lissamphibian lineages (hereafter amples of classic systematics papers. We present widely referred to by the more common term amphibians) used common names of groups in addition to scientifi c Tare descendants of a common ancestor that lived names, noting also that herpetologists colloquially refer during (or soon after) the Late Carboniferous. Since the to most clades by their scientifi c name (e.g., ranids, am- three lineages diverged, each has evolved unique fea- bystomatids, typhlonectids). tures that defi ne the group; however, salamanders, frogs, A total of 7,303 species of amphibians are recognized and caecelians also share many traits that are evidence and new species—primarily tropical frogs and salaman- of their common ancestry. Two of the most defi nitive of ders—continue to be described. Frogs are far more di- these traits are: verse than salamanders and caecelians combined; more than 6,400 (~88%) of extant amphibian species are frogs, 1. Nearly all amphibians have complex life histories. almost 25% of which have been described in the past Most species undergo metamorphosis from an 15 years. Salamanders comprise more than 660 species, aquatic larva to a terrestrial adult, and even spe- and there are 200 species of caecilians. Amphibian diver- cies that lay terrestrial eggs require moist nest sity is not evenly distributed within families. For example, sites to prevent desiccation. Thus, regardless of more than 65% of extant salamanders are in the family the habitat of the adult, all species of amphibians Plethodontidae, and more than 50% of all frogs are in just are fundamentally tied to water. -
Tri-Trophic Interactions of a Predator- Parasite-Host Assemblage in New Zealand
Tri-trophic interactions of a predator- parasite-host assemblage in New Zealand BY KIRSTY JANE YULE A thesis submitted to Victoria University of Wellington in fulfilment of the requirements for the degree of Doctor of Philosophy Victoria University of Wellington (2016) 1 2 This thesis was conducted under the supervision of Associate Professor Kevin Burns (Primary Supervisor) Victoria University of Wellington, New Zealand 3 4 Abstract Parasites are ubiquitous and the antagonistic relationships between parasites and their hosts shape populations and ecosystems. However, our understanding of complex parasitic interactions is lacking. New Zealand’s largest endemic moth, Aenetus virescens (Lepidoptera: Hepialidae) is a long-lived arboreal parasite. Larvae grow to 100mm, living ~6 years in solitary tunnels in host trees. Larvae cover their tunnel entrance with silk and frass webbing, behind which they feed on host tree phloem. Webbing looks much like the tree background, potentially concealing larvae from predatory parrots who consume larvae by tearing wood from trees. Yet, the ecological and evolutionary relationships between the host tree, the parasitic larvae, and the avian predator remain unresolved. In this thesis, I use a system-based approach to investigate complex parasite-host interactions using A. virescens (hereafter “larvae”) as a model system. First, I investigate the mechanisms driving intraspecific parasite aggregation (Chapter 2). Overall, many hosts had few parasites and few hosts had many, with larvae consistently more abundant in larger hosts. I found no evidence for density- dependent competition as infrapopulation size had no effect on long-term larval growth. Host specificity, the number of species utilised from the larger pool available, reflects parasite niche breadth, risk of extinction and ability to colonise new locations. -
Prey Composition of Two Syntopic Phrynobatrachus Species in the Swamp Forest of Banco National Park, Ivory Coast
Prey composition of two syntopic Phrynobatrachus species SALAMANDRA 44 3 177-186 Rheinbach, 20 August 2008 ISSN 0036-3375 Prey composition of two syntopic Phrynobatrachus species in the swamp forest of Banco National Park, Ivory Coast N’Goran Germain Kouamé, Blayda Tohé, N’Guessan Emmanuel Assemian, Germain Gourène & Mark-Oliver Rödel Abstract. We studied the diet of two syntopic and morphologically very similar leaf litter frogs, Phryno- batrachus ghanensis and P. phyllophilus, in Banco National Park, south-eastern Ivory Coast. We deter- mined the prey composition of females of both species to understand the potential avoidance of compe- tition for food. Insects dominated (> 80%) the general diet of both species. We determined insect prey items down to the level of the order. At this level the diet of both species differed, however not signifi- cantly. Whereas P. ghanensis preyed mainly on hymenoptera (65.6%, mostly ants); P. phyllophilus mainly preyed on coleoptera (56.8%). With respect to seasons these differences were even larger, although again not statistically significant. Hence, there seem to be some differences in the food preference of the two species. However, the large overlap in prey can be taken as a hint that competition for food does not play a major role between these two frogs. The slightly different diets are more likely the result of so far unde- tected differences in habitat preferences and / or activity patterns. Key words. Amphibia: Anura: Phrynobatrachidae: Phrynobatrachus ghanensis, P. phyllophilus, diet, swamp forest, syntopic occurrence, West Africa. Résumé. Les régimes alimentaires de Phrynobatrachus ghanensis et P. phyllophilus, deux grenouilles de litière vivant en sympatrie et morphologiquement très proches ont été étudiés dans le Parc National du Banco, sud-est de la Côte d’Ivoire. -
1704632114.Full.Pdf
Phylogenomics reveals rapid, simultaneous PNAS PLUS diversification of three major clades of Gondwanan frogs at the Cretaceous–Paleogene boundary Yan-Jie Fenga, David C. Blackburnb, Dan Lianga, David M. Hillisc, David B. Waked,1, David C. Cannatellac,1, and Peng Zhanga,1 aState Key Laboratory of Biocontrol, College of Ecology and Evolution, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China; bDepartment of Natural History, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611; cDepartment of Integrative Biology and Biodiversity Collections, University of Texas, Austin, TX 78712; and dMuseum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA 94720 Contributed by David B. Wake, June 2, 2017 (sent for review March 22, 2017; reviewed by S. Blair Hedges and Jonathan B. Losos) Frogs (Anura) are one of the most diverse groups of vertebrates The poor resolution for many nodes in anuran phylogeny is and comprise nearly 90% of living amphibian species. Their world- likely a result of the small number of molecular markers tra- wide distribution and diverse biology make them well-suited for ditionally used for these analyses. Previous large-scale studies assessing fundamental questions in evolution, ecology, and conser- used 6 genes (∼4,700 nt) (4), 5 genes (∼3,800 nt) (5), 12 genes vation. However, despite their scientific importance, the evolutionary (6) with ∼12,000 nt of GenBank data (but with ∼80% missing history and tempo of frog diversification remain poorly understood. data), and whole mitochondrial genomes (∼11,000 nt) (7). In By using a molecular dataset of unprecedented size, including 88-kb the larger datasets (e.g., ref. -
Froglognews from the Herpetological Community Regional Focus Sub-Saharan Africa Regional Updates and Latests Research
July 2011 Vol. 97 www.amphibians.orgFrogLogNews from the herpetological community Regional Focus Sub-Saharan Africa Regional updates and latests research. INSIDE News from the ASG Regional Updates Global Focus Leptopelis barbouri Recent Publications photo taken at Udzungwa Mountains, General Announcements Tanzania photographer: Michele Menegon And More..... Another “Lost Frog” Found. ASA Ansonia latidisca found The Amphibian Survival Alliance is launched in Borneo FrogLog Vol. 97 | July 2011 | 1 FrogLog CONTENTS 3 Editorial NEWS FROM THE ASG 4 The Amphibian Survival Alliance 6 Lost Frog found! 4 ASG International Seed Grant Winners 2011 8 Five Years of Habitat Protection for Amphibians REGIONAL UPDATE 10 News from Regional Groups 23 Re-Visiting the Frogs and Toads of 34 Overview of the implementation of 15 Kihansi Spray Toad Re- Zimbabwe Sahonagasy Action plan introduction Guidelines 24 Amatola Toad AWOL: Thirteen 35 Species Conservation Strategy for 15 Biogeography of West African years of futile searches the Golden Mantella amphibian assemblages 25 Atypical breeding patterns 36 Ankaratra massif 16 The green heart of Africa is a blind observed in the Okavango Delta 38 Brief note on the most threatened spot in herpetology 26 Eight years of Giant Bullfrog Amphibian species from Madagascar 17 Amphibians as indicators for research revealed 39 Fohisokina project: the restoration of degraded tropical 28 Struggling against domestic Implementation of Mantella cowani forests exotics at the southern end of Africa action plan 18 Life-bearing toads -
Department of Zoology, Faculty of Science, University of Lagos, Akoka, Lagos, Nigeria Email: [email protected]
Ethiopian Journal of Environmental Studies & Management 9 (1): 22 – 34, 2016. ISSN:1998-0507 doi: http://dx.doi.org/10.4314/ejesm.v9i1.3 Submitted: July 06, 2015 Accepted: January 07, 2015 DISTRIBUTION, DIVERSITY AND ABUNDANCE OF ANURAN SPECIES IN THREE DIFFERENT VEGETATION HABITATS IN SOUTHWESTERN NIGERIA ONADEKO, A.B. Department of Zoology, Faculty of Science, University of Lagos, Akoka, Lagos, Nigeria Email: [email protected] Abstract The distribution, diversity and abundance of anuran species in three different vegetation habitats of Southwestern Nigeria were investigated. A total mean number of 388 individuals comprising 32 species were observed in the forest, 766 individuals in 28 species were recorded in the fallowed farmland and 278 individuals in 21 species in the savanna. There was significant difference (F 2, 129 = 3.602) between the numbers of anuran species inhabiting the three vegetation habitats at P < 0.05 as well as significant difference (F 2, 129 = 5.811) between the number of individuals of anuran species in the three vegetation habitats (P<0.01). The dominant species in the forest was Arthroleptis variabilis (9.02%) and the least abundant species in the forest were Leptopelis macrotis, Phlyctimantis boulengeri and Nectophryne afra each having 0.26%. Amietophrynus maculatus and A. regularis were both abundant in the fallowed farmland and savanna habitats. The least abundant species in the fallowed farmland was Leptopelis calcaratus (0.13%) while the least abundant in the savanna were Xenopus muelleri and Afrixalus dorsalis each with 0.72%. Thirty percent of anuran species observed occurred in all the vegetation habitats, while 27%, 11% and 7% were restricted to the forest, fallowed farmland and savanna respectively. -
The Tadpoles of Four Central African Phrynobatrachus Species
SALAMANDRA 51(2) 91–102 30 JuneTadpoles 2015 of ISSNfour Phrynobatrachus0036–3375 species The tadpoles of four Central African Phrynobatrachus species Tilo Pfalzgraff1, Mareike Hirschfeld1, Michael F. Barej1, Matthias Dahmen1, L. Nono Gonwouo2, Thomas M. Doherty-Bone3,4 & Mark-Oliver Rödel1 1) Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstr. 43, 10115 Berlin, Germany 2) Cameroon Herpetology-Conservation Biology Foundation (CAMHERP-CBF), PO Box 8218, Yaoundé, Cameroon 3) Department of Life Sciences, Natural History Museum, London SW7 5BD, United Kingdom 4) School of Geography & School of Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom Corresponding author: Mark-Oliver Rödel, e-mail: [email protected] Manuscript received: 1 April 2014 Accepted: 17 July 2014 by Stefan Lötters Abstract. We describe the tadpoles of four Cameroonian Phrynobatrachus species, P. auritus, P. chukuchuku, P. jimzimkusi, and P. manengoubensis. While P. auritus is a widespread frog of Central African rainforests, the other three species are endemic to parts of the Cameroonian Volcanic Line. All tadpoles have the short and rotund body shape that is typical of Phrynobatrachus, with comparatively short tails and delicate jaw sheaths. We describe morphological characters suited to differentiate between these species, in particular labial tooth row formulae and the presence or absence of particular papil- lae, and summarize corresponding data for other described tadpoles of the genus. As far as is currently known, different reproductive modes, as well as morphology and biology of Phrynobatrachus tadpoles is not mirrored in the phylogenetic relationships of the respective species. We further point out profound morphological differences between P. -
CONSERVATION of the CRITICALLY ENDANGERED TOGO SLIPPERY FROG ( Conraua Derooi ), in EASTERN GHANA
CONSERVATION OF THE CRITICALLY ENDANGERED TOGO SLIPPERY FROG ( Conraua derooi ), IN EASTERN GHANA Submitted by Ofori-Boateng, C., A. Damoah, G.B. Adum, S. Nsiah, E. Nkrumah and D. Saykay-Tuabeng E-mail: [email protected]. Tel: +233 (0)243038771 April 2012 CONSERVATION OF THE CRITICALLY ENDANGERED TOGO SLIPPERY FROG ( Conraua derooi ), IN EASTERN GHANA CLP project ID: 0143510 This project aimed at protecting the last known viable population of a Critically Endangered frog (the Togo slippery; Conraua derooi ) in Eastern Ghana Project duration: August 2010 – April 2011 Author (s) Ofori-Boateng, C., A. Damoah, G.B. Adum, S. Nsiah, E. Nkrumah and D. Saykay-Tuabeng [email protected] ©April 2012 ACKNOWLEDGEMENT We thank the Forestry Commission of Ghana for permission to carry out this research and conservation work in the Atewa Mountains. We are very grateful to Mr. Moses Sam, (regional manager, Ghana Wildlife Division offices in the western and central regions of Ghana) for supporting this project from the onset. We are thankful to several community members for their help and enthusiasm to promote conservation in their respective communities. Mr. Duodu assisted with our community entry and meeting planning in Sagyimase village. Mr. Mike Ofosu-Takyi provided accommodation for the team members anytime we were near Kibi township. We are also grateful to Mr. Philip Amankwah, Mr. Ibrahim Entsi, Antwi Kwame Prosper and several students and community members who participated in our field work. This work was funded by a future conservationist award from the Conservation Leadership Program (CLP). We are particularly grateful to various help provided by the CLP team particularly, Julie, Stuart, Kiragu and Robyn. -
A Comparison of DNA Barcoding Markers in West African Frogs
African Journal of Herpetology, Vol. 64, No. 2, 2015, 135–147 A comparison of DNA barcoding markers in West African frogs 1,2 3,4 HEIDI J. ROCKNEY *,CALEB OFORI-BOATENG , 1,2 1,2 NATSUKO PORCINO &ADAM D. LEACHÉ 1Burke Museum of Natural History and Culture, University of Washington, Seattle, Washington, USA; 2Department of Biology, University of Washington, Seattle, Washington, USA; 3Forestry Research Institute of Ghana, Kumasi, Ghana; 4Wildlife and Range Management Department, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana Abstract.—DNA barcoding has been proposed as a means of quick species identification using a short standardised segment of DNA. The established barcode gene for animals—the mitochondrial gene cytochrome oxidase one (CO1)—has been plagued by primer failure and low species identification success in amphibians. We investigate the accuracy of CO1 barcoding with a new dataset of West African frogs using the universal CO1 primers and new amphibian-specific CO1 primers in comparison to a proposed alternative DNA barcode for amphibians—the mitochondrial ribosomal 16s gene (16s). Research was performed using 134 specimens, comprising 21 species collected in Ghana, a global biodiversity hotspot with a deficiency of amphibian barcoding resources. These species represent 55% of amphibian species (58% of amphibian families) that are known in the area from surveys from 1988 to 2009. We found nearly a 50% increase in PCR amplification success using the amphibian-specific CO1 primers compared to the universal CO1 primers. However, the overall amplification and sequencing success of the amphibian-specific CO1 primers was low (78%) compared to the 16s gene (100%).