Theory of Computation

Total Page:16

File Type:pdf, Size:1020Kb

Theory of Computation Theory of Computation Theory of computation is a branch of multiple fields, where the most important ones are computer science and mathematics. The initial approach was to mathematics, where by using algorithms, it measured the level of efficiency of a current problem. It can compute man-made problems as well as natural phenomena. The main focus if Theory Computation is divided into three parts: 1. Automata theory 2. Computability theory 3. Computational Complexity theory An automaton is a series of action that determines whether an action should be rejected or accepted. It is developed in states and each state has information about what to do when an input is received by the machine. As many times as the machine is given a new input, it goes back to the state and changes the spot naturalized by the kind of input and takes instruction how to deal with it. When there are no more inputs, the automaton stops and the space it is on when it completes determines whether the automaton declares that it accepts or rejects that particular set of inputs. Computability theory and complexity are the ordering of problems in their level of difficulty and the actual approach if a problem can be computed, solved in computational manners. Computation theory has a lot of applications in real life as well, such that: Lambda calculus, Combinatory logic, Markov algorithm, and Register machine. Also, the theory of computation can overlap with other subjects as well. Two main cluster are complexity theory and algorithms. (Goldreich). As a result, theory of computation has shown a significant impact on the world of computer science. Reference https://toc.seas.harvard.edu/ http://www.csc.villanova.edu/~japaridz/CL/ https://theory.org/complexity/cdpt/html/node3.html Questions : 1- Can we reach a point where no problem is unsolvable for computers? 2- How can theory in computational theory be turned into practice more efficiently? 3- A lot of other subjects brought development to computer science through computational theory. What development does CS bring to other subjects ? .
Recommended publications
  • Computability of Fraïssé Limits
    COMPUTABILITY OF FRA¨ISSE´ LIMITS BARBARA F. CSIMA, VALENTINA S. HARIZANOV, RUSSELL MILLER, AND ANTONIO MONTALBAN´ Abstract. Fra¨ıss´estudied countable structures S through analysis of the age of S, i.e., the set of all finitely generated substructures of S. We investigate the effectiveness of his analysis, considering effectively presented lists of finitely generated structures and asking when such a list is the age of a computable structure. We focus particularly on the Fra¨ıss´elimit. We also show that degree spectra of relations on a sufficiently nice Fra¨ıss´elimit are always upward closed unless the relation is definable by a quantifier-free formula. We give some sufficient or necessary conditions for a Fra¨ıss´elimit to be spectrally universal. As an application, we prove that the computable atomless Boolean algebra is spectrally universal. Contents 1. Introduction1 1.1. Classical results about Fra¨ıss´elimits and background definitions4 2. Computable Ages5 3. Computable Fra¨ıss´elimits8 3.1. Computable properties of Fra¨ıss´elimits8 3.2. Existence of computable Fra¨ıss´elimits9 4. Examples 15 5. Upward closure of degree spectra of relations 18 6. Necessary conditions for spectral universality 20 6.1. Local finiteness 20 6.2. Finite realizability 21 7. A sufficient condition for spectral universality 22 7.1. The countable atomless Boolean algebra 23 References 24 1. Introduction Computable model theory studies the algorithmic complexity of countable structures, of their isomorphisms, and of relations on such structures. Since algorithmic properties often depend on data presentation, in computable model theory classically isomorphic structures can have different computability-theoretic properties.
    [Show full text]
  • 19 Theory of Computation
    19 Theory of Computation "You are about to embark on the study of a fascinating and important subject: the theory of computation. It com- prises the fundamental mathematical properties of computer hardware, software, and certain applications thereof. In studying this subject we seek to determine what can and cannot be computed, how quickly, with how much memory, and on which type of computational model." - Michael Sipser, "Introduction to the Theory of Computation", one of the driest computer science textbooks ever In which we go back to the basics with arcane, boring, and irrelevant set theory and counting. This week’s material is made challenging by two orthogonal issues. There’s a whole bunch of stuff to cover, and 95% of it isn’t the least bit interesting to a physical scientist. Nevertheless, being the starry-eyed optimist that I am, I’ll forge ahead through the mountainous bulk of knowledge. In other words, expect these notes to be long! But skim when necessary; if you look at the homework first (and haven’t entirely forgotten the lectures), you should be able to pick out the important parts. I understand if this type of stuff isn’t exactly your cup of tea, but bear with me while you can. In some sense, most of what we refer to as computer science isn’t computer science at all, any more than what an accountant does is math. Sure, modern economics takes some crazy hardcore theory to make it all work, but un- derlying the whole thing is a solid layer of applications and industrial moolah.
    [Show full text]
  • Software for Numerical Computation
    Purdue University Purdue e-Pubs Department of Computer Science Technical Reports Department of Computer Science 1977 Software for Numerical Computation John R. Rice Purdue University, [email protected] Report Number: 77-214 Rice, John R., "Software for Numerical Computation" (1977). Department of Computer Science Technical Reports. Paper 154. https://docs.lib.purdue.edu/cstech/154 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. SOFTWARE FOR NUMERICAL COMPUTATION John R. Rice Department of Computer Sciences Purdue University West Lafayette, IN 47907 CSD TR #214 January 1977 SOFTWARE FOR NUMERICAL COMPUTATION John R. Rice Mathematical Sciences Purdue University CSD-TR 214 January 12, 1977 Article to appear in the book: Research Directions in Software Technology. SOFTWARE FOR NUMERICAL COMPUTATION John R. Rice Mathematical Sciences Purdue University INTRODUCTION AND MOTIVATING PROBLEMS. The purpose of this article is to examine the research developments in software for numerical computation. Research and development of numerical methods is not intended to be discussed for two reasons. First, a reasonable survey of the research in numerical methods would require a book. The COSERS report [Rice et al, 1977] on Numerical Computation does such a survey in about 100 printed pages and even so the discussion of many important fields (never mind topics) is limited to a few paragraphs. Second, the present book is focused on software and thus it is natural to attempt to separate software research from numerical computation research. This, of course, is not easy as the two are intimately intertwined.
    [Show full text]
  • Turing's Influence on Programming — Book Extract from “The Dawn of Software Engineering: from Turing to Dijkstra”
    Turing's Influence on Programming | Book extract from \The Dawn of Software Engineering: from Turing to Dijkstra" Edgar G. Daylight∗ Eindhoven University of Technology, The Netherlands [email protected] Abstract Turing's involvement with computer building was popularized in the 1970s and later. Most notable are the books by Brian Randell (1973), Andrew Hodges (1983), and Martin Davis (2000). A central question is whether John von Neumann was influenced by Turing's 1936 paper when he helped build the EDVAC machine, even though he never cited Turing's work. This question remains unsettled up till this day. As remarked by Charles Petzold, one standard history barely mentions Turing, while the other, written by a logician, makes Turing a key player. Contrast these observations then with the fact that Turing's 1936 paper was cited and heavily discussed in 1959 among computer programmers. In 1966, the first Turing award was given to a programmer, not a computer builder, as were several subsequent Turing awards. An historical investigation of Turing's influence on computing, presented here, shows that Turing's 1936 notion of universality became increasingly relevant among programmers during the 1950s. The central thesis of this paper states that Turing's in- fluence was felt more in programming after his death than in computer building during the 1940s. 1 Introduction Many people today are led to believe that Turing is the father of the computer, the father of our digital society, as also the following praise for Martin Davis's bestseller The Universal Computer: The Road from Leibniz to Turing1 suggests: At last, a book about the origin of the computer that goes to the heart of the story: the human struggle for logic and truth.
    [Show full text]
  • 31 Summary of Computability Theory
    CS:4330 Theory of Computation Spring 2018 Computability Theory Summary Haniel Barbosa Readings for this lecture Chapters 3-5 and Section 6.2 of [Sipser 1996], 3rd edition. A hierachy of languages n m B Regular: a b n n B Deterministic Context-free: a b n n n 2n B Context-free: a b [ a b n n n B Turing decidable: a b c B Turing recognizable: ATM 1 / 12 Why TMs? B In 1900: Hilbert posed 23 “challenge problems” in Mathematics The 10th problem: Devise a process according to which it can be decided by a finite number of operations if a given polynomial has an integral root. It became necessary to have a formal definition of “algorithms” to define their expressivity. 2 / 12 Church-Turing Thesis B In 1936 Church and Turing independently defined “algorithm”: I λ-calculus I Turing machines B Intuitive notion of algorithms = Turing machine algorithms B “Any process which could be naturally called an effective procedure can be realized by a Turing machine” th B We now know: Hilbert’s 10 problem is undecidable! 3 / 12 Algorithm as Turing Machine Definition (Algorithm) An algorithm is a decider TM in the standard representation. B The input to a TM is always a string. B If we want an object other than a string as input, we must first represent that object as a string. B Strings can easily represent polynomials, graphs, grammars, automata, and any combination of these objects. 4 / 12 How to determine decidability / Turing-recognizability? B Decidable / Turing-recognizable: I Present a TM that decides (recognizes) the language I If A is mapping reducible to
    [Show full text]
  • Quantum Hypercomputation—Hype Or Computation?
    Quantum Hypercomputation—Hype or Computation? Amit Hagar,∗ Alex Korolev† February 19, 2007 Abstract A recent attempt to compute a (recursion–theoretic) non–computable func- tion using the quantum adiabatic algorithm is criticized and found wanting. Quantum algorithms may outperform classical algorithms in some cases, but so far they retain the classical (recursion–theoretic) notion of computability. A speculation is then offered as to where the putative power of quantum computers may come from. ∗HPS Department, Indiana University, Bloomington, IN, 47405. [email protected] †Philosophy Department, University of BC, Vancouver, BC. [email protected] 1 1 Introduction Combining physics, mathematics and computer science, quantum computing has developed in the past two decades from a visionary idea (Feynman 1982) to one of the most exciting areas of quantum mechanics (Nielsen and Chuang 2000). The recent excitement in this lively and fashionable domain of research was triggered by Peter Shor (1994) who showed how a quantum computer could exponentially speed–up classical computation and factor numbers much more rapidly (at least in terms of the number of computational steps involved) than any known classical algorithm. Shor’s algorithm was soon followed by several other algorithms that aimed to solve combinatorial and algebraic problems, and in the last few years the- oretical study of quantum systems serving as computational devices has achieved tremendous progress. According to one authority in the field (Aharonov 1998, Abstract), we now have strong theoretical evidence that quantum computers, if built, might be used as powerful computational tool, capable of per- forming tasks which seem intractable for classical computers.
    [Show full text]
  • Mathematics and Computation
    Mathematics and Computation Mathematics and Computation Ideas Revolutionizing Technology and Science Avi Wigderson Princeton University Press Princeton and Oxford Copyright c 2019 by Avi Wigderson Requests for permission to reproduce material from this work should be sent to [email protected] Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TR press.princeton.edu All Rights Reserved Library of Congress Control Number: 2018965993 ISBN: 978-0-691-18913-0 British Library Cataloging-in-Publication Data is available Editorial: Vickie Kearn, Lauren Bucca, and Susannah Shoemaker Production Editorial: Nathan Carr Jacket/Cover Credit: THIS INFORMATION NEEDS TO BE ADDED WHEN IT IS AVAILABLE. WE DO NOT HAVE THIS INFORMATION NOW. Production: Jacquie Poirier Publicity: Alyssa Sanford and Kathryn Stevens Copyeditor: Cyd Westmoreland This book has been composed in LATEX The publisher would like to acknowledge the author of this volume for providing the camera-ready copy from which this book was printed. Printed on acid-free paper 1 Printed in the United States of America 10 9 8 7 6 5 4 3 2 1 Dedicated to the memory of my father, Pinchas Wigderson (1921{1988), who loved people, loved puzzles, and inspired me. Ashgabat, Turkmenistan, 1943 Contents Acknowledgments 1 1 Introduction 3 1.1 On the interactions of math and computation..........................3 1.2 Computational complexity theory.................................6 1.3 The nature, purpose, and style of this book............................7 1.4 Who is this book for?........................................7 1.5 Organization of the book......................................8 1.6 Notation and conventions.....................................
    [Show full text]
  • 2020 SIGACT REPORT SIGACT EC – Eric Allender, Shuchi Chawla, Nicole Immorlica, Samir Khuller (Chair), Bobby Kleinberg September 14Th, 2020
    2020 SIGACT REPORT SIGACT EC – Eric Allender, Shuchi Chawla, Nicole Immorlica, Samir Khuller (chair), Bobby Kleinberg September 14th, 2020 SIGACT Mission Statement: The primary mission of ACM SIGACT (Association for Computing Machinery Special Interest Group on Algorithms and Computation Theory) is to foster and promote the discovery and dissemination of high quality research in the domain of theoretical computer science. The field of theoretical computer science is the rigorous study of all computational phenomena - natural, artificial or man-made. This includes the diverse areas of algorithms, data structures, complexity theory, distributed computation, parallel computation, VLSI, machine learning, computational biology, computational geometry, information theory, cryptography, quantum computation, computational number theory and algebra, program semantics and verification, automata theory, and the study of randomness. Work in this field is often distinguished by its emphasis on mathematical technique and rigor. 1. Awards ▪ 2020 Gödel Prize: This was awarded to Robin A. Moser and Gábor Tardos for their paper “A constructive proof of the general Lovász Local Lemma”, Journal of the ACM, Vol 57 (2), 2010. The Lovász Local Lemma (LLL) is a fundamental tool of the probabilistic method. It enables one to show the existence of certain objects even though they occur with exponentially small probability. The original proof was not algorithmic, and subsequent algorithmic versions had significant losses in parameters. This paper provides a simple, powerful algorithmic paradigm that converts almost all known applications of the LLL into randomized algorithms matching the bounds of the existence proof. The paper further gives a derandomized algorithm, a parallel algorithm, and an extension to the “lopsided” LLL.
    [Show full text]
  • What Is Computerscience?
    What is Computer Science? Computer Science Defined? • “computer science” —which, actually is like referring to surgery as “knife science” - Prof. Dr. Edsger W. Dijkstra • “A branch of science that deals with the theory of computation or the design of computers” - Webster Dictionary • Computer science "is the study of computation and information” - University of York • “Computer science is the study of process: how we or computers do things, how we specify what we do, and how we specify what the stuff is that we’re processing.” - Your Textbook Computer Science in Reality The study of using computers to solve problems. Fields of Computer Science • Software Engineering • Multimedia (Game Design, Animation, DataVisualization) • Web Development • Networking • Big Data / Machine Learning /AI • Bioinformatics • Robotics • Internet of Things • … Computers Rule the World! • Shopping • Communication / SocialMedia • Work • Entertainment • Vehicles • Appliances • Banking • … Overview of the Couse • Learn a programming language • Develop algorithms and write programs to implement them • Understand how computers store data and multimedia • Have fun! Programming Languages • How we communicate with computers in a way they understand • Lots of different languages, some with special purposes • How we write programs to implement algorithms What’s an Algorithm? Input Algorithm Output • An algorithm is a finite series of instructions applied to an input to produceoutput. • Computer programs are made up of algorithms. The “Recipe” Analogy Input Output Algorithm
    [Show full text]
  • Computability Theory
    CSC 438F/2404F Notes (S. Cook and T. Pitassi) Fall, 2019 Computability Theory This section is partly inspired by the material in \A Course in Mathematical Logic" by Bell and Machover, Chap 6, sections 1-10. Other references: \Introduction to the theory of computation" by Michael Sipser, and \Com- putability, Complexity, and Languages" by M. Davis and E. Weyuker. Our first goal is to give a formal definition for what it means for a function on N to be com- putable by an algorithm. Historically the first convincing such definition was given by Alan Turing in 1936, in his paper which introduced what we now call Turing machines. Slightly before Turing, Alonzo Church gave a definition based on his lambda calculus. About the same time G¨odel,Herbrand, and Kleene developed definitions based on recursion schemes. Fortunately all of these definitions are equivalent, and each of many other definitions pro- posed later are also equivalent to Turing's definition. This has lead to the general belief that these definitions have got it right, and this assertion is roughly what we now call \Church's Thesis". A natural definition of computable function f on N allows for the possibility that f(x) may not be defined for all x 2 N, because algorithms do not always halt. Thus we will use the symbol 1 to mean “undefined". Definition: A partial function is a function n f :(N [ f1g) ! N [ f1g; n ≥ 0 such that f(c1; :::; cn) = 1 if some ci = 1. In the context of computability theory, whenever we refer to a function on N, we mean a partial function in the above sense.
    [Show full text]
  • A Short History of Computational Complexity
    The Computational Complexity Column by Lance FORTNOW NEC Laboratories America 4 Independence Way, Princeton, NJ 08540, USA [email protected] http://www.neci.nj.nec.com/homepages/fortnow/beatcs Every third year the Conference on Computational Complexity is held in Europe and this summer the University of Aarhus (Denmark) will host the meeting July 7-10. More details at the conference web page http://www.computationalcomplexity.org This month we present a historical view of computational complexity written by Steve Homer and myself. This is a preliminary version of a chapter to be included in an upcoming North-Holland Handbook of the History of Mathematical Logic edited by Dirk van Dalen, John Dawson and Aki Kanamori. A Short History of Computational Complexity Lance Fortnow1 Steve Homer2 NEC Research Institute Computer Science Department 4 Independence Way Boston University Princeton, NJ 08540 111 Cummington Street Boston, MA 02215 1 Introduction It all started with a machine. In 1936, Turing developed his theoretical com- putational model. He based his model on how he perceived mathematicians think. As digital computers were developed in the 40's and 50's, the Turing machine proved itself as the right theoretical model for computation. Quickly though we discovered that the basic Turing machine model fails to account for the amount of time or memory needed by a computer, a critical issue today but even more so in those early days of computing. The key idea to measure time and space as a function of the length of the input came in the early 1960's by Hartmanis and Stearns.
    [Show full text]
  • Introduction to the Theory of Computation Computability, Complexity, and the Lambda Calculus Some Notes for CIS262
    Introduction to the Theory of Computation Computability, Complexity, And the Lambda Calculus Some Notes for CIS262 Jean Gallier and Jocelyn Quaintance Department of Computer and Information Science University of Pennsylvania Philadelphia, PA 19104, USA e-mail: [email protected] c Jean Gallier Please, do not reproduce without permission of the author April 28, 2020 2 Contents Contents 3 1 RAM Programs, Turing Machines 7 1.1 Partial Functions and RAM Programs . 10 1.2 Definition of a Turing Machine . 15 1.3 Computations of Turing Machines . 17 1.4 Equivalence of RAM programs And Turing Machines . 20 1.5 Listable Languages and Computable Languages . 21 1.6 A Simple Function Not Known to be Computable . 22 1.7 The Primitive Recursive Functions . 25 1.8 Primitive Recursive Predicates . 33 1.9 The Partial Computable Functions . 35 2 Universal RAM Programs and the Halting Problem 41 2.1 Pairing Functions . 41 2.2 Equivalence of Alphabets . 48 2.3 Coding of RAM Programs; The Halting Problem . 50 2.4 Universal RAM Programs . 54 2.5 Indexing of RAM Programs . 59 2.6 Kleene's T -Predicate . 60 2.7 A Non-Computable Function; Busy Beavers . 62 3 Elementary Recursive Function Theory 67 3.1 Acceptable Indexings . 67 3.2 Undecidable Problems . 70 3.3 Reducibility and Rice's Theorem . 73 3.4 Listable (Recursively Enumerable) Sets . 76 3.5 Reducibility and Complete Sets . 82 4 The Lambda-Calculus 87 4.1 Syntax of the Lambda-Calculus . 89 4.2 β-Reduction and β-Conversion; the Church{Rosser Theorem . 94 4.3 Some Useful Combinators .
    [Show full text]