Microbiological Studies on the Production of Serratia-Peptidase As an Anti-Inflammatory from Serratia Species

Total Page:16

File Type:pdf, Size:1020Kb

Microbiological Studies on the Production of Serratia-Peptidase As an Anti-Inflammatory from Serratia Species Microbiological Studies on The Production of Serratia-peptidase As an Anti-inflammatory from Serratia Species M.Sc. Thesis Submitted in Partial Fulfillment of the Requirements for The master’s degree in Pharmaceutical Sciences (Microbiology & Immunology) Presented by Ahmed Abd El Monaem Ammar B.Sc. Pharmaceutical Science, October 6 university, 2005 Microbiological Quality Control Specialist – NODCAR Under the supervision of Prof. Dr. Magdy Ali Amin Professor of Microbiology & Immunology Faculty of Pharmacy, Cairo University Dr. Reham Samir Dr. Wael Mohamed Abu El Assistant professor of Wafa Microbiology & Immunology Assistant Professor of Microbiology Faculty of Pharmacy, National Organization for Drug Control Cairo University and Research Microbiology & Immunology Department Faculty of Pharmacy Cairo University 2019 Abstract Proteases constitute one of the most important groups of industrial enzymes, accounting for more than 65% of the industrial enzyme market. Microbial proteases produced from microbes belonging to bacteria, fungi, yeast and actinomycete, account for approximately 40% of the total worldwide sales of enzymes. Serratiopeptidase is a proteolytic enzyme that has been used as anti-inflammatory agent in sinusitis, bronchitis and other inflammatory disorders. The present study aimed to isolate serratia species producing protease enzyme and increase the enzyme production by optimization of some nutrition demands and environmental conditions, studying the physicochemical properties of the purified protease and in-vivo evaluation of the anti-inflammatory effect of serratiapeptidase by using animal model (rat). Results revealed that out of 170 bacterial isolates retrieved from soil samples collected from different geographical regions, Egypt, only 20 (11.8%) isolates were primarily identified as Serratia species. Serratia S6 was the most potent Serratia isolate in protease production, which preliminary identified by both cultural and morpho-chemical characteristics and finally confirmed by sequencing of 16SrRNA gene and phylogenetic tree. To maximize the production of protease from Serratia S6, some nutritional supplements (casein concentrations, K2HPO4 concentrations and type of sugars), and some environmental conditions (initial pH level, inoculum size and incubation temperature) should be adapted. The maximum protease production (327.32 U/ml) by Serratia S6 were obtained by adding 10 g/L casein, 1.0 g/L K2HPO4 and 1% (w/v) fructose, 2.0 mM of ZnSO4, KCl and NaCl, at initial pH level 9.0, inoculum size (1%) and incubation temperature at 37oC for 48h. For precipitation of protease enzyme, 80% ammonium sulphate saturation salt had been added. The molecular weight of the proteins by SDS-PAGE was found to be 79,60 and 65 KDa. Characterization of proteases from Serratia S6 were investigated and the results showed that serratiapeptidase exhibited some improvements in its physiochemical properties. The optimum temperature for maximum protease activity (435 U/ml) was 40oC and stability (422 U/ml) was obtained at 30⁰ C - 40oC for 120 min. Also, the optimum pH level for maximum protease activity (440 U/ml) and stability (438 U/ml) was at pH 9.0. The activity of protease was gradually decreased by increasing of some inhibitor concentrations including EDTA, Tween 20 and PMSF. Regarding in-vivo evaluation Serratiopeptidase in rat, obtained results revealed that different molecular weights protease significantly inhibited acute inflammation in lung of rat after intranasal infection with strain of Acinetobacter baumannii bacteria which was comparable with non-treated group. Treated groups revealed focal few inflammatory cells infiltration in the peribronchiolar tissue and mild congestion in the interalveolar and peribronchiolar blood vessels when compared with non-treated group which showed sever congestion in the peribronchiolar and interalveolar blood vessels associated with focal aggregation as well as infiltration of leucocytes cells in the peribronchiolar tissue. Key words: Serratia, Serratiapeptidase, environmental conditions, nutritional supplements, anti-inflammatory effect, 16S rRNA, rat. INTRODUCTION The genus Serratia a member of the Enterobacteriaceae is comprised of a group of bacteria that are related both phenotypically and by DNA sequence. The type species of the genus is Serratia marcescens. Some species and biotypes of Serratia produce a non-diffusible red pigment, prodigiosin, or 2-methyl-3-amyl-6- methoxyprodigiosene. At the start of this century, more than 76 known species had been described with red or pink pigmentation, and 23 Serratia species were listed in the first edition of Bergey’s Manual. This number progressively decreased to five in the fifth edition of Bergey’s Manual and later to one species: S. marcescens. The only Serratia species recognized in the eighth edition of Bergey’s Manual was S. marcescens. Ten species are presently known to belong in the genus Serratia. Serrapeptase or serratiopeptidase is a proteolytic enzyme isolated from the nonpathogenic Serratia a member of the Enterobacteriaceae. Proteases perform highly specific and selective modifications of proteins such as activation of zymogenic forms of enzymes by limited proteolysis, blood clotting and lysis of fibrin clots, processing and transport of secretory proteins across the membranes, and so on. Proteases are ubiquitous in nature. Protease is of commercial value and various industrial applications. They are widely used as detergent, in food, pharmaceutical and leather tanning industries. The vast variety of proteases, with their specificity of their action and application has attracted worldwide attention to exploit their physiological as well as biotechnological applications. It has been considered as eco-friendly because the appropriate producers of these enzymes for commercial exploitation are non-toxic and non- pathogenic that are designated a safe. Serratiopeptidase, has been found useful in patients suffering from acute or chronic inflammatory disorders of ear, nose or throat, such as laryngitis, catarrhal rhino-pharyngitis and sinusitis. Aim of work: The present study aims to produce the anti-inflammatory agent (serratiapeptidase) from Serratia species as an alternative treatment for people severing from inflammatory disorders. REVIEW OF LITERATURE Protease enzymes Proteolytic enzymes catalyze the hydrolytic cleavage of peptide bonds. They are also called proteinases or proteases; these enzymes are present in all living organisms and are essential for cell growth and differentiation. Proteases are classified according to their structure or the properties of the active site. Microorganisms produce a variety of intracellular and/or extracellular proteases such as serine-, metallo-, carboxyl-, acidic-, neutral-, and alkaline proteases. Highly specified and selective modifications of proteins performed by proteases such as activation of zymogenic forms of enzymes by limited proteolysis, blood clotting and lysis of fibrin clots, processing and transport of secretory proteins across the membranes, correspondingly Proteases represents one of the three large groups of industrial enzymes and find application in detergents, leather, food, pharmaceutical industries and bioremediation processes. The largest application of proteases particularly the alkaline proteases has probably been in the laundry detergent where they enhance the removal of protein-based stains from clothing. Enzyme Nomenclature Enzymes are identified by a common nomenclature system based on the description of what function it performs in the cell and ends with a common phrase. The International Union of Biochemistry and Molecular Biology and the International Union of Pure and Applied Chemistry developed a nomenclature system wherein each enzyme is given an Enzyme Commission Number called as the EC number. Accordingly, the top-level classes based on the mechanism of operation of an enzyme are (Oxidoreductases, Transferases, Hydrolases, Lyases, Isomerases and Ligases. Classification of proteases Proteases are grossly subdivided into two major groups, i.e., exopeptidases and endopeptidases, depending on their site of action. Based on the functional group present at the active site, proteases are further classified into four prominent groups, i.e., serine proteases, aspartic proteases, cysteine proteases, and metalloproteases. Currently, proteases are classified based on three major criteria (type of reaction catalyzed, chemical nature of the catalytic site and relationship to the structure). The physiological function of proteases is essential for all living organism, from viruses to humans and the enzymes can be classified based on their origin: microbial (bacterial, fungal and viral), plant, animal and human enzymes can be distinguished. Based on the site of action on protein substrates, proteases are broadly classified as endopeptidases or exopeptidases enzymes. Exopeptidases cleave the peptide bond proximal to the amino or carboxy termini of the substrate. Based on the site of action at the N or C terminus, they are classified as aminopeptidases and carboxypeptidases. Endopeptidases cleave peptide bonds distant from the termini of the substrate. Based on the functional group present at the active site, endo-peptidases are further classified into four prominent groups, i.e., serine proteases, aspartic proteases, cysteine proteases and metallo-proteases also Based on the pH optima, they are referred to as acidic, neutral, or alkaline proteases. Importance of
Recommended publications
  • Application of Plant Proteolytic Enzymes for Tenderization of Rabbit Meat
    Biotechnology in Animal Husbandry 34 (2), p 229-238 , 2018 ISSN 1450-9156 Publisher: Institute for Animal Husbandry, Belgrade-Zemun UDC 637.5.039'637.55'712 https://doi.org/10.2298/BAH1802229D APPLICATION OF PLANT PROTEOLYTIC ENZYMES FOR TENDERIZATION OF RABBIT MEAT Maria Doneva, Iliana Nacheva, Svetla Dyankova, Petya Metodieva, Daniela Miteva Institute of Cryobiology and Food Technology, Cherni Vrah 53, 1407, Sofia, Bulgaria Corresponding author: Maria Doneva, e-mail: [email protected] Original scientific paper Abstract: The purpose of this study is to assess the tenderizing effect of plant proteolytic enzymes upon raw rabbit meat. Tests are performed on rabbit meat samples treated with papain and two vegetal sources of natural proteases (extracts of kiwifruit and ginger root). Two variants of marinade solutions are prepared from each vegetable raw materials– 50% (w/w) and 100 % (w/w), with a duration of processing 2h, 24h, and 48h. Changes in the following physico- chemical characteristics of meat have been observed: pH, water-holding capacity, cooking losses and quantity of free amino acids. Differences in values of these characteristics have been observed, both between control and test samples, as well as depending of treatment duration. For meat samples marinated with papain and ginger extracts, the water-holding capacity reached to 6.74 ± 0.04 % (papain), 5.58 ± 0.09 % (variant 1) and 6.80 ± 0.11 % (variant 2) after 48 hours treatment. In rabbit meat marinated with kiwifruit extracts, a significant increase in WHC was observed at 48 hours, 3.37 ± 0.07 (variant 3) and 6.84 ± 0.11 (variant 4).
    [Show full text]
  • Research Article Effect of Ginger Powder Addition on Fermentation Kinetics, Rheological Properties and Bacterial Viability of Dromedary Yogurt
    Advance Journal of Food Science and Technology 10(9): 667-673, 2016 DOI: 10.19026/ajfst.10.2213 ISSN: 2042-4868; e-ISSN: 2042-4876 © 2016 Maxwell Scientific Publication Corp. Submitted: May 11, 2015 Accepted: June 19, 2015 Published: March 25, 2016 Research Article Effect of Ginger Powder Addition on Fermentation Kinetics, Rheological Properties and Bacterial Viability of Dromedary Yogurt 1Samia Hanou, 1Massaouda Boukhemis, 2Leila Benatallah, 3Baida Djeghri and 2Mohamed-Nasreddine Zidoune 1Laboratory of Applied Biochemistry and Microbiology, University Badji Mokhtar, BP 12, 23 000, Annaba, 2Laboratory of Nutrition and Food Technology, I.N.A.T.A-A, University of Constantine 1, 3National School of Marine Sciences and Spatial Coast, Algiers, Algeria Abstract: This study aims to evaluate the direct use of ginger powder in dromedary‘s yogurt manufacturing by determining the kinetic acidification, the rheological parameters and the stability of the final product during 28 days of cold storage. The supplementation of dromedary milk with ginger powder at concentration ranging from 0.6 to 1% w/v, enhanced the growth of inoculated lactic acid bacteria, accelerated significantly the rate of pH reduction (p<0.0001) and reduced the time of fermentation to 50%. On another hand, its addition improved the consistence index K, decreased the flow behavior index n, increased the water holding capacity and enhanced slightly the viability of Streptococcus salivarius ssp thermophilus during cold storage. Thus, the supplementation of dromedary milk with ginger powder at concentration ranged from 0.6 to 1% w/v complements its healthy characteristics, produced acceptable yogurt and allows energy and time saving in the manufacturing process.
    [Show full text]
  • Role of Extracellular Proteases in Biofilm Disruption of Gram Positive
    e Engine ym er z in n g E Mukherji, et al., Enz Eng 2015, 4:1 Enzyme Engineering DOI: 10.4172/2329-6674.1000126 ISSN: 2329-6674 Review Article Open Access Role of Extracellular Proteases in Biofilm Disruption of Gram Positive Bacteria with Special Emphasis on Staphylococcus aureus Biofilms Mukherji R, Patil A and Prabhune A* Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India *Corresponding author: Asmita Prabhune, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune 411008, India, Tel: 91-020-25902239; Fax: 91-020-25902648; E-mail: [email protected] Rec date: December 28, 2014, Acc date: January 12, 2015, Pub date: January 15, 2015 Copyright: © 2015 Mukherji R, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Bacterial biofilms are multicellular structures akin to citadels which have individual bacterial cells embedded within a matrix of a self-synthesized polymeric or proteinaceous material. Since biofilms can establish themselves on both biotic and abiotic surfaces and that bacteria residing in these complex molecular structures are much more resistant to antimicrobial agents than their planktonic equivalents, makes these entities a medical and economic nuisance. Of late, several strategies have been investigated that intend to provide a sustainable solution to treat this problem. More recently role of extracellular proteases in disruption of already established bacterial biofilms and in prevention of biofilm formation itself has been demonstrated. The present review aims to collectively highlight the role of bacterial extracellular proteases in biofilm disruption of Gram positive bacteria.
    [Show full text]
  • Therapeutic Effects of a Combined Antibiotic-Enzyme Treatment on Subclinical Mastitis in Lactating Dairy Cows
    Veterinarni Medicina, 61, 2016 (5): 237–242 Original Paper doi: 10.17221/8876-VETMED Therapeutic effects of a combined antibiotic-enzyme treatment on subclinical mastitis in lactating dairy cows B. Khoramian1, M. Emaneini2, M. Bolourchi3, A. Niasari-Naslaji3, A. Gorganzadeh1, S. Abani1, P. Hovareshti3 1Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran 2School of Medicine, Tehran University of Medical Sciences. Tehran, Iran 3Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran ABSTRACT: The objective of this study was to evaluate a combined antibiotic-enzyme therapy for Staphylococcus aureus mastitis and biofilm formation. A total of 141 cases of S. aureus chronic mastitis from three farms were divided ® into two groups: the control group (n = 54) were treated with Nafpenzal ointment; the enzyme + antibiotic group ® ® (n = 87) were treated with Nafpenzal plus an enzymatic ointment (MastiVeyxym ). Quantitative determination of biofilm formation was determined using a colorimetric microplate assay and the detection of ica genes by PCR. Enzyme + antibiotic therapy did not significantly improve cure rates compared to control (48.3 vs 38.9%). The cure rate for infections caused by biofilm-positive strains was 42.6 and 46.6% for control and enzyme + antibiotic groups, respectively (P > 0.05). Comparison of cure rates between farms showed a relationship with somatic cell count (SCC), parity and oxacillin resistance. 79.4% of the isolates produced biofilm and antibacterial resistance rates for oxacillin, penicillin and streptomycin were 25.5, 71.6 and 95.7%, respectively. These results indicate that while the increase in mastitis cure rate using enzymatic therapy was not significant, this treatment could be useful in some situations.
    [Show full text]
  • ABSTRACT SURIAATMAJA, DAHLIA. Mechanism
    ABSTRACT SURIAATMAJA, DAHLIA. Mechanism of Meat Tenderization by Long-Time Low- Temperature Heating. (Under the direction of Dr. Tyre C. Lanier). The tougher texture of the lesser desirable cuts of beef is primarily attributable to higher content of collagen and/or cross-linked collagen. Many chefs, and some recent scientific studies, have suggested that long-time, low-temperature (LTLT) isothermal (sous vide) heating can considerably tenderize such meat and still retain a steak-like (rather than pot roast) texture. We investigated the effects of extended LTLT heating at 50 – 59 °C as a pretenderizing treatment for a tougher beef cut (semitendinosus, eye of round), and compared this to a bromelain-injection meat tenderizing treatment (‘meat tenderizer’ addition with no preheating). Because our intended application envisioned finish cooking by grilling of these pretenderized steaks at restaurants, we subsequently grilled all steaks to 65 °C internal (medium done). To counteract water losses associated with extended LTLT heating, all steaks were pre-injected with 15% of a salt/phosphate solution. Tenderization, as monitored by a slice shear force (SSF) measurement, did not occur at 50 °C but did initiate above 51.5 °C (isothermal). At 56 °C, a LTLT temperature chosen for safe treatment of steaks, a tender yet steak-like texture was obtained after 24 hr heating. Sodium dodecyl polyacrylamide electrophoresis (SDS-PAGE) did not indicate proteolysis of myosin heavy chain, as would have been expected if cathepsin (protease) had been active during heating. Instead, a pronase-susceptability assay indicated a high association of tenderization with the conversion of collagen to a partially denatured amorphous (‘enzyme-labile’) form, suggesting that this partial denaturation of collagen is mainly responsible for the tenderizing effect.
    [Show full text]
  • The Role of Serratiopeptidase in the Resolution of Inflammation
    ARTICLE IN PRESS asian journal of pharmaceutical sciences ■■ (2017) ■■– ■■ Available online at www.sciencedirect.com ScienceDirect journal homepage: www.elsevier.com/locate/ajps Review The role of serratiopeptidase in the resolution of inflammation Manju Tiwari * Department of Biochemistry and Genetics, Barkatullah University, Bhopal, Madhya Pradesh, India ARTICLE INFO ABSTRACT Article history: Inflammation remains a key event during most of the diseases and physiological imbal- Received 26 October 2016 ance. Acute inflammation is an essential physiological event by immune system for a protective Received in revised form 9 measure to remove cause of inflammation and failure of resolution lead to chronic inflam- December 2016 mation. Over a period of time, a number of drugs mostly chemical have been deployed to Accepted 16 January 2017 combat acute and chronic inflammation. Recently, enzyme based anti-inflammatory drugs Available online became popular over conventional chemical based drugs. Serratiopeptidase, a proteolytic enzyme from trypsin family, possesses tremendous scope in combating inflammation. Serine Keywords: protease possesses a higher affinity for cyclooxygenase (COX-I and COX-II), a key enzyme Inflammation associated with production of different inflammatory mediators including interleukins (IL), Cyclooxygenase prostaglandins (PGs) and thromboxane (TXs) etc. Currently, arthritis, sinusitis, bronchitis, NSAIDs fibrocystic breast disease, and carpal tunnel syndrome, etc. are the leading inflammatory Serratiopeptidase disorders that affected the entire the globe. In order to conquer inflammation, both acute Steroids and chronic world, physician mostly relies on conventional drugs. The most common drugs Enzyme therapeutics to combat acute inflammation are Nonsteroidal anti-inflammatory drugs (NSAIDs) alone and or in combination with other drugs. However, during chronic inflammation, NSAIDs are often used with steroidal drugs such as autoimmune disorders.
    [Show full text]
  • Data in Support of Three Phase Partitioning of Zingibain, a Milk-Clotting Enzyme from Zingiber Officinale Roscoe Rhizomes
    Data in Brief 6 (2016) 634–639 Contents lists available at ScienceDirect Data in Brief journal homepage: www.elsevier.com/locate/dib Data article Data in support of three phase partitioning of zingibain, a milk-clotting enzyme from Zingiber officinale Roscoe rhizomes Mohammed Gagaoua n, Kahina Hafid, Naouel Hoggas Equipe Maquav, INATAA, Université Frères Mentouri Constantine, Route de Ain El-Bey, 25000 Constantine, Algeria article info abstract Article history: This paper describes data related to a research article titled “Three Received 3 November 2015 Phase Partitioning of zingibain, a milk-clotting enzyme from Zin- Received in revised form giber officinale Roscoe rhizomes” (Gagaoua et al., 2015) [1]. Zingi- 31 December 2015 bain (EC 3.4.22.67), is a coagulant cysteine protease and a meat Accepted 8 January 2016 tenderizer agent that have been reported to produce satisfactory Available online 16 January 2016 final products in dairy and meat technology, respectively. Zingi- Keywords: bains were exclusively purified using chromatographic techniques Three Phase Partitioning with very low yield purification. This paper includes data of the Zingibain effect of temperature, usual salts and organic solvents on the Purification efficiency of the three phase partitioning (TPP) system. Also it includes data of the kinetic activity characterization of the purified zingibain using TPP purification approach. & 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Specifications Table Subject area Biology, Chemistry More specific sub- Protein purification, Three Phase Partitioning, Enzymology ject area Type of data Table, text file, figure n Corresponding author.
    [Show full text]
  • Targeting Microbial Biofilms Using Ficin, a Nonspecific Plant Protease Diana R
    www.nature.com/scientificreports OPEN Targeting microbial biofilms using Ficin, a nonspecific plant protease Diana R. Baidamshina1,*, Elena Y. Trizna1,*, Marina G. Holyavka2, Mikhail I. Bogachev3, Valeriy G. Artyukhov2, Farida S. Akhatova1, Elvira V. Rozhina1, Rawil F. Fakhrullin1 & 1 Received: 26 September 2016 Airat R. Kayumov Accepted: 08 March 2017 Biofilms, the communities of surface-attached bacteria embedded into extracellular matrix, are Published: 07 April 2017 ubiquitous microbial consortia securing the effective resistance of constituent cells to environmental impacts and host immune responses. Biofilm-embedded bacteria are generally inaccessible for antimicrobials, therefore the disruption of biofilm matrix is the potent approach to eradicate microbial biofilms. We demonstrate here the destruction ofStaphylococcus aureus and Staphylococcus epidermidis biofilms with Ficin, a nonspecific plant protease. The biofilm thickness decreased two-fold after 24hours treatment with Ficin at 10 μg/ml and six-fold at 1000 μg/ml concentration. We confirmed the successful destruction of biofilm structures and the significant decrease of non-specific bacterial adhesion to the surfaces after Ficin treatment using confocal laser scanning and atomic force microscopy. Importantly, Ficin treatment enhanced the effects of antibiotics on biofilms-embedded cells via disruption of biofilm matrices. Pre-treatment with Ficin (1000 μg/ml) considerably reduced the concentrations of ciprofloxacin and bezalkonium chloride required to suppress the viable Staphylococci by 3 orders of magnitude. We also demonstrated that Ficin is not cytotoxic towards human breast adenocarcinoma cells (MCF7) and dog adipose derived stem cells. Overall, Ficin is a potent tool for staphylococcal biofilm treatment and fabrication of novel antimicrobial therapeutics for medical and veterinary applications.
    [Show full text]
  • Role of Systemic Enzymes in Infections
    Article ID: WMC002495 2046-1690 Role of Systemic Enzymes in Infections Corresponding Author: Dr. Sukhbir Shahid, Consultant Pediatrician, Pediatrics - India Submitting Author: Dr. Sukhbir Shahid, Consultant Pediatrician, Pediatrics - India Article ID: WMC002495 Article Type: Review articles Submitted on:22-Nov-2011, 08:16:56 AM GMT Published on: 22-Nov-2011, 02:34:00 PM GMT Article URL: http://www.webmedcentral.com/article_view/2495 Subject Categories:COMPLEMENTARY MEDICINE Keywords:Enzymes, Systemic enzymes, Infections, Sepsis, Proteolytic, Supplementary How to cite the article:Shahid S . Role of Systemic Enzymes in Infections . WebmedCentral COMPLEMENTARY MEDICINE 2011;2(11):WMC002495 Source(s) of Funding: None Competing Interests: None WebmedCentral > Review articles Page 1 of 13 WMC002495 Downloaded from http://www.webmedcentral.com on 23-Dec-2011, 07:57:46 AM Role of Systemic Enzymes in Infections Author(s): Shahid S Abstract infections[4]. The ‘battle’ between the host’s immunity and organism leads to a lot of ‘molecular’morbidity and mortality. Anti-infective agents do help but at times benefit is marginal. These agents may sometimes Enzymes are complex macromolecules of amino-acids worsen the situation through release of immune which bio-catalyse various body processes. Adequate complexes and dead bacilli into the blood stream. concentrations of enzymes are essential for optimal They also fail to reverse the hemodynamic instability functioning of the immune system. During infections, and immune paralysis characteristic of these body’s enzymatic system is attacked and hence the infections[4]. Supplementation with drugs targeted immune system is also likely to derange. This may be against this ‘choatic’ or ‘dysfunctional’ immune detrimental for the host’s well-being and existence.
    [Show full text]
  • Actinidin Treatment and Sous Vide Cooking: Effects on Tenderness and in Vitro Protein Digestibility of Beef Brisket
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. Actinidin Treatment and Sous Vide Cooking: Effects on Tenderness and In Vitro Protein Digestibility of Beef Brisket A thesis presented in partial fulfilment of the requirements for the degree of Master of Food Technology at Massey University, Manawatū , New Zealand Xiaojie Zhu 2017 i ii Abstract Actinidin from kiwifruit can tenderise meat and help to add value to low-value meat cuts. Compared with other traditional tenderisers (e.g. papain and bromelain) it is a promising way, due to its less intensive tenderisation effects on meat. But, as with other plant proteases, over-tenderisation of meat may occur if the reaction is not controlled. Therefore, the objectives of this study were (1) finding a suitable process to control the enzyme activity after desired meat tenderisation has been achieved; (2) optimising the dual processing conditions- actinidin pre-treatment followed by sous vide cooking to achieve the desired tenderisation in shorter processing times. The first part of the study focused on the thermal inactivation of actinidin in freshly-prepared kiwifruit extract (KE) or a commercially available green kiwifruit enzyme extract (CEE). The second part evaluated the effects of actinidin pre-treatment on texture and in vitro protein digestibility of sous vide cooked beef brisket steaks. The results showed that actinidin in KE and CEE was inactivated at moderate temperatures (60 and 65 °C) in less than 5 min.
    [Show full text]
  • Isolation and Characterization of Natural
    ABSTRACT OF THE DISSERTATION ISOLATION AND CHARACTERIZATION OF NATURAL PRODUCTS FROM GINGER AND ALLIUM URSINUM BY HOU WU Dissertation Director: Dr. Chi-Tang Ho Phenolic compounds from natural sources are receiving increasing attention recent years since they were reported to have a remarkable spectrum of biological activities including antioxidant, anti-inflammatory and anti-carcinogenic activities. They may have many health benefits and can be considered possible chemo- preventive agents against cancer. In this research, we attempted to isolate and characterize phenolic compounds from two food sources: ginger and Allium ursinum. Solvent extraction and a series of column chromatography methods were used for isolation of compounds, while structures were elucidated by integration of data from MS, 1H-NMR, 13C-NMR, HMBC and HMQC. Antioxidant activities were evaluated by DPPH method and anti- inflammatory activities were assessed by nitric oxide production model. Ginger is one of most widely used spices. It has a long history of medicinal use dating back 2500 years. Although there have been many reports concerning ii chemical constituents and some biological activities of ginger, most works used ginger extracts or focused on gingerols to study the biological activities of ginger. We suggest that the bioactivities of shogaols are also very important since shogaols are more stable than gingerols and a considerable amount of gingerols will be converted to shogaols in ginger products. In present work, eight phenolic compounds were isolated and identified from ginger extract. They included 6-gingerol, 8-gingerol, 10- gingerol, 6-shogaol, 8—shogaols, 10-shogaol, 6-paradol and 1-dehydro-6-gingerdione. DPPH study showed that 6-shogaol had a comparable antioxidant activity compared with 6-gingerol, the 50% DPPH scavenge concentrations of both compounds were 21 µM.
    [Show full text]
  • Book of Abstracts 2021
    BOOK OF ABSTRACTS Preface Organisation Research in Groningen Congress Abstracts Plenary Abstracts Oral Abstracts Poster Postscript 2 Table of Contents Preface � � � � � � � � � � � � � � � � � � � � � � � � � � � 5 Cell Biology � � � � � � � � � � � � � � � � � � � � � � � 99 Tessa de Bruin � � � � � � � � � � � � � � � � � � � � � � 6 Endocrinology & Diabetes � � � � � � � � � � � � � �106 Prof� Marian Joëls MD PhD � � � � � � � � � � � � � � � 7 Pediatrics, Obstetrics & Reproductive health � �110 Organisation � � � � � � � � � � � � � � � � � � � � � � � 8 Neurology & Neurosurgery � � � � � � � � � � � � �115 Executive Board � � � � � � � � � � � � � � � � � � � � � 9 Cardiology & Vascular medicine � � � � � � � � � �122 Advisory Board � � � � � � � � � � � � � � � � � � � � � 10 Oncology I � � � � � � � � � � � � � � � � � � � � � � � �128 President, Secretary, Treasurer � � � � � � � � � � � 11 Pulmonology � � � � � � � � � � � � � � � � � � � � � �134 Scientific Programme � � � � � � � � � � � � � � � � � 12 Oral Sessions II � � � � � � � � � � � � � � � � � � � � 139 Sponsors & Fundraising � � � � � � � � � � � � � � � 13 Public health II � � � � � � � � � � � � � � � � � � � � �140 International Contacts � � � � � � � � � � � � � � � � 14 Oncology II � � � � � � � � � � � � � � � � � � � � � � �146 Hosting & Logistics � � � � � � � � � � � � � � � � � � 15 Epidemiology � � � � � � � � � � � � � � � � � � � � � �153 Public Relations � � � � � � � � � � � � � � � � � � � � 16 Pharmacology � � � � � � � � � � � � � � � � � � � � �160
    [Show full text]