A Stress-Associated Protein Containing A20/AN1 Zing-Finger Domains

Total Page:16

File Type:pdf, Size:1020Kb

A Stress-Associated Protein Containing A20/AN1 Zing-Finger Domains Plant Physiology and Biochemistry 49 (2011) 303e310 Contents lists available at ScienceDirect Plant Physiology and Biochemistry journal homepage: www.elsevier.com/locate/plaphy Research article A stress-associated protein containing A20/AN1 zing-finger domains expressed in Medicago truncatula seeds Christine Gimeno-Gilles 1, Marie-Laure Gervais 1, Elisabeth Planchet*, Pascale Satour, Anis M. Limami, Eric Lelievre University of Angers, UMR-1191 Physiologie Moléculaire des Semences, IFR 149 Quasav, 2 Boulevard Lavoisier, 49045 Angers Cedex 01, France article info abstract Article history: MtSAP1 (Medicago truncatula stress-associated protein 1) was revealed as a down-regulated gene by Received 15 July 2010 suppressive subtractive hybridization between two mRNA populations of embryo axes harvested before Accepted 2 January 2011 and after radicle emergence. MtSAP1 is the first gene encoding a SAP with A20 and AN1 zinc-finger Available online 13 January 2011 domains characterized in M. truncatula. MtSAP1 protein shares 54% and 62% homology with AtSAP7 (Arabidopsis thaliana) and OsiSAP8 (Oryza sativa) respectively, with in particular a strong homology in the Keywords: A20 and AN1 conserved domains. MtSAP1 gene expression increased in the embryos during the acqui- A20/AN1 zinc-finger domain sition of tolerance to desiccation, reached its maximum in dry seed and decreased dramatically during Abiotic stress fi Desiccation the rst hours of imbibition. Abiotic stresses (cold and hypoxia), abscisic acid and desiccation treatments Medicago truncatula induced MtSAP1 gene expression and protein accumulation in embryo axis, while mild drought stress did SAP not affect significantly its expression. This profile of expression along with the presence of anaerobic Seed response elements and ABRE sequences in the upstream region of the gene is consistent with a role of MtSAP1 in the tolerance of low oxygen availability and desiccation during late stages of seed maturation. Silencing of MtSAP1 by RNA interference (RNAi) showed that the function of the encoded protein is required for adequate accumulation of storage globulin proteins, vicilin and legumin, and for the development of embryos able to achieve successful germination. Ó 2011 Elsevier Masson SAS. All rights reserved. 1. Introduction environmental challenges such as drought, salt, hypoxia, cold stress and pathogen attacks [2,3]. The tolerance to low oxygen availability Seed maturation is an important phase of seed development. in plants includes the induction of the so called ‘anaerobic’ poly- According to several plant models, this process can be divided into peptides [4], which the best characterized are enzymes involved in two stages, morphogenesis and maturation [1]. Seed maturation metabolic pathways related to oxidative catabolism of sugars begins when developing embryos cease their cell division, and start (glycolysis, ethanol and lactic fermentation) and carbon skeleton growing by cell enlargement and accumulating storage reserves. storage as amino acids (alanine fermentation). Maturation ends with a desiccation phase after which the embryo Stress-associated protein (SAP) families were characterized by enters into a quiescent state, thereby permitting its maintenance the presence of A20/AN1 domains. The A20 zinc-finger (ZnF) and survival under a range of environmental conditions. In domain was first identified in a TNF-a inducible protein in human maturing seeds, the embryo is challenged by two adverse condi- cells and is characterized by multiple Cys2/Cys2 finger motifs. The tions that are the low oxygen availability and the desiccation of the AN1 ZnF domain was first identified in the C-terminus of the tissues. Several genes regulated by the phytohormone abscisic acid ubiquitin-like protein coded by the Xenopus laevis animal hemi- (ABA) are induced in the embryo, besides to those required for the sphere 1 (AN1) maternal RNA [5] and is usually found associated synthesis of storage reserves they include those involved in the with the A20 ZnF domain. The AN1-type ZnF contains six conserved acquisition of desiccation tolerance. Actually, in most vegetative cysteines and two histidines that could potentially coordinate two tissues, ABA mediates several aspects of physiological responses to zinc atoms [5]. The role of the A20/AN1 proteins has been well studied in animal immune systems [6,7]. In plants, very few information is known about A20/AN1 proteins. Vij and Tyagi [8],by screening public databases, have conducted a survey of A20/AN1 * Corresponding author. Tel.: þ33 2 41 73 53 83; fax: þ33241735456. E-mail address: [email protected] (E. Planchet). ZnF protein across diverse organisms with a special emphasis 1 These authors contributed equally to this work. on plants (Arabidopsis thaliana, Oryza sativa, Populus trichocarpa, 0981-9428/$ e see front matter Ó 2011 Elsevier Masson SAS. All rights reserved. doi:10.1016/j.plaphy.2011.01.004 304 C. Gimeno-Gilles et al. / Plant Physiology and Biochemistry 49 (2011) 303e310 Sorghum bicolor and Vitis vinifera). All the species contain between (62%) and Arabidopsis AtSAP7 (54%) (Fig. 2B), but also with virtually one to nineteen A20/AN1 proteins. From A. thaliana and O. sativa translated ESTs of Lotus japonicus (TC14575, 87%) and soya bean genomes, fourteen and eighteen genes code for SAP respectively, (ACU14538, 77%), and presents identical ZnF domains (Fig. 2B). In and most of them encode proteins with A20/AN1 domains. comparison to some human proteins containing A20/AN1 domains, A member of SAP gene family from rice OsiSAP1 (O. sativa stress- MtSAP1 shares 46% and 47% homology with human ZnF216 and associated protein 1) was the first plant protein identified as a ZnF AWP1 proteins respectively, and shows identities in the ZnF protein and has been shown to be induced in rice seedlings domains (data not shown). in response to environmental challenges and abscisic acid (ABA) treatment, and to confer abiotic stress tolerance to transgenic 2.2. MtSAP1 gene expression in embryo axis during maturation, tobacco over-expressing the gene [9]. Recently, the over-expression germination and post-germination of M. truncatula of OsiSAP8 has been shown to confer tolerance to salt, drought and cold stress [10] suggesting that protein encoded by this gene is The expression of MtSAP1 in embryo axis was investigated by likely to intervene in the stress signaling pathway. The mechanism real RT-PCR during seed development, germination and post- by which the over-expression of OsiSAP8 conferred stress tolerance germination growth (Fig. 3). During seed development, gene is still unknown. The authors demonstrated that A20 and AN1-type transcription exhibited a low level during the first 20 days after ZnF domains from the protein OsiSAP8 interact with each other but pollination (DAP). A strong increase in MtSAP1 gene expression was only A20 interacts with itself in a yeast two-hybrid system. observed after 28 and 35 DAP when desiccation was complete in Our strategy for improving knowledge of crucial events of the dry seed. Five hours after imbibition, amounts of mRNA germination was based on a suppressive subtractive hybridization decreased and picked up a low background expression after 25 h fi (SSH) transcriptomic analysis of embryo axis for the identi cation and remained constant even after 96 h. These data show of genes involved in germination completion. The subtraction was that MtSAP1 gene expression kinetic is correlated with a progres- carried out between two mRNA populations extracted at two sive tissue dehydration occurring in the last 10 days of seed imbibition stages, at the end of the phase of passive and massive development. uptake of water and after germination completion characterized by radicle protrusion. In our previous studies, our attention was focused on up-regulated genes with the attempt to unravel their 2.3. Analysis of RNAi MtSAP1 lines involvement in the control and the completion of germination process [11,12]. At the opposite, in the present work we focused our Plants disrupted in the expression of MtSAP1 gene were attention on a down-regulated gene that encodes a SAP protein. obtained by RNAi technology. These MtSAP1 silencing plants dis- Only little work was dedicated to SAP proteins in plants, and to our played fewer leaves than the control plants, and furthermore, the best of knowledge this is the first study dedicated to a SAP protein leaves became chlorotic in comparison to the WT (data not shown). expressed in seed. We have shown that MtSAP1 gene expression From seven transgenic lines selected by PCR, three lines were increased in embryos during maturation reaching its maximum further analysed by immunoblotting with anti-MtSAP1 antibody on during tolerance of desiccation phase and declining after few hours the mature dry seeds. The MtSAP1 protein was highly abundant of seed imbibition. The expression of the gene and the quantity of in the mature WT seeds and faintly detectable in the mature seeds the protein were re-induced after germination in embryo axes by of the transgenic line (Fig. 4A). The disruption of the expression of ABA treatment and hypoxia and desiccation stresses. Seeds of RNAi MtSAP1 resulted in a severe seed phenotype. The transgenic seeds transgenic plants in which MtSAP1 gene expression was disrupted were smaller in terms of size and weight compared to the WT showed lower level of storage globulin proteins, vicilin and legu- (Fig. 4B and C). The analysis of the seed protein content showed that min, and deficient germination. the total protein content was not affected, while the accumulation of legumin and vicilin, storage globulin proteins, was specifically 2. Results reduced in RNAi seeds in comparison to the WT seeds, even if the reduction of vicilin content in RNAi lines appeared to less signifi- 2.1. Cloning of MtSAP1 and in silico analysis cant (Fig. 4D). A germination test run on seeds from WT and three RNAi lines An SSH library was constructed from embryo axis between two was carried out. The disruption of the expression of MtSAP1 early steps of Medicago truncatula seed germination (6 h and 23 h severely affected the germination capacity of the transgenic lines.
Recommended publications
  • Identification and Expression Analysis of Stress-Associated Proteins
    plants Article Identification and Expression Analysis of Stress-Associated Proteins (SAPs) Containing A20/AN1 Zinc Finger in Cucumber 1,2, 1,3, 2 2 1 1 2 Wei Lai y, Yong Zhou y , Rao Pan , Liting Liao , Juncheng He , Haoju Liu , Yingui Yang and Shiqiang Liu 1,* 1 College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; [email protected] (W.L.); [email protected] (Y.Z.); [email protected] (J.H.); [email protected] (H.L.) 2 College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; [email protected] (R.P.); [email protected] (L.L.); [email protected] (Y.Y.) 3 Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China * Correspondence: [email protected] These authors contributed equally to this work. y Received: 6 January 2020; Accepted: 2 March 2020; Published: 24 March 2020 Abstract: Stress-associated proteins (SAPs) are a class of zinc finger proteins that confer tolerance to a variety of abiotic and biotic stresses in diverse plant species. However, in cucumber (Cucumis sativus L.), very little is known about the roles of SAP gene family members in regulating plant growth, development, and stress responses. In this study, a total of 12 SAP genes (named as CsSAP1-CsSAP12) were identified in the cucumber genome, which were unevenly distributed on six chromosomes. Gene duplication analysis detected one tandem duplication and two segmental duplication events. Phylogenetic analysis of SAP proteins from cucumber and other plants suggested that they could be divided into seven groups (sub-families), and proteins in the same group generally had the same arrangement of AN1 (ZnF-AN1) and A20 (ZnF-A20) domains.
    [Show full text]
  • An Arabidopsis Zinc Finger Protein Increases Abiotic Stress Tolerance
    fpls-07-01272 August 22, 2016 Time: 11:41 # 1 ORIGINAL RESEARCH published: 24 August 2016 doi: 10.3389/fpls.2016.01272 An Arabidopsis Zinc Finger Protein Increases Abiotic Stress Tolerance by Regulating Sodium and Potassium Homeostasis, Reactive Oxygen Species Scavenging and Osmotic Potential Dandan Zang1, Hongyan Li1, Hongyun Xu1, Wenhui Zhang1, Yiming Zhang1, Xinxin Shi1 and Yucheng Wang1,2* 1 State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, Harbin, China, 2 Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Xinjiang, China Plant zinc finger proteins (ZFPs) comprise a large protein family and they are mainly involved in abiotic stress tolerance. Although Arabidopsis RING/FYVE/PHD Edited by: Mohammad Anwar Hossain, ZFP At5g62460 (AtRZFP) is found to bind to zinc, whether it is involved in abiotic Bangladesh Agricultural University, stress tolerance is still unknown. In the present study, we characterized the roles Bangladesh of AtRZFP in response to abiotic stresses. The expression of AtRZFP was induced Reviewed by: significantly by salt and osmotic stress. AtRZFP positively mediates tolerance to salt Xiping Wang, Northwest A&F University, China and osmotic stress. Additionally, compared with wild-type Arabidopsis plants, plants Tzvetina Brumbarova, overexpressing AtRZFP showed reduced reactive oxygen species (ROSs) accumulation, University of Düsseldorf, Germany enhanced superoxide dismutase and peroxidase activity, increased soluble sugars and *Correspondence: C C Yucheng Wang proline contents, reduced K loss, decreased Na accumulation, stomatal aperture [email protected] and the water loss rate. Conversely, AtRZFP knockout plants displayed the opposite physiological changes when exposed to salt or osmotic stress conditions.
    [Show full text]
  • Charactering the ZFAND3 Gene Mapped in the Sex-Determining
    www.nature.com/scientificreports OPEN Charactering the ZFAND3 gene mapped in the sex-determining locus in hybrid tilapia (Oreochromis Received: 14 January 2016 Accepted: 18 April 2016 spp.) Published: 03 May 2016 Keyi Ma1, Minghui Liao1, Feng Liu1, Baoqing Ye1, Fei Sun1 & Gen Hua Yue1,2,3 Zinc finger AN1-type domain 3 (ZFAND3) is essential for spermatogenesis in mice. However, its function in teleosts remains unclear. In this study, we characterized the ZFAND3 gene (termed as OsZFAND3) in an important food fish, tilapia. TheOsZFAND3 cDNA sequence is 1,050 bp in length, containing an ORF of 615 bp, which encodes a putative peptide of 204 amino acid residues. Quantitative real-time PCR revealed that the OsZFAND3 transcripts were exclusively expressed in the testis and ovary. In situ hybridization showed that the high expression of OsZFAND3 transcripts was predominantly localized in the spermatocyte and spermatid. These results suggest that OsZFAND3 is involved in male germ cell maturation. Three single nucleotide polymorphisms (SNPs) were detected in the introns of OsZFAND3. The OsZFAND3 gene was mapped in the sex-determining locus on linkage group 1 (LG1). The three SNPs in the OsZFAND3 gene were strictly associated with sex phenotype, suggesting that the OsZFAND3 gene is tightly linked to the sex-determining locus. Our study provides new insights into the functions of the OsZFAND3 gene in tilapia and a foundation for further detailed analysis of the OsZFAND3 gene in sex determination and differentiation. Zinc fingers are extremely abundant in higher eukaryotes1. As a kind of protein motif with finger-like protrusions, zinc fingers were first identified in a study of transcription in the African clawed frog, which revealed that the binding strength of a small transcription factor (TFIIIA) was due to the presence of zinc finger structures2.
    [Show full text]
  • Fungal Pathogenesis in Humans the Growing Threat
    Fungal Pathogenesis in Humans The Growing Threat Edited by Fernando Leal Printed Edition of the Special Issue Published in Genes www.mdpi.com/journal/genes Fungal Pathogenesis in Humans Fungal Pathogenesis in Humans The Growing Threat Special Issue Editor Fernando Leal MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade Special Issue Editor Fernando Leal Instituto de Biolog´ıa Funcional y Genomica/Universidad´ de Salamanca Spain Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Genes (ISSN 2073-4425) from 2018 to 2019 (available at: https://www.mdpi.com/journal/genes/special issues/Fungal Pathogenesis Humans Growing Threat). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03897-900-5 (Pbk) ISBN 978-3-03897-901-2 (PDF) Cover image courtesy of Fernando Leal. c 2019 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. Contents About the Special Issue Editor ...................................... vii Fernando Leal Special Issue: Fungal Pathogenesis in Humans: The Growing Threat Reprinted from: Genes 2019, 10, 136, doi:10.3390/genes10020136 ..................
    [Show full text]
  • Transcriptome Profiling of Kentucky Bluegrass (Poa Pratensis L.) Accessions in Response to Salt Stress B
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Agronomy & Horticulture -- Faculty Publications Agronomy and Horticulture Department 2016 Transcriptome profiling of entuckyK bluegrass (Poa pratensis L.) accessions in response to salt stress Shaun B. Bushman USDA-ARS, [email protected] Keenan L. Amundsen University of Nebraska-Lincoln, [email protected] Scott E. Warnke USDA-ARS, [email protected] Joseph G. Robins USDA-ARS, [email protected] Paul G. Johnson Utah State University, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/agronomyfacpub Part of the Agricultural Science Commons, Agriculture Commons, Agronomy and Crop Sciences Commons, Botany Commons, Horticulture Commons, Other Plant Sciences Commons, and the Plant Biology Commons Bushman, Shaun B.; Amundsen, Keenan L.; Warnke, Scott E.; Robins, Joseph G.; and Johnson, Paul G., "Transcriptome profiling of entuckyK bluegrass (Poa pratensis L.) accessions in response to salt stress" (2016). Agronomy & Horticulture -- Faculty Publications. 880. https://digitalcommons.unl.edu/agronomyfacpub/880 This Article is brought to you for free and open access by the Agronomy and Horticulture Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Agronomy & Horticulture -- Faculty Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Bushman et al. BMC Genomics (2016) 17:48 DOI 10.1186/s12864-016-2379-x RESEARCH ARTICLE Open Access Transcriptome profiling of Kentucky bluegrass (Poa pratensis L.) accessions in response to salt stress B. Shaun Bushman1*†, Keenan L. Amundsen2†, Scott E. Warnke3, Joseph G. Robins1 and Paul G. Johnson4 Abstract Background: Kentucky bluegrass (Poa pratensis L.) is a prominent turfgrass in the cool-season regions, but it is sensitive to salt stress.
    [Show full text]
  • Phylogenetic and Expression Analysis of Znf-AN1 Genes in Plants☆
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Genomics 90 (2007) 265–275 www.elsevier.com/locate/ygeno Phylogenetic and expression analysis of ZnF-AN1 genes in plants☆ Ying Jin a,1, Meng Wang a,1, Junjie Fu a, Ning Xuan a, Yun Zhu a, Yun Lian a, Zhiwei Jia a, ⁎ Jun Zheng b, Guoying Wang a,b, a State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100094, China b Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China Received 4 February 2007; accepted 27 March 2007 Available online 23 May 2007 Abstract In plants, ZnF-AN1 genes are part of a multigene family with 13 members in Arabidopsis thaliana, 19 members in Populus trichocarpa,17 members in Oryza sativa, at least 11 members in Zea mays, and 2 members in Chlamydomonas reinhardtii. All ZnF-AN1 genes contain the ZnF- AN1 domain. According to the phylogenetic analysis of the ZnF-AN1 domain, we divided plant ZnF-AN1 genes into two types. The coding sequences of most type I members do not possess any introns, while most type II members do possess intron(s). Through Northern blot analysis of maize members and digital Northern analysis of Arabidopsis members, we found that most ZnF-AN1 genes are involved in responses to abiotic stresses. The evolutionary analysis indicated that the expansion rate of type I was higher than that of type II. After expansion, some ZnF-AN1 genes may have gained new functions, some may have lost their functions, and some were specialized to perform their functions in stress-specific or tissue-specific modes.
    [Show full text]
  • Genome-Wide Analysis and Cloning of the Apple Stress-Associated
    Article Genome-Wide Analysis and Cloning of the Apple Stress-Associated Protein Gene Family Reveals MdSAP15, Which Confers Tolerance to Drought and Osmotic Stresses in Transgenic Arabidopsis Qinglong Dong †, Dingyue Duan †, Shuang Zhao, Bingyao Xu, Jiawei Luo, Qian Wang, Dong Huang, Changhai Liu, Chao Li, Xiaoqing Gong, Ke Mao * and Fengwang Ma * State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, China; [email protected] (Q.D.); [email protected] (D.D.); [email protected] (S.Z.); [email protected] (B.X.); [email protected] (J.L.); [email protected] (Q.W.); [email protected] (D.H.); [email protected] (C.L.); [email protected] (C.L.); [email protected] (X.G.) * Correspondence: [email protected] (K.M.); [email protected] or [email protected] (F.M.); Tel.: +86-029-8708-2613 (K.M.); +86-029-8708-2648 (F.M.) † These two authors contributed equally to this work. Received: 8 July 2018; Accepted: 13 August 2018; Published: 21 August 2018 Abstract: Stress-associated proteins (SAPs) are novel A20/AN1 zinc finger domain-containing proteins that are now favorable targets to improve abiotic stress tolerance in plants. However, the SAP gene family and their biological functions have not been identified in the important fruit crop apple (Malus × domestica Borkh.). We conducted a genome-wide analysis and cloning of this gene family in apple and determined that the overexpression of MdSAP15 enhances drought tolerance in Arabidopsis plants. We identified 30 SAP genes in the apple genome.
    [Show full text]
  • Solution Structure of the Cuz1 AN1 Zinc Finger Domain: an Exposed LDFLP Motif Defines a Subfamily of AN1 Proteins
    RESEARCH ARTICLE Solution Structure of the Cuz1 AN1 Zinc Finger Domain: An Exposed LDFLP Motif Defines a Subfamily of AN1 Proteins Zhen-Yu J. Sun1, Meera K. Bhanu2, Martin G. Allan1, Haribabu Arthanari1, Gerhard Wagner1, John Hanna2* 1 Department of Biological Chemistry and Molecular Physiology, Harvard Medical School, Boston, Massachusetts, United States of America, 2 Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America * [email protected] a11111 Abstract Zinc binding domains are common and versatile protein structural motifs that mediate diverse cellular functions. Among the many structurally distinct families of zinc finger (ZnF) OPEN ACCESS proteins, the AN1 domain remains poorly characterized. Cuz1 is one of two AN1 ZnF pro- teins in the yeast S. cerevisiae, and is a stress-inducible protein that functions in protein Citation: Sun Z-YJ, Bhanu MK, Allan MG, Arthanari H, Wagner G, Hanna J (2016) Solution Structure of degradation through direct interaction with the proteasome and Cdc48. Here we report the the Cuz1 AN1 Zinc Finger Domain: An Exposed solution structure of the Cuz1 AN1 ZnF which reveals a compact C6H2 zinc-coordinating LDFLP Motif Defines a Subfamily of AN1 Proteins. domain that resembles a two-finger hand holding a tri-helical clamp. A central phenylala- PLoS ONE 11(9): e0163660. doi:10.1371/journal. pone.0163660 nine residue sits between the two zinc-coordinating centers. The position of this phenylala- nine, just before the penultimate zinc-chelating cysteine, is strongly conserved from yeast Editor: Michael Massiah, George Washington University, UNITED STATES to man.
    [Show full text]
  • Inducible Zinc Finger Protein from Festuca Arundinacea Ruth C Martin1*, Kira Glover-Cutter1, James C Baldwin2 and James E Dombrowski1
    Martin et al. BMC Research Notes 2012, 5:66 http://www.biomedcentral.com/1756-0500/5/66 SHORTREPORT Open Access Identification and characterization of a salt stress- inducible zinc finger protein from Festuca arundinacea Ruth C Martin1*, Kira Glover-Cutter1, James C Baldwin2 and James E Dombrowski1 Abstract Background: Increased biotic and abiotic plant stresses due to climate change together with an expected global human population of over 9 billion by 2050 intensifies the demand for agricultural production on marginal lands. Soil salinity is one of the major abiotic stresses responsible for reduced crop productivity worldwide and the salinization of arable land has dramatically increased over the last few decades. Consequently, as land becomes less amenable for conventional agriculture, plants grown on marginal soils will be exposed to higher levels of soil salinity. Forage grasses are a critical component of feed used in livestock production worldwide, with many of these same species of grasses being utilized for lawns, erosion prevention, and recreation. Consequently, it is important to develop a better understanding of salt tolerance in forage and related grass species. Findings: A gene encoding a ZnF protein was identified during the analysis of a salt-stress suppression subtractive hybridization (SSH) expression library from the forage grass species Festuca arundinacea. The expression pattern of FaZnF was compared to that of the well characterized gene for delta 1-pyrroline-5-carboxylate synthetase (P5CS), a key enzyme in proline biosynthesis, which was also identified in the salt-stress SSH library. The FaZnF and P5CS genes were both up-regulated in response to salt and drought stresses suggesting a role in dehydration stress.
    [Show full text]
  • A Cys2/His2 Zinc Finger Protein Acts As a Repressor of Gibberellins
    bioRxiv preprint doi: https://doi.org/10.1101/616433; this version posted April 23, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. A Cys2/His2 zinc finger protein acts as a repressor of gibberellins biosynthesis by regulating SD1/OsGA20ox2 in rice (Oryza sativa L.) Min Duan1,2, Xiao-Juan Ke1, Hong-Xia Lan1, Xi Yuan1, Peng Huang1, En-Shun Xu1, Xiu-Ying Gao1, Ru-Qin Wang1, Hai-Juan Tang1, Hong-Sheng Zhang1* and Ji Huang1* 1State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; 2Taizhou Academy of Agricultural Sciences, Linhai 317000, Zhejiang, China *Authors for correspondence: Ji Huang Tel: +86-25-84399532 Email: [email protected] Hongsheng Zhang Tel:+86-25-84396075 Email: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/616433; this version posted April 23, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Gibberellins (GAs) play important roles in the regulation of plant growth and development. The green evolution gene SD1 encoding gibberellin 20-oxidase 2 (GA20ox2) has been widely used in modern rice breeding. However, the molecular mechanism of how SD1/OsGA20ox2 expression is regulated remains unclear. Here we report a Cys2/His2 zinc finger protein ZFP207 acting as a transcriptional repressor of OsGA20ox2. ZFP207 was mainly accumulated in young tissues and more specifically in culm nodes. ZFP207-overexpression (ZFP207OE) plants displayed semi-dwarfism phenotype and small grains by modulating cell length.
    [Show full text]
  • Genome-Wide Identification and Characterization of Stress-Associated Protein (SAP) Gene Family Encoding A20/AN1 Zinc-Finger Proteins in Medicago Truncatula
    Arch Biol Sci. 2018;70(1):87-98 https://doi.org/10.2298/ABS170529028Z Genome-wide identification and characterization of stress-associated protein (SAP) gene family encoding A20/AN1 zinc-finger proteins in Medicago truncatula Yong Zhou1, Liming Zeng1, Rongrong Chen1, Yihua Wang1 and Jianbo Song1,2,* 1 Department of Biochemistry and Molecular Biology, College of Science, Jiangxi Agricultural University, Nanchang 330045, China 2 Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Science, Shenzhen University, Shenzhen 518060, China *Corresponding author: [email protected] Received: May 29, 2017; Revised: July 28, 2017; Accepted: July 31, 2017; Published online: August 24, 2017 Abstract: Stress associated proteins (SAPs) play important roles in developmental processes, responses to various stresses and hormone stimulation in plants. However, little is known about the SAP gene family in Medicago truncatula. In this study, a total of 17 MtSAP genes encoding A20/AN1 zinc-finger proteins were characterized. Out of these 17 genes, 15 were distributed over all 8 chromosomes at different densities, and two segmental duplication events were detected. The phylogenetic analysis of these proteins and their orthologs from Arabidopsis and rice suggested that they could be classi- fied into five out of the seven groups of SAP family genes, with genes in the same group showing similar structures and conserved domains. The cis-elements of the MtSAP promoters were studied, and many cis-elements related to stress and plant hormone responses were identified. We also investigated the stress-responsive expression patterns of the MtSAP genes under various stresses, including drought, exposure to NaCl and cold.
    [Show full text]
  • The Stress Response and Circadian Regulation of Translation
    THE STRESS RESPONSE AND CIRCADIAN REGULATION OF TRANSLATION IN NEUROSPORA CRASSA A Dissertation by STEPHEN Z. CASTER Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Chair of Committee, Deborah Bell-Pedersen Committee Members, Daniel J. Ebbole Paul Hardin Matthew Sachs Terry Thomas Head of Department, Dorothy Shippen August 2016 Major Subject: Genetics Copyright 2016 Stephen Caster ABSTRACT Stress response pathways function to allow cells to adapt to changes in the environment. In Neurospora crassa, acute osmotic stress activates the conserved p38-like osmosensing mitogen-activated protein kinase (OS MAPK) pathway. When activated, the terminal MAPK, OS-2 can activate transcription factors and kinases. We show an acute osmotic stress activates OS-2, which phosphorylates and activates the conserved kinase RCK-2. RCK-2 phosphorylates and inactivates the highly conserved eukaryotic elongation factor 2 (eEF-2). To determine if this is a mechanism for translational regulation of mRNAs, I examined ribosome profiling and RNAseq data from osmotically stressed WT and Δrck-2 cultures. I found that RCK-2/eEF-2 regulate 69 constitutively expressed mRNAs at the level of translation. I also examined ribosome profiling and RNAseq data from cultures given light exposure, and found that 36 constitutively expressed mRNAs were regulated at the level of translation. In both cases, the translationally-controlled genes were enriched for metabolic processes, suggesting that rapid regulation of metabolism through translational control helps the organism overcome osmotic and light stress. The circadian clock has a profound effect on gene regulation; however, little is known about the role of the clock in controlling translation.
    [Show full text]