UNCLASSIFIED Mti a Qa Ma JU L

Total Page:16

File Type:pdf, Size:1020Kb

UNCLASSIFIED Mti a Qa Ma JU L ' m ' S § € € UNCLASSIFIED CHBI*71T--»AaAnON KOCtUtl PCR K.IHOKIUM AND URANIUM 106 ALAN08 SCIEXTITIC LASORATOT of t h e m v t m m of c a l it o r * a --------------------------- - IIOA1 MOtiCI TNinpart mm imiw i mm tttt—< W0 *jr 10, 1951 i« | m>i < oHi m$m n * > w m «M h Afei Mpwi, «w Aat At «m «t Mf y — Hu, AwUmJ A Alt npart My « t In- prUnly «m 4 » I. Am « •«, »i* « A A w r f , t t b A t f m wMm A— At — «* —y ld t i t flt \ I* • p « M An Im 4 In Alt Mpait. Ai «iMI» lyakM^pMM AtMata***- pAy— m MHfcMtor «l *• A At «•** A* M l MtfttfM * «M AIt hi tA N O M f Mmtfte* fu*«Manl HMin* THE DECONTANDIATICN Of URAEXUH FRCP PISSXCM PRODUCTS BT THE USB OP THE URAHIL OXAUTI PRECIPITATION REACTION Report written byi DATE APR 12 1957 6. L. Ktlcnner For The Atomic Energy Commiteion mTi A Q a m AJUL Chief. DoelattifiCAtlon Branch ■X msUA m wmm WI | p mmsm COffitt® 1 1 1 * 1 ABSTRACT Decontamination factor* of the order of 10 vert obtain** for R « m and r toitura preecnt at flit loo product* vfata urtnlua vat precipi­ tated fro* 90 a C activity level *olutloae at uraayl oxalate undtr noraal urtniua yield condition* for three cycltt ( r & i ) • Factor* of tha order of 10^ vtrt obtained by the uat of this reaction vlth tladlar tolutloot undtr relatively high urtniua jrlald 0 condition* for thro* eyelet (~9<#). The urtniua parotid* precipitation reaction proved to ba of no m value on auch aolutiooe, yielding decontamination factor* of only 17.1 for 9 emitter* and 1.2 for r emitter* for three cycle*. -V: K g Reference*; P. A. Bo. CMH-B-b (5RP#0)| LA RoUbook 2957. ‘ ■ m •;>. r.Kg'-sy-g * s i ••• nHWFn'W'H A? ^.•&<y->\.111! Is COO&SOtlaO with tte RaU prog?** i t this laboratory, it VUI . proposed that 5 k4 of enriched uranium 1m subetttuted for the two ton* of l o m l uranium no* I m d U M 1a tte Sanford File to product ik n tte required quantity of active | | “ ;- This would relieve the prob- 1m of storing large volume* of highly active normal uranium eolu- I k A tlQBt after the fit ted t e a removed. However, tte monetary volte of enriched uranlua would necessitate ltd recovery and Aecontaains- IkA tion to that it could te recycled te a m r additional la wai rt- qutred. / /^lailtetU a of tte quantity o fte 1*0 needed for single ejq>eri**nta raaga up to 10,000 c, which would mod initial actititle* of tte ir­ radiated uranium on tte order of 10^C. Decontamination factor# (after m oral of tte Ba^°), therefore, should approach this value so that tte enriched uranium could be re-cycled through standard procesaea to flniated astal shapes with a Minima of ahislding of the opmtlooa Involved. Although auccesaful decontamination of uranluai from flesion pro­ ducts tea been achieved through the use of solvent exttmetion pro­ cesses, i t wae further proposed that precipitation reactions be in­ vestigated as to tb sir ab ility to dscoataaioate uranium under these conditions. Certain process advantages are obvious for preclplta- Jit msi ' m f e w ; - Iftlfelrf •m s * lilt/life •: > feir'inwv:;: CQ>JFID®mAl- tlon*type reactions. The urmniua pere&tde reaction (30* 8«0» M precipitant) and tha urmnyl onalabs reaction (fl*C*<vai#0 u precipitant) art both used extend vs ly mi thle laboratory for rifuUr cbeeical purlf teat loo. Tbit nport dsacribes their uet Tor the separation of ureniua free flttloQ product*. WM II - Experimental Consideration* ymWm 1. nature of activity at th* tla* of attested decontamination, It wee assumed at the outset of the problem that a cooling period would bo allowed prior to attempted decontamination. This 11would gs decrease . - the ^in itial’ activity by perhaps half and leave coat esdiua-llved, but chiefly long-lived, isotopes. This cooling period paww cr a t-fT T 'S f**b, vould here to be At such etmmug level u to permit direct handling of the aateriel within certain Use Unit*, end with the use of •lapis tooge. pel culat Iona. Thi* work vt» carried out on normal tumulus solutions to vhlch •m il quantities of ft to loo product activity warn added. Since nor- aal uranlua (eepectally old preparations) also contain* 0 and r actl- rity from certain laotopee la the natural decay chain, this radiation sat subtracted, froa the fla*Ion product activity. To obtain thtM blank valuta, "hot" experiments were duplicated by "cold" experl - aenta — actually preceded by them, thus also providing technique experience, especially in the use of tongs, remote vacuus transfers, etc. Solution allquota were counted before a precipitation vaa made. Then, a fte r the cake vaa washed, converted to an oxide, re-dissolved, wad amde up to a definite volume, solution allquota vara again counted. This value be cam the starting count for the next preclpl- tatlon, etc. In this manner, any value divided by i t s succeeding 1 value provided the decontamination factor for that precipitation; or, the Initial value divided by the final value of a series of precipi­ tation* would equal the total decontamination factor obtained for ■ W i mm i « |SiEi^^®';: w fiMPU Calculation*. The following calculation*, shovn in Table 1, war# fcyn l— t D-2, and are typical of the calculation* and* for all the m experlaeatal work, with the except ion of soae of the early experi- p%; mot* where no r activity determination* ware aad*. TABLE 1 8 Decontamination Result* Result, Total Corrected (naan) Activity, Total Acti­ c/a c/a v ity . c/a SECRET r Decontamination Results Sample Dtcco- Result, Total Corrected taain- Total Acti­ atlon Sais. Aliquot c/a vity. e/a factor starting soln., "hot" 1/2500 Too 1.75 * 10S 1.73 x 10*' starting sola., "cold" 1/8500 8 —2.00 x 10H J f i r s t ppt., "hot" 1/2500 39 9.75 * 1 0 S M 3 * 10 f i r s t pipt., "cold" 1/2500 20 5.00 X 10* 1 b.O second ppt., "hot" 8/5000 19 1.19 X lo S second ppt., "cold14 8/5000 53 5-32 X 10k j k.e th ird ppt., "hot" 8/5000 6 3.75 x io5'j 2.50 * iO5 third ppt., "cold” 8/5000 2 1.25 X 105 ) Total V - 692 •Average total 9 activity found for 30 gas. noxml U w i 2 x 10* c/a. **Awragi total r activity found for 50 gaa. normal u tat 2.5 a 10* c/a. eeesinca the blank value It higher than the hot value, It miMt be neglected. 3 and r counting of the sample# eat done by the RaLa chemistry group (CHR-10) • Counting results were corrected fo r background and coincidence before being reported to this group, lo further correc- •« ... • • n »• . ... ** • 1 • i.» »»» . • • ♦ • » ... » » ... 1 • :• 1: ::: 1.: w.... 5 «• ::■ • «• rnmmmmmm l&SMffigmi mm ' rnmmmsmSim^mrni 1Hi tioas w n applied to the calculations other thau the subtraction of blank Talt*». Decay of the activity over the experimental period was awai t, enough to be neglected. (8ee "Sources of Activity".) A swell fraction of the decontamination la attributable to uranlua yield it­ self — e.g., if a decontamination factor of b were obtained after a precipitation vhoea uranlua yield vat $OJt, then only half that decon­ tamination would be due to cheaioal purification. This is a severe •xasQle, however, and on the basis of uranlua yields and accoepaaylng decontamination factors given later In this report, yield effect* were negligible and no corrections vere wads for them. Sample Preparation. Aliquots were so arranged that one al of solution contained enough activity for a reasonably accurate beta count. This voluas of (solution vas evaporated in a glass cup 7/8" X.D. and l/b" deep. Duplicate sasplea were prepared and the cups placed in the counting chamber. The wean, corrected result was used in the calculation# as noted. 10 al solution aliquots vers given directly to Group CXR-10 for counting. This group carried out the sample preparation for these aliquots using annular type counting bottles. PPPP'P; Sources of Activity. :.r. - •Vv;7^v. • ;p3':: P;, & ^ Two sources of fiesion products were used to supply the 0 and r activity for the experiments: SECRET I". •** •’« » •" •** » •** • •'* »*• * * •• » . ...»>• ...< . ut.. i • S «•.. ..•• p i ■ 1. Uraayl nttraU •olutloo froa the Um AUk * eater boiler, th is •olutloo conUlo*4 k$Q o§. of uranlua (tt.9> V~S$5) per ml. Staples received after 3 w athe' decay emitted approximately 1*6 ■C o f r activity par ml, Manured by •array Mter*, aad at 7 mantle, 0.7 mC of r activity par ml, meaaured la the m m my. A maple taken for 0 count at tha beginning of the eaparimante ahoeed the following decay with respect to time: Dag e/». » 0 9 W b 9067 3 9 »5 6 9«rr> 7 90*8 10 88X0 TbcM data arc plotted in figure i. 2. Urmnyl nitrate tolutloo from the dl■•olutloo of a Chalk River Pile slug. Pour 30 aC eaaplaa vert received a fte r about ) months' da* cay, containing the following velghte of U and Pu per aaqplat total U • 2.65 am. U-255 . 0.016 e u . * 3 8 3 1 3 SP 1 r: - im tn w n rn v f ;^v-r<:^ JH H .
Recommended publications
  • Critical Mass Laboratory Solutions Precipitation, Calcination, and Moisture Uptake Investigations
    PNNL-13934 Critical Mass Laboratory Solutions Precipitation, Calcination, and Moisture Uptake Investigations C.H. Delegard G.S. Barney S.I. Sinkov A.J. Schmidt B.K. McNamara R.L. Sell S.A. Jones June 2002 Prepared for the U.S. Department of Energy under Contract DE-AC06-76RL01830 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. PACIFIC NORTHWEST NATIONAL LABORATORY operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-ACO6-76RLO183O Printed in the United States of America Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831-0062; ph: (865) 576-8401 fax: (865) 576-5728 email: [email protected] Available to the public from the National Technical Information Service, U.S.
    [Show full text]
  • IAEA-CN245-114 Preparation of Actinide Oxides by Thermal Denitration
    1 IAEA-CN245-114 Preparation of actinide oxides by thermal denitration K. Dvoeglazov, A. Shadrin Innovation and Technology Center by ”PRORYV” Project, State Atomic Energy Corporation “Rosatom” , Moscow, Russia Abstract. Pyrochemical, hydrometallurgical and combined (pyro + hydro) technologies for mixed uranium- plutonium nitride used nuclear fuel reprocessing technologies are being developed in the Russian Federation for the closed nuclear fuel cycle. The mixture of U, Pu and Np oxides is a goal product of hydrometallurgical and combined reprocessing technology. The choice of a technology for mixed actinide dioxide preparation was made after additional studies of several methods: oxalate precipitation, gas-flame denitration, hydrazine reduction in alkaline media and thermal microwave denitration. The samples of U, U-Th and U-Pu mixed oxides were prepared and their properties (packed density, specific surface area, fractional composition, chemical homogeneousness) were determined. Microwave thermal denitration was chosen as a main method. Key Words: Actinides, Mixed oxides, Preparation, Methods 1. Introduction Use of the recycled nuclear materials for the fresh fuel production is a main advantage of the closed nuclear fuel cycle. The final products of traditional hydrometallurgy technology are actinide oxides. Currently in the Russian Federation, a closed nuclear fuel cycle with a fast reactor BREST- 300 should be demonstrated under the project “PRORYV” on the site of the Siberian Chemical Combine in Seversk. BREST-300 uses mixed uranium-plutonium nitrides nuclear fuel. Combined (pyro+hydro) technology called PH-process [1] and its hydrometallurgical variation [2] are under development for the recycling of this kind of spent nuclear fuel (SNF). Preparation of uranium, plutonium and neptunium oxides from their nitrate solutions is a necessary step of aforementioned technologies.
    [Show full text]
  • In Situ Raman Spectroscopy of Uranyl Peroxide Nanoscale Cage Clusters Under Hydrothermal Conditions
    Dalton Transactions In Situ Raman Spectroscopy of Uranyl Peroxide Nanoscale Cage Clusters Under Hydrothermal Conditions Journal: Dalton Transactions Manuscript ID DT-ART-04-2019-001529.R1 Article Type: Paper Date Submitted by the 29-Apr-2019 Author: Complete List of Authors: Lobeck, Haylie; University of Notre Dame, Department of Civil Engineering Traustason, Hrafn; University of Notre Dame, Department of Civil Engineering Julien, Patrick; McGill University, Department of Chemistry Fitzpatrick, John; University of Notre Dame, Department of Civil Engineering Mana, Sara; Salem State University Szymanowski, Jennifer; University of Notre Dame, Department of Civil and Environmental Engineering and Earth Sciences Burns, Peter; University of Notre Dame, Department of Civil Engineering Page 1 of 11 PleaseDalton do not Transactions adjust margins ARTICLE In Situ Raman Spectroscopy of Uranyl Peroxide Nanoscale Cage Clusters Under Hydrothermal Conditions a b c a d Received 00th January 20xx, Haylie L. Lobeck, Hrafn Traustason, Patrick A. Julien, John R. FitzPatrick, Sara Mana, Jennifer Accepted 00th January 20xx E.S. Szymanowski,a and Peter C. Burns * a, b 60- DOI: 10.1039/x0xx00000x Aqueous solutions containing the nanoscale uranyl peroxide cage clusters U60, [(UO2)(O2)(OH)]60 , and U60Ox30, 60- [{(UO2)(O2)}60(C2O4)30] , were monitored by in situ Raman spectroscopy during stepwise heating to 180°C. In solutions 24- containing U60, clusters persist to 120°C, although conversion of U60 to U24, [(UO2)(O2)(OH)]24 , occurs above 100°C. U60Ox30 persisted in solutions heated to 150°C, although partial conversion to smaller uranyl peroxide clusters species was observed beginning at 100°C. Upon breakdown of the uranyl peroxide cage clusters, uranium precipitated as a compreignacite-like phase, K2[(UO2)3O2(OH)3]2(H2O)7, and metaschoepite, [(UO2)8O2(OH)12](H2O)10.
    [Show full text]
  • Fenton and UV-Vis Based Advanced Oxidation Processes in Wastewater Treatment
    UNIVERSITAT DE BARCELONA FACULTAT DE QUÍMICA DEPARTAMENT D’ENGINYERIA QUÍMICA I METAL·LÚRGIA Fenton and UV-vis based advanced oxidation processes in wastewater treatment: Degradation, mineralization and biodegradability enhancement. Miguel Rodríguez Barcelona, April, 2003 Programa de Doctorado de Ingeniería Química Ambiental Biennio 1998-2000 Memoria presentada por Miguel Rodríguez, Ingeniero Químico, para optar al grado de Doctor en Ingeniería Química Miguel Rodríguez La presente Tesis ha sido realizada en el Departamento de Ingeniería Química y Metalurgia de la Universidad de Barcelona, bajo la dirección del Dr. Santiago Esplugas Vidal, quien autoriza su presentación: Dr. Santiago Esplugas Vidal Barcelona, Abril de 2002 Al Prof. Sergio Miranda, pilar fundamental en mi transitar por la vida universitaria. Por fortuna la vida está llena de momentos como estos. Por ello, nunca abandones, siempre será mejor perseverar y ver como al final todo llega, así como llega el sol cada mañana. Miguel En honor a la verdad, el espacio para los agradecimientos podría ocupar un capítulo de esta tesis, y más que una exageración es una manera de expresar el haber tenido la fortuna de trabajar y compartir con tanta gente y de quienes siempre recibí ayuda, aprecio, amistad y solidaridad razones por las cuales estoy muy agradecido. Trataré sin embargo, en un buen ejercicio de síntesis. resumir sin dejar a nadie en el olvido. En primer lugar quiero agradecer al convenio ULA-CONICIT por el otorgamiento de la beca para la realización de este doctorado al igual que al DR. Santiago Esplugas, quien aceptó ser mi tutor y de quien he recibido amistad, confianza , conocimientos y toda su ayuda para llevar a feliz término esta tesis doctoral.
    [Show full text]
  • Recycling and Reuse of Radioactive Materials
    UNLV Theses, Dissertations, Professional Papers, and Capstones 12-1-2012 Recycling and Reuse of Radioactive Materials Thomas Joseph O'dou University of Nevada, Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations Part of the Occupational Health and Industrial Hygiene Commons, and the Radiochemistry Commons Repository Citation O'dou, Thomas Joseph, "Recycling and Reuse of Radioactive Materials" (2012). UNLV Theses, Dissertations, Professional Papers, and Capstones. 1765. http://dx.doi.org/10.34917/4332746 This Dissertation is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Dissertation has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. RECYCLING AND REUSE OF RADIOACTIVE MATERIALS by Thomas Joseph O’Dou Bachelor of Science in Radiological Health Physics Lowell Technological Institute 1974 Master of Science in Radiological Science and Protection University of Lowell 1981 A dissertation submitted
    [Show full text]
  • Choice Based Creditsystem (Cbcs)
    CHOICE BASED CREDIT SYSTEM (CBCS) Syllabus for Chemistry B. Sc. (HONOURS, GENERIC ELECTIVE), M. Sc & Ph. D. ABOUT THE DEPARTMENT Department of Chemistry, IGNTU, Amarkantak The Department of Chemistry was started in 2008, and has now grown into a major department for teaching and research within the Faculty of Science at IGNTU. The department offer vibrant atmosphere to students and faculty to encourage the spirit of scientific inquiry and to pursue cutting-edge research in a highly encouraging environment. The key objective of our department is to create good quality human resource through competitive yet inspiring environment for developing their careers. Currently, the department comprises more than hundred students, five research scholar and seven faculties and a dedicate team of staff members. The department offers three years undergraduate B.Sc. courses in Chemistry (Hons.) in the University. In addition it also offers two years M. Sc. and PhD programme. At present the Department consists of about seven research groups working in the areas of material chemistry (Functional Hybrid Nanomaterials), coordination/ supramolecular chemistry, bioinorganic chemistry, asymmetric synthesis, catalysis, nanomagnetism and Single Molecule Magnets (SMMs), as major thrust areas. The department is doing well in research activities and published good numbers of research papers. The faculty has been undertaking research projects sponsored by different national agencies such as DST, UGC, etc. The most important achievement of the University is the first Department of Chemistry has succeeded “DST-FIST Program – 2017” recognition from Govt. of India, Department of Science & Technology, New Delhi. Many students have been qualified National Eligibility Test (NET) and Joint Admission Test (JAM) Examination for pursuing PhD and M.
    [Show full text]
  • Some Measurement on the Quantum Yield Temperature Coefficient of The
    No. 4 ROBBER FLIES IN EASTERN UNITED STATES 421 SOME MEASUREMENTS ON THE QUANTUM YIELD TEMPERATURE COEFFICIENT OF THE URANYL OXALATE ACTINOMETER AT 254 MM1' "• 3 B. M. NORTON Kenyon College, Gambler, Ohio ABSTRACT This paper reports, for solutions of 0.001 M uranyl sulfate and 0.005 M oxalic acid, a 10-degree temperature coefficient, up to 85°C (using a base temperature of 25°) of 1.02±0.01 at 254 m/x. Measurements in more dilute solutions show a decrease to approximately unity at 0.00025 M uranyl sulfate—0.00125 M oxalic acid, with indication that it may become less than unity on further dilution. Quantum yields measured (using uranyl oxalate as standard), by students under a National Science Foundation "pilot" undergraduate participation project, on actinometers at 254 rn.fi, were for (1) malachite green leucocyanide, 0.9; (2) monochloroacetic acid, 0.3; and (3) potassium ferrioxalate, 1.24 moles per einstein. EXPERIMENTAL Solutions were prepared using C.P. uranyl sulfate, 4.87 grams, and C.P. oxalic acid, 6.3 grams, per liter, with dilutions to concentrations shown in Tables I and II. Sources of 254 m/z radiation were two Hanovia arcs; in one set-up, a three- fold resonance arc, SC2537, was placed in a vertical position; in the other, a spe- cially constructed helical arc was used. For the results shown in Series (2) of Tables I and II, radiation from the arcs was filtered by Corning filters CS7-54 1Presented at the April 24, 1964 meeting of the Ohio Academy of Science, Western Reserve University, Cleveland, Ohio.
    [Show full text]
  • Kelly A. Hislop Graduate Program in Chemistry / Environmental Science
    Kelly A. Hislop Graduate Program in Chemistry / Environmental Science Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy FacuIty of Graduate Studies The University of Western Ontario London, Ontario March, 1999 O Kelly A. Hisiop 1999 National library Bibliothèque nationale I*m of Canada du Canada Acquisitions and Acquisitions et Bibliographie Services services bibliographiques 395 Wellington Street 395. rue Wellington OttawaON K1AON4 Ottawa ON K1A ON4 Canada canada Your @a Votre reference Ow ma Notre reference The author has granted a non- L'auteur a accordé une licence non exclusive licence allowing the exclusive permettant à la National Librq of Canada to Bibliothèque nationale du Canada de reproduce, loan, distribute or sell reproduire, prêter, distribuer ou copies of this thesis in microform, vendre des copies de cette thèse sous paper or elecîronic formats. la forme de microfiche/fïlm, de reproduction sur papier ou sur format élecîronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. The W-Vis / ferrioxalate / hydrogen peroxide sysîern (or " femoxalate" sys rem) couples two weil known reactions to generate a photochernical method of generating hydroxyl radicals for the purpose of mineraking organic contarninants in water. The first is the photochernical reduction of femoxalate [Fe(III) coordinated with between one and three oxalate ligands] to Fe(I1) by light in the ultraviolet and/or visible.
    [Show full text]
  • BHARATHIDASAN UNIVERSITY, TIRUCHIRAPPALLI 620 024 M.Phil. CHEMISTRY (FT/ PT) Programme COURSE STRUCTURE SEMESTER
    BHARATHIDASAN UNIVERSITY, TIRUCHIRAPPALLI 620 024 M.Phil. CHEMISTRY (FT/ PT) Programme (For the candidates admitted from the academic year 2007-2008 onwards) COURSE STRUCTURE SEMESTER – I COURSE TITLE MARKS CREDITS IA UE TOT COURSE–I Research Methodology and Laboratory 25 75 100 4 Techniques COURSE– II Physical Methods in Chemistry I 25 75 100 4 COURSE– III Physical Methods in Chemistry II 25 75 100 4 SEMESTER - II COURSE–IV ELECTIVE – (Any one) 25 75 100 4 1.Modern Methods of Organic Synthesis 2.Bioinorganic Chemistry 3. Principles and Applications of Organometallic Chemistry of Transition Metals 4.Principles and Advances in Medicinal Chemistry 5.Photophysics and Photochemistry 6 Molecular Modeling and Chemo & Bioinformatics 7. Nanochemistry Dissertation and Viva-Voce 200 ( 150+50) 8 Viva Voce 50 marks Dissertation 150 marks QUESTION PAPER PATTERN ( Paper I – IV ) Part A : Two questions from each unit (without choice). Each question Carries marks (10 x 2 = 20) Part B : One “EITHER OR” questions from each unit. Each question carries marks ( 5 x 5 = 25) Part C : One question from each unit. Each question carries 10 marks. The candidate has to answer three questions out of the five questions ( 3 x 10 = 30) 1 BHARTHIDASAN UNIVERSITY, TIRUCHIRAPPALLI 620 024 M. Phil. CHEMISTRY (For the candidates admitted from the academic year 2007-2008 onwards) Paper 1: Research Methodology and Laboratory Techniques UNIT I 1. Literature Survey Web search and web publishing – Literature survey using internet – Web resources – Journal access through web –
    [Show full text]
  • United Statespatent Office Patented May 6, 1958
    PROP.U.S.A. 2,833,800 United StatesPatent Office Patented May 6, 1958 .. .. ~lR ; ., ..”., 1 2 The carrier procedure may be effected by any of ~e - - known techniques for effecting adequate contact of liquids 2,833,800 with insoluble solids. PROCESS FOR PWRIFYING PLUTONIUM The use of the carrier procedure for separating pluto- 5 nium from uranium is complicated by the fact that either Donald F. Mastick, Napa, Calif., and Arthur C. Wahl, (a) isomorphic carriers, i. e., those having a crystalline University City, Me., assignors to the United Stafes of structure with cation spacing in the crystal lattice such Ameriea as represented by the United States Afmnic Energy Commission that plutonium ions may be substituted in the lattice for carrier cations, or (b) carriers of the same range of ionic No Drawing. Application December 19, 1947 10 radii are necessary. A carrier must be selected” that is Serial No. 792,834 not isomorphic with any of the contaminating cations or, 1 Claim. (Cl. 260—429.1) in the event this cannot be accomplished, one that is isomorphic with the least number of contaminating cat- ions must be selected and the process repeated. This invention relates to material purification and in its 15 Another possible method for the purification of pluto- & more particular phases provides a method of separating nium which is present in such low concentration that none plutonium (element 94) from uranium (element 92) by of its known compounds will precipitate is the electro- the preparation of a new composition of matter known deposition of the plutonium simultaneously with the elec- as plutonium trioxalate.
    [Show full text]
  • Crystal Chemistry of Uranyl Sulfates and Oxalates And
    CRYSTAL CHEMISTRY OF URANYL SULFATES AND OXALATES AND PERRHENATE INCORPORATION INTO URANYL PHASES A Thesis Submitted to the Graduate School of the University of Notre Dame in Partial Fulfillment of the Requirements for the Degree of Master of Science by Nancy Elaine Roback Peter C. Burns, Director Graduate Program in Chemistry and Biochemistry Notre Dame, Indiana April 2009 © Copyright 2009 Nancy Elaine Roback CRYSTAL CHEMISTRY OF URANYL SULFATES AND OXALATES AND PERRHENATE INCORPORATION INTO URANYL PHASES Abstract by Nancy Elaine Roback The understanding of uranium chemistry is of increasing importance in the search for clean, renewable energy. Nuclear power can produce energy with no greenhouse gas emissions and far fewer raw materials. One ton of uranium produces power equivalent to 16,000 tons of coal or 80,000 barrels of oil (Nuclear Energy Institute, 2009). However, controversy surrounds nuclear power due to the disposal of spent nuclear fuel. There is currently no long-term storage facility in the United States. Yucca Mountain, Nevada has been proposed as a geological repository, but more information on the chemistry of spent fuel components, such as uranium and technetium is needed to ensure safety and secure a license for operation. This research expands the knowledge of uranium crystal chemistry and the ability of uranyl phases to incorporate components of spent nuclear fuel. A novel new uranyl sulfate and three new uranyl oxalate compounds are - presented, along with a study of the incorporation of perrhenate (ReO4 ), as a analog for - pertechnetate (TcO4 ), into uranyl phases. The uranyl sulfate K2[(UO2)(SO4)2H2O]H2O Nancy Elaine Roback crystallized in the Cmca space group and is composed of uranyl pentagonal bipyramids linked into infinite chains with sulfate tetrahedra.
    [Show full text]
  • AN ABSTRACT of the DISSERTATION of Harrison Neal for the Degree of Doctor of Philosophy in Chemistry Presented on June 7, 2018
    AN ABSTRACT OF THE DISSERTATION OF Harrison Neal for the degree of Doctor of Philosophy in Chemistry presented on June 7, 2018. Title: Organic/Inorganic Hybrid Materials of Uranyl Peroxide Clusters and Uranium Minerals Abstract approved: ______________________________________________________ May Nyman Frontier research of non-aqueous actinide clusters is discussed. Since the inception of the uranyl peroxide clusters over the last decade, they have only been synthesized and characterized as solid crystals and in aqueous solution. This thesis provides thorough characterization of aqueous uranyl clusters and the first demonstration of uranyl cluster transfer and characterization in organic solvents. Uranyl peroxide clusters self- assemble in mild alkaline solution in the presence of peroxide. Primary solution characterization used throughout this work is Small-Angle X-ray Scattering (SAXS), giving information on particle size, shape, and electron density contrast. SAXS characterization shows the capsule-structures of clusters are maintained, but unique behavior is observed under further characterization. Hydrophilic encapsulated counterions (i.e. alkalis, ammonium) become isolated in this hydrophobic environment. Immobile counterion environments are specific to cluster identity, allowing for variable-temperature solution Nuclear Magnetic Resonance (NMR) spectroscopy of ion exchange dynamics within clusters. This provides an unprecedented opportunity to probe structure of lithium atoms, not visible under x-ray diffraction, leading to an understanding of self-assembly and stabilization of clusters. Research of uranyl peroxide clusters in the organic phase have led to discoveries of a new cluster structures not seen before in an aqueous environment. Study of uranyl species in an organic solution has implications for back-end nuclear fuel processing and separations within the nuclear fuel cycle.
    [Show full text]