Poisson Structures and Lie Algebroids in Complex Geometry by Brent

Total Page:16

File Type:pdf, Size:1020Kb

Poisson Structures and Lie Algebroids in Complex Geometry by Brent Poisson Structures and Lie Algebroids in Complex Geometry by Brent Pym A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Mathematics University of Toronto c Copyright 2013 by Brent Pym Abstract Poisson Structures and Lie Algebroids in Complex Geometry Brent Pym Doctor of Philosophy Graduate Department of Mathematics University of Toronto 2013 This thesis is devoted to the study of holomorphic Poisson structures and Lie algebroids, and their relationship with differential equations, singularity theory and noncommutative algebra. After reviewing and developing the basic theory of Lie algebroids in the framework of complex analytic and algebraic geometry, we focus on Lie algebroids over complex curves and their application to the study of meromorphic connections. We give concrete construc- tions of the corresponding Lie groupoids, using blowups and the uniformization theorem. These groupoids are complex surfaces that serve as the natural domains of definition for the fundamental solutions of ordinary differential equations with singularities. We explore the relationship between the convergent Taylor expansions of these fundamental solutions and the divergent asymptotic series that arise when one attempts to solve an ordinary differential equation at an irregular singular point. We then turn our attention to Poisson geometry. After discussing the basic structure of Poisson brackets and Poisson modules on analytic spaces, we study the geometry of the degeneracy loci|where the dimension of the symplectic leaves drops. We explain that Pois- son structures have natural residues along their degeneracy loci, analogous to the Poincar´e residue of a meromorphic volume form. We discuss the local structure of degeneracy loci that have small codimensions, and place strong constraints on the singularities of the degen- eracy hypersurfaces of log symplectic manifolds. We use these results to give new evidence for a conjecture of Bondal. Finally, we discuss the problem of quantization in noncommutative projective geometry. Using Cerveau and Lins Neto's classification of degree-two foliations of projective space, ii we give normal forms for unimodular quadratic Poisson structures in four dimensions, and describe the quantizations of these Poisson structures to noncommutative graded algebras. As a result, we obtain a (conjecturally complete) list of families of quantum deformations of projective three-space. Among these algebras is an \exceptional" one, associated with a twisted cubic curve. This algebra has a number of remarkable properties: for example, it supports a family of bimodules that serve as quantum analogues of the classical Schwarzen- berger bundles. iii Acknowledgements First and foremost, I wish to thank my thesis advisor and mentor, Marco Gualtieri. Marco's contagious passion for mathematics and his enthusiasm for teaching made our extended weekly meetings both exciting and memorable. I am deeply grateful for his countless efforts on my behalf, and for his apparently inexhaustible supply of advice and inspiration. I am grateful to several other faculty members in the Department of Mathematics, no- tably Lisa Jeffrey, Joel Kamnitzer, Yael Karshon, Boris Khesin, Eckhard Meinrenken and Michael Sigal, for their support and guidance. I am particularly indebted to Ragnar-Olaf Buchweitz, who patiently explained various aspects of algebra and singularity theory to me. I would also like to thank Michael Bailey, Alejandro Cabrera, Eleonore Faber, Jonathan Fisher, Eric Hart, Songhao Li, David Li-Bland, Brian Pike, Steven Rayan, Daniel Rowe and Jordan Watts for many hours of stimulating discussions. Special thanks are due to Nikita Nikolaev, who notified me of several typographical errors in an early draft of this thesis. The excellent administrative staff in the department have made it a very pleasant and efficient workplace. I am particularly thankful to Donna Birch, Ida Bulat, Jemima Mersica, and Patrina Seepersaud for their help on numerous occasions. Outside the University of Toronto, I have learned a great deal from conversations with many mathematicians, including Philip Boalch, Raf Bocklandt, William Graham, Nigel Hitchin, Jacques Hurtubise, Colin Ingalls, Jiang-Hua Lu, Alexander Odesskii, Alexander Polishchuk, Daniel Rogalski, Travis Schedler, Toby Stafford and Michel Van den Bergh. I am especially thankful to Colin Ingalls, who provided very helpful comments on Chapter 8, and Travis Schedler, who did the same for the paper [73]. Much of the work described in Chapter 8 occurred during visits to the Mathematical Sciences Research Institute (MSRI) for workshops associated with the program on Noncom- mutative Algebraic Geometry and Representation Theory. I would like to thank the MSRI and the organizers of the program for supporting my visits financially and for providing a highly invigorating working environment. My research was made possible, in part, by fellowships from the University of Toronto and the Natural Sciences and Engineering Research Council of Canada. I am very grateful for their generosity. Finally, I wish to thank my family and friends for their love and support|particularly my partner, Natalie Symchych, whose unwavering patience and encouragement made the completion of this thesis possible. iv Contents 1 Introduction1 1.1 Motivation.....................................1 1.2 The Example....................................2 1.3 Guiding principles.................................5 1.4 Summary of the thesis...............................6 2 Lie algebroids in complex geometry8 2.1 Preliminaries....................................8 2.1.1 Analytic spaces...............................8 2.1.2 Holomorphic vector bundles and sheaves................. 11 2.1.3 Calculus on analytic spaces........................ 14 2.2 Lie algebroids.................................... 15 2.3 Lie algebroids associated with hypersurfaces................... 18 2.4 Lie algebroid modules............................... 21 2.5 Lie algebroid cohomology............................. 24 2.5.1 The Picard group.............................. 26 2.6 The universal envelope, jets and higher order connections........... 28 2.7 Holomorphic Lie groupoids............................ 30 2.7.1 Integration and source-simply connected groupoids........... 34 2.8 Groupoids in analytic spaces........................... 35 2.9 The question of algebraicity............................ 37 3 Lie theory on curves and meromorphic connections 40 3.1 Invitation: divergent series and the Stokes phenomenon............ 40 3.2 Lie algebroids on curves.............................. 44 3.2.1 Basic properties.............................. 44 3.2.2 Higher order connections and singular differential equations...... 46 3.2.3 Meromorphic projective structures.................... 49 3.3 Lie groupoids on curves.............................. 50 v 3.3.1 Motivation: integration of representations................ 50 3.3.2 Blowing up: the adjoint groupoids.................... 51 3.3.3 Examples on P1 ............................... 52 3.3.4 Uniformization............................... 57 3.4 Local normal forms................................. 64 3.4.1 Local normal form for twisted pair groupoids.............. 64 3.4.2 Source-simply connected case....................... 66 3.5 Summation of divergent series........................... 68 4 Poisson structures in complex geometry 73 4.1 Multiderivations.................................. 73 4.2 Poisson brackets.................................. 75 4.3 Poisson subspaces.................................. 78 4.4 Poisson hypersurfaces and log symplectic structures.............. 82 4.5 Lie algebroids and symplectic leaves....................... 84 5 Geometry of Poisson modules 87 5.1 Poisson modules.................................. 87 5.2 Pushforward of Poisson modules......................... 89 5.3 Restriction to subspaces: Higgs fields and adaptedness............. 90 5.4 Lie algebroids associated with Poisson modules................. 94 5.5 Residues of Poisson line bundles......................... 95 5.6 Modular residues.................................. 99 6 Degeneracy loci 102 6.1 Motivation: Bondal's conjecture.......................... 102 6.2 Degeneracy loci in algebraic geometry...................... 104 6.3 Degeneracy loci of Lie algebroids......................... 106 6.4 Degeneracy loci of Poisson structures....................... 107 6.5 Degeneracy loci of Poisson modules........................ 110 6.6 Structural results in small codimension...................... 112 6.6.1 Codimension one: log symplectic singularities.............. 112 6.6.2 Codimension two: degeneracy in odd dimension............. 114 6.6.3 Codimension three: submaximal degeneracy in even dimension.... 115 6.7 Non-emptiness via Chern classes......................... 115 6.8 Fano manifolds................................... 119 vi 7 Poisson structures on projective spaces 122 7.1 Review of Poisson cohomology.......................... 122 7.2 Multivector fields in homogeneous coordinates.................. 123 7.2.1 Helmholtz decomposition on vector spaces................ 124 7.2.2 Multivector fields on projective space.................. 125 7.2.3 A comparison theorem for quadratic Poisson structures........ 128 7.3 Projective embedding............................... 130 7.4 Poisson structures on Pn admitting a normal crossings anticanonical divisor. 132 7.5 Poisson structures associated with linear free divisors.............
Recommended publications
  • Stability of Tautological Bundles on Symmetric Products of Curves
    STABILITY OF TAUTOLOGICAL BUNDLES ON SYMMETRIC PRODUCTS OF CURVES ANDREAS KRUG Abstract. We prove that, if C is a smooth projective curve over the complex numbers, and E is a stable vector bundle on C whose slope does not lie in the interval [−1, n − 1], then the associated tautological bundle E[n] on the symmetric product C(n) is again stable. Also, if E is semi-stable and its slope does not lie in the interval (−1, n − 1), then E[n] is semi-stable. Introduction Given a smooth projective curve C over the complex numbers, there is an interesting series of related higher-dimensional smooth projective varieties, namely the symmetric products C(n). For every vector bundle E on C of rank r, there is a naturally associated vector bundle E[n] of rank rn on the symmetric product C(n), called tautological or secant bundle. These tautological bundles carry important geometric information. For example, k-very ampleness of line bundles can be expressed in terms of the associated tautological bundles, and these bundles play an important role in the proof of the gonality conjecture of Ein and Lazarsfeld [EL15]. Tautological bundles on symmetric products of curves have been studied since the 1960s [Sch61, Sch64, Mat65], but there are still new results about these bundles discovered nowadays; see, for example, [Wan16, MOP17, BD18]. A natural problem is to decide when a tautological bundle is stable. Here, stability means (n−1) (n) slope stability with respect to the ample class Hn that is represented by C +x ⊂ C for any x ∈ C; see Subsection 1.3 for details.
    [Show full text]
  • Characteristic Classes and K-Theory Oscar Randal-Williams
    Characteristic classes and K-theory Oscar Randal-Williams https://www.dpmms.cam.ac.uk/∼or257/teaching/notes/Kthy.pdf 1 Vector bundles 1 1.1 Vector bundles . 1 1.2 Inner products . 5 1.3 Embedding into trivial bundles . 6 1.4 Classification and concordance . 7 1.5 Clutching . 8 2 Characteristic classes 10 2.1 Recollections on Thom and Euler classes . 10 2.2 The projective bundle formula . 12 2.3 Chern classes . 14 2.4 Stiefel–Whitney classes . 16 2.5 Pontrjagin classes . 17 2.6 The splitting principle . 17 2.7 The Euler class revisited . 18 2.8 Examples . 18 2.9 Some tangent bundles . 20 2.10 Nonimmersions . 21 3 K-theory 23 3.1 The functor K ................................. 23 3.2 The fundamental product theorem . 26 3.3 Bott periodicity and the cohomological structure of K-theory . 28 3.4 The Mayer–Vietoris sequence . 36 3.5 The Fundamental Product Theorem for K−1 . 36 3.6 K-theory and degree . 38 4 Further structure of K-theory 39 4.1 The yoga of symmetric polynomials . 39 4.2 The Chern character . 41 n 4.3 K-theory of CP and the projective bundle formula . 44 4.4 K-theory Chern classes and exterior powers . 46 4.5 The K-theory Thom isomorphism, Euler class, and Gysin sequence . 47 n 4.6 K-theory of RP ................................ 49 4.7 Adams operations . 51 4.8 The Hopf invariant . 53 4.9 Correction classes . 55 4.10 Gysin maps and topological Grothendieck–Riemann–Roch . 58 Last updated May 22, 2018.
    [Show full text]
  • On Positivity and Base Loci of Vector Bundles
    ON POSITIVITY AND BASE LOCI OF VECTOR BUNDLES THOMAS BAUER, SÁNDOR J KOVÁCS, ALEX KÜRONYA, ERNESTO CARLO MISTRETTA, TOMASZ SZEMBERG, STEFANO URBINATI 1. INTRODUCTION The aim of this note is to shed some light on the relationships among some notions of posi- tivity for vector bundles that arose in recent decades. Positivity properties of line bundles have long played a major role in projective geometry; they have once again become a center of attention recently, mainly in relation with advances in birational geometry, especially in the framework of the Minimal Model Program. Positivity of line bundles has often been studied in conjunction with numerical invariants and various kinds of asymptotic base loci (see for example [ELMNP06] and [BDPP13]). At the same time, many positivity notions have been introduced for vector bundles of higher rank, generalizing some of the properties that hold for line bundles. While the situation in rank one is well-understood, at least as far as the interdepencies between the various positivity concepts is concerned, we are quite far from an analogous state of affairs for vector bundles in general. In an attempt to generalize bigness for the higher rank case, some positivity properties have been put forward by Viehweg (in the study of fibrations in curves, [Vie83]), and Miyaoka (in the context of surfaces, [Miy83]), and are known to be different from the generalization given by using the tautological line bundle on the projectivization of the considered vector bundle (cf. [Laz04]). The differences between the various definitions of bigness are already present in the works of Lang concerning the Green-Griffiths conjecture (see [Lan86]).
    [Show full text]
  • Mechanics, Control and Lie Algebroids, Geometry Meeting 2009
    Mechanics, Control and Lie algebroids Geometry Meeting 2009 Eduardo Martínez University of Zaragoza [email protected] Escola Universitaria Politécnica, Ferrol, October 29–30, 2009 Abstract The most relevant ideas and results about mechanical systems defined on Lie algebroids are presented. This was a program originally proposed by Alan Weinstein (1996) and developed by many authors. 1 Several reasons for formulating Mechanics on Lie algebroids The inclusive nature of the Lie algebroid framework: under the same formalism one can consider standard mechanical systems, systems on Lie algebras, systems on semidirect products, systems with symme- tries. The reduction of a mechanical system on a Lie algebroid is a mechan- ical system on a Lie algebroid, and this reduction procedure is done via morphisms of Lie algebroids. Well adapted: the geometry of the underlying Lie algebroid deter- mines some dynamical properties as well as the geometric structures associated to it (e.g. Symplectic structure). Provides a natural way to use quasi-velocities in Mechanics. 2 Introduction Lagrangian systems Given a Lagrangian L 2 C1(TQ), the Euler-Lagrange equations define a dynamical system q_i = vi d @L @L = : dt @vi @qi Variational Calculus. Symplectic formalism 4 Geodesics of left invariant metrics For instance, if k is a Riemannian metric on a manifold Q , the Euler- 1 Lagrange equations for L(v) = 2 k(v; v) are the equation for the geodesics rvv = 0 If Q = G is a Lie group and k is left invariant, then L defines a function 1 l on the Lie algebra g, by restriction l(ξ) = 2 k(ξ; ξ).
    [Show full text]
  • Manifolds of Low Dimension with Trivial Canonical Bundle in Grassmannians Vladimiro Benedetti
    Manifolds of low dimension with trivial canonical bundle in Grassmannians Vladimiro Benedetti To cite this version: Vladimiro Benedetti. Manifolds of low dimension with trivial canonical bundle in Grassmannians. Mathematische Zeitschrift, Springer, 2018. hal-01362172v3 HAL Id: hal-01362172 https://hal.archives-ouvertes.fr/hal-01362172v3 Submitted on 26 May 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Manifolds of low dimension with trivial canonical bundle in Grassmannians Vladimiro Benedetti∗ May 27, 2017 Abstract We study fourfolds with trivial canonical bundle which are zero loci of sections of homogeneous, completely reducible bundles over ordinary and classical complex Grassmannians. We prove that the only hyper-K¨ahler fourfolds among them are the example of Beauville and Donagi, and the example of Debarre and Voisin. In doing so, we give a complete classifi- cation of those varieties. We include also the analogous classification for surfaces and threefolds. Contents 1 Introduction 1 2 Preliminaries 3 3 FourfoldsinordinaryGrassmannians 5 4 Fourfolds in classical Grassmannians 13 5 Thecasesofdimensionstwoandthree 23 A Euler characteristic 25 B Tables 30 1 Introduction In Complex Geometry there are interesting connections between special vari- eties and homogeneous spaces.
    [Show full text]
  • Regular Jacobi Structures and Generalized Contact Bundles
    Regular Jacobi Structures and Generalized Contact Bundles Jonas Schnitzer∗ Dipartimento di Matematica Università degli Studi di Salerno Via Giovanni Paolo II, 132 84084 Fisciano (SA) Italy June 14, 2021 Abstract A Jacobi structure J on a line bundle L → M is weakly regular if the sharp map J ♯ : J 1L → DL has constant rank. A generalized contact bundle with regular Jacobi structure possess a transverse complex structure. Paralleling the work of Bailey in generalized complex geometry, we find condition on a pair consisting of a regular Jacobi structure and an transverse complex structure to come from a generalized contact structure. In this way we are able to construct interesting examples of generalized contact bundles. As applications: 1) we prove that every 5- dimensional nilmanifold is equipped with an invariant generalized contact structure, 2) we show that, unlike the generalized complex case, all contact bundles over a complex manifold possess a compatible generalized contact structure. Finally we provide a counterexample presenting a locally conformal symplectic bundle over a generalized contact manifold of complex type that do not possess a compatible generalized contact structure. Contents 1 Introduction 2 2 Preliminaries and Notation 2 3 Tranversally Complex Jacobi Structures and Generalized Contact Bundles 8 arXiv:1806.10489v1 [math.DG] 27 Jun 2018 4 The Splitting of the Spectral Sequence of a Transversally Complex Subbundle 10 5 Examples I: Five dimensional nilmanifolds 15 6 Examples II: Contact Fiber Bundles 19 7 A Counterexample 21 References 23 ∗[email protected] 1 1 Introduction Generalized geometry was set up in the early 2000’s by Hitchin [9] and further developed by Gualtieri [8], and the literature about them is now rather wide.
    [Show full text]
  • The Chern Characteristic Classes
    The Chern characteristic classes Y. X. Zhao I. FUNDAMENTAL BUNDLE OF QUANTUM MECHANICS Consider a nD Hilbert space H. Qauntum states are normalized vectors in H up to phase factors. Therefore, more exactly a quantum state j i should be described by the density matrix, the projector to the 1D subspace generated by j i, P = j ih j: (I.1) n−1 All quantum states P comprise the projective space P H of H, and pH ≈ CP . If we exclude zero point from H, there is a natural projection from H − f0g to P H, π : H − f0g ! P H: (I.2) On the other hand, there is a tautological line bundle T (P H) over over P H, where over the point P the fiber T is the complex line generated by j i. Therefore, there is the pullback line bundle π∗L(P H) over H − f0g and the line bundle morphism, π~ π∗T (P H) T (P H) π H − f0g P H . Then, a bundle of Hilbert spaces E over a base space B, which may be a parameter space, such as momentum space, of a quantum system, or a phase space. We can repeat the above construction for a single Hilbert space to the vector bundle E with zero section 0B excluded. We obtain the projective bundle PEconsisting of points (P x ; x) (I.3) where j xi 2 Hx; x 2 B: (I.4) 2 Obviously, PE is a bundle over B, p : PE ! B; (I.5) n−1 where each fiber (PE)x ≈ CP .
    [Show full text]
  • Holomorphic Equivariant Cohomology of Atiyah Algebroids and Localization
    arXiv:0910.2019 [math.CV] SISSA Preprint 65/2009/fm Holomorphic equivariant cohomology of Atiyah algebroids and localization U. Bruzzo Scuola Internazionale Superiore di Studi Avanzati, Via Beirut 2-4, 34151Trieste, Italy; Istituto Nazionale di Fisica Nucleare, Sezione di Trieste E-Mail: [email protected] V. Rubtsov Universit´ed'Angers, D´epartement de Math´ematiques,UFR Sciences, LAREMA, UMR 6093 du CNRS, 2 bd. Lavoisier, 49045 Angers Cedex 01, France; ITEP Theoretical Division, 25 Bol. Tcheremushkinskaya, 117259, Moscow, Russia E-mail: [email protected] Abstract. In a previous paper we developed an equivariant cohomology the- ory associated to a set of data formed by a differentiable manifold M carrying the action of a Lie group G, and a Lie algebroid A on M equipped with a compatible infinitesimal action of G. We also obtained a localization formula for a twisted version of this cohomology, and from it, a Bott-type formula. In this paper we slightly modify that theory to obtain a localization formula for an equivariant cohomology associated to an equivariant holomorphic vector bun- dle. This formula encompasses many residues formulas in complex geometry, in particular we shall show that it admits as a special case Carrell-Lieberman's residue formula [7, 6]. Date: 10 October 2009 2000 Mathematics Subject Classification: 32L10, 53C12, 53C15, 53D17, 55N25, 55N91 The authors gratefully acknowledge financial support and hospitality during the respective vis- its to Universit´ed'Angers and SISSA. Support for this work was provided by misgam, by P.R.I.N \Geometria sulle variet`aalgebriche," the I.N.F.N.
    [Show full text]
  • WITT GROUPS of GRASSMANN VARIETIES Contents Introduction 1
    WITT GROUPS OF GRASSMANN VARIETIES PAUL BALMER AND BAPTISTE CALMES` Abstract. We compute the total Witt groups of (split) Grassmann varieties, over any regular base X. The answer is a free module over the total Witt ring of X. We provide an explicit basis for this free module, which is indexed by a special class of Young diagrams, that we call even Young diagrams. Contents Introduction 1 1. Combinatorics of Grassmann and flag varieties 4 2. Even Young diagrams 7 3. Generators of the total Witt group 12 4. Cellular decomposition 15 5. Push-forward, pull-back and connecting homomorphism 19 6. Main result 21 Appendix A. Total Witt group 27 References 27 Introduction At first glance, it might be surprising for the non-specialist that more than thirty years after the definition of the Witt group of a scheme, by Knebusch [13], the Witt group of such a classical variety as a Grassmannian has not been computed yet. This is especially striking since analogous results for ordinary cohomologies, for K-theory and for Chow groups have been settled a long time ago. The goal of this article is to explain how Witt groups differ from these sister theories and to prove the following: Main Theorem (See Thm. 6.1). Let X be a regular noetherian and separated 1 scheme over Z[ 2 ], of finite Krull dimension. Let 0 <d<n be integers and let GrX (d, n) be the Grassmannian of d-dimensional subbundles of the trivial n- n dimensional vector bundle V = OX over X. (More generally, we treat any vector bundle V admitting a complete flag of subbundles.) Then the total Witt group of GrX (d, n) is a free graded module over the total Witt group of X with an explicit basis indexed by so-called “even” Young diagrams.
    [Show full text]
  • ON a NON-ABELIAN POINCARÉ LEMMA 1. Introduction It Is Well
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 140, Number 8, August 2012, Pages 2855–2872 S 0002-9939(2011)11116-X Article electronically published on December 15, 2011 ON A NON-ABELIAN POINCARE´ LEMMA THEODORE TH. VORONOV (Communicated by Varghese Mathai) Abstract. We show that a well-known result on solutions of the Maurer– Cartan equation extends to arbitrary (inhomogeneous) odd forms: any such form with values in a Lie superalgebra satisfying dω + ω2 = 0 is gauge- equivalent to a constant, ω = gCg−1 − dg g−1. This follows from a non-Abelian version of a chain homotopy formula making use of multiplicative integrals. An application to Lie algebroids and their non- linear analogs is given. Constructions presented here generalize to an abstract setting of differen- tial Lie superalgebras where we arrive at the statement that odd elements (not necessarily satisfying the Maurer–Cartan equation) are homotopic — in a certain particular sense — if and only if they are gauge-equivalent. 1. Introduction It is well known that a 1-form with values in a Lie algebra g satisfying the Maurer–Cartan equation 1 (1.1) dω + [ω, ω]=0 2 possesses a ‘logarithmic primitive’ locally or for a simply-connected domain (1.2) ω = −dg g−1 for some G-valued function, where G is a Lie group with the Lie algebra g.Here and in the sequel we write all formulas as if our algebras and groups were matrix; it makes the equations more transparent, and certainly nothing prevents us from rephrasing them in an abstract form. Therefore the main equation (1.1) will also be written as (1.3) dω + ω2 =0.
    [Show full text]
  • 35 Line Bundles on Cpn
    35 Line Bundles on CPn n n Recall CP = {[z0 : z1 : ... : zn]}. Here CP , the set of all complex lines passing through the origin, is defined to a quotient space Cn+1 −{0}/ ∼ where n+1 (z0, z1, ..., zn), (z0, z1, ..., zn) ∈ C −{0} z , z , ..., z λ z , z , ..., z λ ∈ C −{ } are equivalent if and only if ( 0 1 ne)=e ( 0 e 1 n) with 0 . 1 Holomorphic line bundle of degree k over CP The holomorphic line bundle OCP1 (k) 1 e e e 1 of degree k ∈ Z over CP is constructed explicitly as follows. Let CP = U0 ∪ U1 be the standard open covering. Using the standard atlas, take two “trivial” pieces U0 × C and 0 1 i U1 × C with coordinates (z0,ζ ) and (z1,ζ ) where zi is the base coordinate of Ui and ζ is ∗ 1 the fibre coordinate over Ui - and “glue them together” over the set C = CP \{0, ∞} by the identification 1 1 0 ζ z0 = , ζ = k . (121) z1 (z1) This line bundle is usually denoted OCP1 (k), or simply O(k) for brevity. The total space k k H of O(k) is the identification space; thus H consists of the disjoint union U0 U1 of 2 0 1 two copies of C = C × C, with respective coordinates (z0,ζ ) and (z1,ζ ), which have been ∗ ` glued together along C × C according to (121). The transition function from z0 to z1 is 1 g01(z0)= k ; (z0) 1 the other is g10(z1)= (z1)k . n CPn In general for higher dimensional case, let {U} = {Uα}α=0 be the standard atlas on .
    [Show full text]
  • LIE GROUPOIDS and LIE ALGEBROIDS LECTURE NOTES, FALL 2017 Contents 1. Lie Groupoids 4 1.1. Definitions 4 1.2. Examples 6 1.3. Ex
    LIE GROUPOIDS AND LIE ALGEBROIDS LECTURE NOTES, FALL 2017 ECKHARD MEINRENKEN Abstract. These notes are under construction. They contain errors and omissions, and the references are very incomplete. Apologies! Contents 1. Lie groupoids 4 1.1. Definitions 4 1.2. Examples 6 1.3. Exercises 9 2. Foliation groupoids 10 2.1. Definition, examples 10 2.2. Monodromy and holonomy 12 2.3. The monodromy and holonomy groupoids 12 2.4. Appendix: Haefliger’s approach 14 3. Properties of Lie groupoids 14 3.1. Orbits and isotropy groups 14 3.2. Bisections 15 3.3. Local bisections 17 3.4. Transitive Lie groupoids 18 4. More constructions with groupoids 19 4.1. Vector bundles in terms of scalar multiplication 20 4.2. Relations 20 4.3. Groupoid structures as relations 22 4.4. Tangent groupoid, cotangent groupoid 22 4.5. Prolongations of groupoids 24 4.6. Pull-backs and restrictions of groupoids 24 4.7. A result on subgroupoids 25 4.8. Clean intersection of submanifolds and maps 26 4.9. Intersections of Lie subgroupoids, fiber products 28 4.10. The universal covering groupoid 29 5. Groupoid actions, groupoid representations 30 5.1. Actions of Lie groupoids 30 5.2. Principal actions 31 5.3. Representations of Lie groupoids 33 6. Lie algebroids 33 1 2 ECKHARD MEINRENKEN 6.1. Definitions 33 6.2. Examples 34 6.3. Lie subalgebroids 36 6.4. Intersections of Lie subalgebroids 37 6.5. Direct products of Lie algebroids 38 7. Morphisms of Lie algebroids 38 7.1. Definition of morphisms 38 7.2.
    [Show full text]