Using Telemetry to Navigate the Marco Cubesats to Mars
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Assessment of Aerocapture and Applications to Future Missions
Post-Exit Atmospheric Flight Cruise Approach An Assessment of Aerocapture and Applications to Future Missions February 13, 2016 National Aeronautics and Space Administration An Assessment of Aerocapture Jet Propulsion Laboratory California Institute of Technology Pasadena, California and Applications to Future Missions Jet Propulsion Laboratory, California Institute of Technology for Planetary Science Division Science Mission Directorate NASA Work Performed under the Planetary Science Program Support Task ©2016. All rights reserved. D-97058 February 13, 2016 Authors Thomas R. Spilker, Independent Consultant Mark Hofstadter Chester S. Borden, JPL/Caltech Jessie M. Kawata Mark Adler, JPL/Caltech Damon Landau Michelle M. Munk, LaRC Daniel T. Lyons Richard W. Powell, LaRC Kim R. Reh Robert D. Braun, GIT Randii R. Wessen Patricia M. Beauchamp, JPL/Caltech NASA Ames Research Center James A. Cutts, JPL/Caltech Parul Agrawal Paul F. Wercinski, ARC Helen H. Hwang and the A-Team Paul F. Wercinski NASA Langley Research Center F. McNeil Cheatwood A-Team Study Participants Jeffrey A. Herath Jet Propulsion Laboratory, Caltech Michelle M. Munk Mark Adler Richard W. Powell Nitin Arora Johnson Space Center Patricia M. Beauchamp Ronald R. Sostaric Chester S. Borden Independent Consultant James A. Cutts Thomas R. Spilker Gregory L. Davis Georgia Institute of Technology John O. Elliott Prof. Robert D. Braun – External Reviewer Jefferey L. Hall Engineering and Science Directorate JPL D-97058 Foreword Aerocapture has been proposed for several missions over the last couple of decades, and the technologies have matured over time. This study was initiated because the NASA Planetary Science Division (PSD) had not revisited Aerocapture technologies for about a decade and with the upcoming study to send a mission to Uranus/Neptune initiated by the PSD we needed to determine the status of the technologies and assess their readiness for such a mission. -
Some Basic Response Felations for Reaction
SOME BASIC RESPONSE FELATIONS FOR REACTION-WHEEL ATTITUDE CONTROL Robert H. Cannon, Jr. Stanford University SOME BASIC FESPONSE RELATIONS * FOR FEACTION-WHEEL ATTITUDE CONTROL ** Robert H. Cannon, Jr. In many space vehicles, attitude control is best accomplished with combination systems using reaction wheels for momentum exchange and storage, plus jets for periodic momentum expulsion. Design of the reaction-wheel control involves evaluating the time history of system response to disturbances, many of which are either sinusoidal or impul- sive As an aid to such evaluation, this paper developes basic response relations--vehicle attitude, control torque, wheel motion, mechanical power, and energy consumption--for a vehicle subjected to both types of disturbance. Limiting values are calculated, assuming no standby losses. (The possibility of exchanging momentum with minimum energy loss is dis- cussed. ) The resulting normalized numerical relations are intended to li serve as an order-of magnitude basis for preliminary design estimates (r ‘.* and comparisons. c The response relations are derived first for a single-axis model. 2. Then their applicability to three-axis design is discussed. A control system is postulated which decouples vehicle dynamics so that vehicle motions are exactly single axis. (Some advantages of such control are discussed in References (2) and (3).) T’le resulting control-wheel motions may be complicated by gyroscopic coupling due to the spinning wheels. In control to a rotating reference extra power is consumed also because the spin momentum of the roll and yaw wheels must be passed back and forth from one to the other., Control systems which merely damp the natural motions of stable, local-vertical satellites can be smaller and simpler and use less power but, of course, furnish less precise control. -
Managing Momentum on the Dawn Low Thrust Mission. Brett A
Managing Momentum on the Dawn Low Thrust Mission. Brett A. Smith, Charles A. Vanelli, and Edward R. Swenka Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 [email protected], [email protected], [email protected] Abstract—Dawn is low-thrust interplanetary spacecraft en- 1. INTRODUCTION route to the asteroids Vesta and Ceres in an effort to better un- Dawn is NASA’s ninth Discovery class mission on a journey derstand the early creation of the solar system. After launch to orbit two asteroids in the region between Mars and Jupiter. in September 2007, the spacecraft will flyby Mars in February Scientists believe the asteroid belt provides similar conditions 2009 before arriving at Vesta in summer of 2011 and Ceres in as those found during the formation of Earth. Dawn will in- early 2015. Three solar electric ion-propulsion engines are vestigate Vesta and Ceres, which are two of the larger objects used to provide the primary thrust for the Dawn spacecraft. in the region, and each provides a unique view into the forma- Ion engines produce a very small but very efficient force, and tion of planet like objects. The Dawn mission is also unique therefore must be thrusting almost continuously to realize the as it will be the first spacecraft to orbit two extraterrestrial necessary change in velocity to reach Vesta and Ceres. planetary bodies [1]. Momentum must be carefully managed to ensure the space- Launching on September 27, 2007, the Dawn spacecraft be- craft has enough control authority to perform necessary turns gan its 8-year journey. -
Characterization of Cubesat Reaction Wheel
Shields, J. et al. (2017): JoSS, Vol. 6, No. 1, pp. 565–580 (Peer-reviewed article available at www.jossonline.com) www.DeepakPublishing.com www. JoSSonline.com Characterization of CubeSat Reaction Wheel Assemblies Joel Shields, Christopher Pong, Kevin Lo, Laura Jones, Swati Mohan, Chava Marom, Ian McKinley, William Wilson and Luis Andrade Jet Propulsion Laboratory, California Institute of Technology Pasadena, California Abstract This paper characterizes three different CubeSat reaction wheel assemblies, using measurements from a six- axis Kistler dynamometer. Two reaction wheels from Blue Canyon Technologies (BCT) with momentum capac- ities of 15 and 100 milli-N-m-s, and one wheel from Sinclair Interplanetary with 30 milli-N-m-s were tested. Each wheel was tested throughout its specified wheel speed range, in 50 RPM increments. Amplitude spectrums out to 500 Hz were obtained for each wheel speed. From this data, the static and dynamic imbalances were calculated, as well as the harmonic coefficients and harmonic amplitudes. This data also revealed the various structural cage modes of each wheel and the interaction of the harmonics with these modes, which is important for disturbance modeling. Empirical time domain models of the exported force and torque for each wheel were constructed from water- fall plots. These models can be used as part of pointing simulations to predict CubeSat pointing jitter, which is currently of keen interest to the small satellite community. Analysis of the ASTERIA mission shows that the reaction wheels produce a jitter of approximately 0.1 arcsec RMS about the payload tip/tilt axes. Under the worst- case conditions of three wheels hitting a lightly damped structural resonance, the jitter can be as large as 8 arcsec RMS about the payload roll axis, which is of less importance than the other two axes. -
Development and Validation of Empirical and Analytical Reaction Wheel Disturbance Models by Rebecca A
Development and Validation of Empirical and Analytical Reaction Wheel Disturbance Models by Rebecca A. Masterson S.B. Mechanical Engineering (1997) Massachusetts Institute of Technology Submitted to the Department of Mechanical Engineering in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 1999 @ Massachusetts Institute of Technology 1999. All rights reserved. A uthor .. .. .............................. A r Department of Mechanical Engineering May 24, 1999 C ertified by ......... ................................... David W. Miller Associate Professor Thesis Supervisor C ertified by ................................ Warren P. Seering Professor/Director Departmental Reader A ccepted by .............. .. .................. Am A. Sonin Chairman, Department Committee on Graduate Students pg 999 ENG LIBRARIES 2 Development and Validation of Empirical and Analytical Reaction Wheel Disturbance Models by Rebecca A. Masterson Submitted to the Department of Mechanical Engineering on May 24, 1999, in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering Abstract Accurate disturbance models are necessary to predict the effects of vibrations on the perfor- mance of precision space-based telescopes, such as the Space Interferometry Mission (SIM) and the Next-Generation Space Telescope (NGST). There are many possible disturbance sources on such a spacecraft, but the reaction wheel assembly (RWA) is anticipated to be the largest. This thesis presents three types of reaction wheel disturbance models. The first is a steady-state empirical model that was originally created based on RWA vibration data from the Hubble Space Telescope (HST) wheels. The model assumes that the disturbances consist of discrete harmonics of the wheel speed with amplitudes proportional to the wheel speed squared. -
Template for Manuscripts in Advances in Space Research
DISCUS - The Deep Interior Scanning CubeSat mission to a rubble pile near-Earth asteroid Patrick Bambach1* Jakob Deller1 Esa Vilenius1 Sampsa Pursiainen2 Mika Takala2 Hans Martin Braun3 Harald Lentz3 Manfred Wittig4 1 Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077 G¨ottingen,Germany 2 Tampere University of Technology, PO Box 527, FI-33101 Tampere, Finland 3 RST Radar Systemtechnik AG, Ebenaustrasse 8, 9413 Oberegg, Switzerland 4 MEW-Aerospace UG, Hameln, Germany * [email protected] Submitted to Advances in Space Research Abstract We have performed an initial stage conceptual design study for the Deep Interior Scanning CubeSat (DIS- CUS), a tandem 6U CubeSat carrying a bistatic radar as the main payload. DISCUS will be operated either as an independent mission or accompanying a larger one. It is designed to determine the internal macro- porosity of a 260{600 m diameter Near Earth Asteroid (NEA) from a few kilometers distance. The main goal will be to achieve a global penetration with a low-frequency signal as well as to analyze the scattering strength for various different penetration depths and measurement positions. Moreover, the measurements will be inverted through a computed radar tomography (CRT) approach. The scientific data provided by DISCUS would bring more knowledge of the internal configuration of rubble pile asteroids and their colli- sional evolution in the Solar System. It would also advance the design of future asteroid deflection concepts. We aim at a single-unit (1U) radar design equipped with a half-wavelength dipole antenna. The radar will utilize a stepped-frequency modulation technique the baseline of which was developed for ESA's technology projects GINGER and PIRA. -
Mars Insight Launch Press Kit
Introduction National Aeronautics and Space Administration Mars InSight Launch Press Kit MAY 2018 www.nasa.gov 1 2 Table of Contents Table of Contents Introduction 4 Media Services 8 Quick Facts: Launch Facts 12 Quick Facts: Mars at a Glance 16 Mission: Overview 18 Mission: Spacecraft 30 Mission: Science 40 Mission: Landing Site 53 Program & Project Management 55 Appendix: Mars Cube One Tech Demo 56 Appendix: Gallery 60 Appendix: Science Objectives, Quantified 62 Appendix: Historical Mars Missions 63 Appendix: NASA’s Discovery Program 65 3 Introduction Mars InSight Launch Press Kit Introduction NASA’s next mission to Mars -- InSight -- will launch from Vandenberg Air Force Base in California as early as May 5, 2018. It is expected to land on the Red Planet on Nov. 26, 2018. InSight is a mission to Mars, but it is more than a Mars mission. It will help scientists understand the formation and early evolution of all rocky planets, including Earth. A technology demonstration called Mars Cube One (MarCO) will share the launch with InSight and fly separately to Mars. Six Ways InSight Is Different NASA has a long and successful track record at Mars. Since 1965, it has flown by, orbited, landed and roved across the surface of the Red Planet. None of that has been easy. Only about 40 percent of the missions ever sent to Mars by any space agency have been successful. The planet’s thin atmosphere makes landing a challenge; its extreme temperature swings make it difficult to operate on the surface. But if a spacecraft survives the trip, there’s a bounty of science to be collected. -
Solar System Interiors, Atmospheres, and Surfaces Investigations Via Radio Links: Goals for the Next Decade
White Paper for the Planetary Science and Astrobiology Decadal Survey 2023-2032 The National Academies of Sciences, Engineering, and Medicine Solar System Interiors, Atmospheres, and Surfaces Investigations via Radio Links: Goals for the Next Decade SW Asmar1 ([email protected], 818-354-6288), RA Preston1, P Vergados1, DH Atkinson1, T Andert2, H Ando3, CO Ao1, JW Armstrong1, N Ashby4, J-P Barriot5, PM Beauchamp1, DJ Bell1, PL Bender6, M Di Benedetto7, BG Bills1, MK Bird8, TM Bocanegra-Bahamon1, GK Botteon1, S Bruinsma9, DR Buccino1, KL Cahoy10, P Cappuccio7, RK Choudhary11, V Dehant12, C Dumoulin13, D Durante7, CD Edwards1, HM Elliott1, TA Ely1, AI Ermakov14, F Ferri15, FM Flasar16, RG French17, A Genova7, SJ Goossens16,18, B Häusler2, R Helled19, DP Hinson20, MD Hofstadter1, L Iess7, T Imamura21, AP Jongeling1, Ö Karatekin12, Y Kaspi22, MM Kobayashi1, A Komjathy1, AS Konopliv1, ER Kursinski23, TJW Lazio1, S Le Maistre12, FG Lemoine16, RJ Lillis14, IR Linscott24, AJ Mannucci1, EA Marouf25, J-C Marty9, SE Matousek1, K Matsumoto26, EM Mazarico16, V Notaro7, M Parisi1, RS Park1, M Pätzold8, GG Peytaví2, MP Pugh1, NO Rennó27, P Rosenblatt13, D Serra28, RA Simpson20,24, DE Smith10, PG Steffes29, BD Tapley30, S Tellmann8, P Tortora31, SG Turyshev1, T Van Hoolst12, AK Verma32, MM Watkins1, W Williamson1, MA Wieczorek33, P Withers34, M Yseboodt12, N Yu1, M Zannoni31, MT Zuber10 1: Jet Propulsion Laboratory, California Institute of Technology 18. University of Maryland 2: Universität der Bundeswehr München, Germany 19. Universität Zürich, Switzerland 3. Kyoto Sangyo University, Japan 20. SETI Institute 4. National Institute of Standards & Technology 21. The University of Tokyo, Japan 5. -
Preparation of Papers for AIAA Journals
Mega-Drivers to Inform NASA Space Technology Strategic Planning Melanie L. Grande,1 Matthew J. Carrier,1 William M. Cirillo,2 Kevin D. Earle,2 Christopher A. Jones,2 Emily L. Judd,1 Jordan J. Klovstad,2 Andrew C. Owens,1 David M. Reeves,2 and Matthew A. Stafford3 NASA Langley Research Center, Hampton, VA, 23681, USA The National Aeronautics and Space Administration (NASA) Space Technology Mission Directorate (STMD) has been developing a new Strategic Framework to guide investment prioritization and communication of STMD strategic goals to stakeholders. STMD’s analysis of global trends identified four overarching drivers which are anticipated to shape the needs of civilian space research for years to come. These Mega-Drivers form the foundation of the Strategic Framework. The Increasing Access Mega-Driver reflects the increase in the availability of launch options, more capable propulsion systems, access to planetary surfaces, and the introduction of new platforms to enable exploration, science, and commercial activities. Accelerating Pace of Discovery reflects the exploration of more remote and challenging destinations, drives increased demand for improved abilities to communicate and process large datasets. The Democratization of Space reflects the broadening participation in the space industry, from governments to private investors to citizens. Growing Utilization of Space reflects space market diversification and growth. This paper will further describe the observable trends that inform each of these Mega Drivers, as well as the interrelationships -
Mars Reconnaissance Orbiter's High Resolution Imaging Science
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112, E05S02, doi:10.1029/2005JE002605, 2007 Click Here for Full Article Mars Reconnaissance Orbiter’s High Resolution Imaging Science Experiment (HiRISE) Alfred S. McEwen,1 Eric M. Eliason,1 James W. Bergstrom,2 Nathan T. Bridges,3 Candice J. Hansen,3 W. Alan Delamere,4 John A. Grant,5 Virginia C. Gulick,6 Kenneth E. Herkenhoff,7 Laszlo Keszthelyi,7 Randolph L. Kirk,7 Michael T. Mellon,8 Steven W. Squyres,9 Nicolas Thomas,10 and Catherine M. Weitz,11 Received 9 October 2005; revised 22 May 2006; accepted 5 June 2006; published 17 May 2007. [1] The HiRISE camera features a 0.5 m diameter primary mirror, 12 m effective focal length, and a focal plane system that can acquire images containing up to 28 Gb (gigabits) of data in as little as 6 seconds. HiRISE will provide detailed images (0.25 to 1.3 m/pixel) covering 1% of the Martian surface during the 2-year Primary Science Phase (PSP) beginning November 2006. Most images will include color data covering 20% of the potential field of view. A top priority is to acquire 1000 stereo pairs and apply precision geometric corrections to enable topographic measurements to better than 25 cm vertical precision. We expect to return more than 12 Tb of HiRISE data during the 2-year PSP, and use pixel binning, conversion from 14 to 8 bit values, and a lossless compression system to increase coverage. HiRISE images are acquired via 14 CCD detectors, each with 2 output channels, and with multiple choices for pixel binning and number of Time Delay and Integration lines. -
Enabling Reaction Wheel Technology for High-Performance Nanosatellite
SSC07-X-3 ENABLING REACTION WHEEL TECHNOLOGY FOR HIGH PERFORMANCE NANOSATELLITE ATTITUDE CONTROL Doug Sinclair Sinclair Interplanetary 268 Claremont Street, Toronto, Ontario, Canada, M6J 2N3 Tel: 647-286-3761; Fax: 775-860-5428; Web: www.sinclairinterplanetary.com [email protected] C. Cordell Grant, Robert E. Zee Space Flight Laboratory University of Toronto Institute for Aerospace Studies 4925 Dufferin Street, Toronto, Ontario, Canada, M3H 5T6 Tel: 416-667-7700; Fax: 416-667-7799; Web: www.utias-sfl.net [email protected], [email protected] ABSTRACT To date nanosatellites have primarily relied on magnetic stabilization which is sufficient to meet thermal and communications needs but is not suited for most payloads. The ability to put one, or even three, reaction wheels on a spacecraft in the 2-20 kg range enables new classes of mission. With reaction wheels and an appropriate sensor suite a nanosatellite can point in arbitrary directions with accuracies on the order of a degree. Sinclair Interplanetary, in collaboration with the University of Toronto Space Flight Laboratory (SFL), has developed a reaction wheel suitable for very small spacecraft. It fits within a 5 x 5 x 4 cm box, weighs 185 g, and consumes only 100 mW of power at nominal speed. No pressurized enclosure is required, and the motor is custom made in one piece with the flywheel. The wheel is in mass production with sixteen flight units delivered, destined for the CanX series of nanosatellites. The first launch is expected in 2007. Future missions that will make use of these wheels include CanX-3 (BRITE), which will make astronomical observations that cannot be duplicated by any existing terrestrial facility, and CanX-4 and -5, which will demonstrate autonomous precision formation flying. -
Smallsat Access to Space Alan M
SmallSat Access to Space Alan M. Didion NASA Jet Propulsion Laboratory, Systems Engineering Division 2018 IPPW Short Course, Boulder, Colorado- June 9th, 2018 © 2018 California Institute of Technology. Government sponsorship acknowledged. About Me • Systems Engineer, NASA/JPL – Systems Engineering Division, Mission Concept Systems Development (312A) • West Virginia University 2009-2015 – College of Engineering & Mineral Resources – Department of Mechanical & Aerospace Engineering – Advanced astrodynamics, fluid mechanics, modern/astro-physics • Relevant Experience – SunRISE SMEX proposal SE – VAMOS PSDS3 LSE – NASA/JPL Team X/Xc systems engineer – Discovery, New Frontiers proposals 3 jpl.nasa.gov Problem Statement • Launch is expensive, but necessary, so NASA sometimes buys your ride – But buying your own ride can broaden your option space • Small spacecraft can perform significant science – Simple payloads or complementary instrumentation (SoO) – Multiple destinations, distributed measurements in time and space • Small spacecraft can perform lean science/engineering – Technology demonstration – TRL maturation – High-risk and/or low-cost feats • High-risk, low-mass, low-budget… – Don’t need, can’t afford an EELV – LVs don’t scale quite this small! Linear extrapolation! …right? 4 jpl.nasa.gov Launch Options for Small Missions • Small dedicated (classical) launchers – More freedom, less possibilities (mostly LEO) – Electron – Pegasus/XL – Sounding rockets (suborbital) • Rideshare Brokers NICER on the ISS, NASA Goddard Space Flight Center