Extratropical Transition of Southwest Pacific Tropical Cyclones. Part I

Total Page:16

File Type:pdf, Size:1020Kb

Extratropical Transition of Southwest Pacific Tropical Cyclones. Part I Applied Aviation Sciences - Prescott College of Aviation 3-2002 Extratropical Transition of Southwest Pacific rT opical Cyclones. Part I: Climatology and Mean Structure Changes Mark R. Sinclair Embry-Riddle Aeronautical University, [email protected] Follow this and additional works at: https://commons.erau.edu/pr-meteorology Part of the Atmospheric Sciences Commons, and the Meteorology Commons Scholarly Commons Citation Sinclair, M. R. (2002). Extratropical Transition of Southwest Pacific rT opical Cyclones. Part I: Climatology and Mean Structure Changes. Monthly Weather Review, 130(3). https://doi.org/10.1175/ 1520-0493(2002)130<0590:ETOSPT>2.0.CO;2 © Copyright 2002 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be “fair use” under Section 107 of the U.S. Copyright Act September 2010 Page 2 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108, as revised by P.L. 94-553) does not require the AMS’s permission. Republication, systematic reproduction, posting in electronic form, such as on a web site or in a searchable database, or other uses of this material, except as exempted by the above statement, requires written permission or a license from the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at (http://www.ametsoc.org/) or from the AMS at 617-227-2425 or [email protected]. This Article is brought to you for free and open access by the College of Aviation at Scholarly Commons. It has been accepted for inclusion in Applied Aviation Sciences - Prescott by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. 590 MONTHLY WEATHER REVIEW VOLUME 130 Extratropical Transition of Southwest Paci®c Tropical Cyclones. Part I: Climatology and Mean Structure Changes MARK R. SINCLAIR Embry-Riddle Aeronautical University, Prescott, Arizona (Manuscript received 12 October 2000, in ®nal form 4 September 2001) ABSTRACT A database of tropical cyclone best track and intensity information for the southwest Paci®c Ocean basin is used to construct a 28-year climatology for tropical cyclones that move into middle latitudes. Of the nine or so tropical cyclones that form each year, an average of about three can be expected to migrate south of 358S, with the greatest fraction in March. Storms entering the Tasman Sea west of New Zealand (NZ) move almost due south on average and retain greater intensity than those to the east of NZ, where storms decay quickly while moving rapidly away to the southeast. Storms east of NZ are embedded in a stronger, more zonal ¯ow than those to the west, which move poleward ahead of a larger-amplitude trough. During El NinÄo years, tropical cyclones that move into middle latitudes exhibit stronger zonal motion and occur over a wider range of longitudes than during La NinÄa years. Storm intensity is only weakly correlated with concurrent SST anomalies, suggesting that atmospheric circulation is the dominant in¯uence on storm properties. Average structure changes during extratropical transition (ET) are identi®ed using the NCEP±NCAR reanalysis dataset, for a subset of 33 transitioning storms during 1980±97. Composites are used to construct a three- dimensional conceptual model of the transformation from a mature hurricane to an asymmetric baroclinic midlatitude cyclone. Southwest Paci®c tropical cyclones encounter the baroclinic westerlies early in their lives, accounting for their average eastward (and poleward) motion. At maximum average intensity near 208S, baroclinic effects are already important, with warm frontogenesis appearing in the southeast quadrant and out¯ow aloft into a downstream subtropical wind maximum that moves poleward with the storm. By 258S, the average TC has lost the characteristic symmetric anticyclonic out¯ow aloft and acquired the characteristics of a baroclinic midlatitude storm, including regions of warm and cold frontogenesis, a vertical motion dipole and a westward tilt with height. From about 308S poleward, a second upper-tropospheric wind maximum appears west of the storm, with strengthening cyclonic vorticity advection aloft. Below about 400 hPa, the storm retains the vertical, warm cyclonic core as it migrates poleward. 1. Introduction changes associated with the poleward movement of a TC are termed extratropical transformation. Extratropical transition (ET) occurs when a tropical As TCs move into middle latitudes, they often main- storm moves into middle latitudes and progressively ac- tain suf®cient vigor to produce damaging winds, high quires characteristics of a baroclinic midlatitude system. seas, and heavy rain in middle latitudes. Occasionally, As the tropical cyclone (TC) moves poleward, it loses TC remnants reintensify in the extratropics to become its tropical characteristics when it moves over cooler potent midlatitude storms capable of in¯icting loss of water and encounters the increasing vertical wind shears life and severe property damage. Several memorable ET associated with the midlatitude westerlies. During this events have occurred in the southwest Paci®c Ocean time, it typically loses its distinctive symmetric upper- basin. In April 1968, TC Gisele reintensi®ed as it moved level circulation and cloud shield, which commonly south over New Zealand (NZ), producing winds gusting shears off poleward and eastward. Eventually, increas- to 75 m s21 in the capital city of Wellington, and sinking ing thermal advection brings cooler and drier air into the interisland ferry Wahine with the loss of 51 lives the western sector of the storm, which progressively (Hill 1970). Cyclone Bola dumped over 900 mm of rain acquires the asymmetric cloud and thermal character- and produced hurricane-force winds in regions of north- istics of a midlatitude frontal cyclone. These structure ern NZ in March 1988 (Sinclair 1993b). A colorful de- scription of the ``Cyclone of '36'' (an ET event), prob- ably the most damaging storm of the twentieth century Corresponding author address: Dr. Mark R. Sinclair, Embry-Rid- to hit NZ, is found in Brenstrum (1997). Notable ex- dle Aeronautical University, 3800 Willow Creek Road, Prescott, AZ 86301. amples from the Northern Hemisphere (NH) include the E-mail: [email protected] regeneration of Hurricane Hazel as a powerful extra- q 2002 American Meteorological Society MARCH 2002 SINCLAIR 591 tropical storm over Canada (PalmeÂn 1958) and Hurri- piled basic statistics for North Atlantic ET events. For cane Agnes which produced one of the worst natural the Southern Hemisphere (SH), Foley and Hanstrum ¯ooding disasters in United States history over the (1994) assembled statistics and composite MSL pressure northeast of the country (Carr and Bosart 1978; DiMego analyses for TCs affecting the west coast of Australia. and Bosart 1982a,b; Bosart and Dean 1991). While max- For the southwest Paci®c Ocean basin, a number of imum winds in these transformed storms may be weaker basic summaries of TC activity have been undertaken than in the parent hurricane, the areas of damaging wind, (Kerr 1976; Revell 1981; Holland 1983; Thompson et high seas, and heavy rain are typically much larger (Hart al. 1992; Radford et al. 1996); its relation to the phase and Evans 2001), increasing the potential for loss of of the El NinÄo±Southern Oscillation (ENSO) cycle has life and property damage. been examined (Nichols 1984; Revell and Goulter In comparison with the effort devoted to the respec- 1986a,b; Hastings 1990; Basher and Zheng 1995); and tive study of tropical and extratropical cyclones, the descriptions of individual TCs have been published (Re- transformation from TC to extratropical cyclone is only vell 1985, 1986, 1987). However, these studies largely now starting to receive attention. Research agendas have omit any explicit discussion of ET. The decadal sum- been typically restricted to either tropical or midlatitude maries of Kerr (1976), Revell (1981) and Thompson et storms, with hybrid transition cases often falling be- al. (1992) analyze the tracks and intensities of all TCs tween the cracks. For example, there has never been a between 1949 and 1989, including the extratropical major ®eld campaign devoted to ET. This lack of at- phase. Their careful analysis provided much of the raw tention is surprising considering the loss of life and track and intensity data on which part of the present billions of dollars of damage caused by past ET events, study is based (see section 2). More detailed synoptic and the fact that they continue to be rather poorly fore- and diagnostic analysis of individual ET events that cast (Browning et al. 1998; Klein et al. 2000). Once the have impacted NZ includes the studies of Hill (1970), tropical storm ``goes extratropical,'' national hurricane Tomlinson (1975), Trenberth (1977), Littlejohn (1984), centers typically cease monitoring efforts like aircraft and Sinclair (1993a,b). While these case studies have reconnaissance, even though the potential for reinten- revealed speci®c insights about particular storms, there si®cation remains. Consequently, data on storms that remains a need for more systematic study of a larger retain or regain damaging winds and/or precipitation in number of past ET events, as advocated by the RPI middle latitudes are often incomplete, especially where Workshop participants. storms move away from land. This dif®culty is com- A preliminary climatology of TCs entering middle pounded by the practice of keeping tropical and extra- latitudes in the southwest Paci®c was prepared in an tropical storm databases separate, making it dif®cult to unpublished 1995 report to the Meteorological Service obtain coherent information on past ET events through- of New Zealand (C. Revell 1996, personal communi- out the life of the storm. Assessment of hazard risk is cation), using data from 196 cases of ET during 1969± thus hampered by the dearth of statistical information 89.
Recommended publications
  • Ocean Currents and the Pacific Garbage Patch
    ocean currents and the Pacific Garbage Patch photo: Scripps Institution of Oceanography The image above shows a net tow sample from the Pacific Garbage Patch. The sample contains small fish and many small pieces of plastic. The Garbage Patch is primarily composed of this small plastic “confetti” suspended throughout the surface water of the North Pacific Gyre, and is not a island of trash as suggested by some media outlets. The region where the trash converges in the center of the North Pacific Gyre, in a region where surface currents are weak and convergent, thus concentrating large amounts of trash in an area estimated to be close to the size of Texas. With this slide I often show a video clip about the Garbage Patch. Although the links may change, here is one from ABC that I’ve used several times: www.youtube.com/watch?v=OFMW8srq0Qk this video is a bit over the top but it gets the point across. There is additional information from Scripps Institution of Oceanography SEAPLEX experiment: http://sio.ucsd.edu/Expeditions/Seaplex/ and several videos on youtube.com by searching the phrase “SEAPLEX” Pacific garbage patch tiny plastic bits • the worlds largest dump? • filled with tiny plastic “confetti” large plastic debris from the garbage patch photo: Scripps Institution of Oceanography little jellyfish photo: Scripps Institution of Oceanography These are some of the things you find in the Garbage Patch. The large pieces of plastic, such as bottles, breakdown into tiny particles. Sometimes animals get caught in large pieces of floating trash: photo: NOAA photo: NOAA photo: Scripps Institution of Oceanography How do plants and animals interact with small small pieces of plastic? fish larvae growing on plastic Trash in the ocean can cause various problems for the organisms that live there.
    [Show full text]
  • NWS Unified Surface Analysis Manual
    Unified Surface Analysis Manual Weather Prediction Center Ocean Prediction Center National Hurricane Center Honolulu Forecast Office November 21, 2013 Table of Contents Chapter 1: Surface Analysis – Its History at the Analysis Centers…………….3 Chapter 2: Datasets available for creation of the Unified Analysis………...…..5 Chapter 3: The Unified Surface Analysis and related features.……….……….19 Chapter 4: Creation/Merging of the Unified Surface Analysis………….……..24 Chapter 5: Bibliography………………………………………………….…….30 Appendix A: Unified Graphics Legend showing Ocean Center symbols.….…33 2 Chapter 1: Surface Analysis – Its History at the Analysis Centers 1. INTRODUCTION Since 1942, surface analyses produced by several different offices within the U.S. Weather Bureau (USWB) and the National Oceanic and Atmospheric Administration’s (NOAA’s) National Weather Service (NWS) were generally based on the Norwegian Cyclone Model (Bjerknes 1919) over land, and in recent decades, the Shapiro-Keyser Model over the mid-latitudes of the ocean. The graphic below shows a typical evolution according to both models of cyclone development. Conceptual models of cyclone evolution showing lower-tropospheric (e.g., 850-hPa) geopotential height and fronts (top), and lower-tropospheric potential temperature (bottom). (a) Norwegian cyclone model: (I) incipient frontal cyclone, (II) and (III) narrowing warm sector, (IV) occlusion; (b) Shapiro–Keyser cyclone model: (I) incipient frontal cyclone, (II) frontal fracture, (III) frontal T-bone and bent-back front, (IV) frontal T-bone and warm seclusion. Panel (b) is adapted from Shapiro and Keyser (1990) , their FIG. 10.27 ) to enhance the zonal elongation of the cyclone and fronts and to reflect the continued existence of the frontal T-bone in stage IV.
    [Show full text]
  • Surface Circulation2016
    OCN 201 Surface Circulation Excess heat in equatorial regions requires redistribution toward the poles 1 In the Northern hemisphere, Coriolis force deflects movement to the right In the Southern hemisphere, Coriolis force deflects movement to the left Combination of atmospheric cells and Coriolis force yield the wind belts Wind belts drive ocean circulation 2 Surface circulation is one of the main transporters of “excess” heat from the tropics to northern latitudes Gulf Stream http://earthobservatory.nasa.gov/Newsroom/NewImages/Images/gulf_stream_modis_lrg.gif 3 How fast ( in miles per hour) do you think western boundary currents like the Gulf Stream are? A 1 B 2 C 4 D 8 E More! 4 mph = C Path of ocean currents affects agriculture and habitability of regions ~62 ˚N Mean Jan Faeroe temp 40 ˚F Islands ~61˚N Mean Jan Anchorage temp 13˚F Alaska 4 Average surface water temperature (N hemisphere winter) Surface currents are driven by winds, not thermohaline processes 5 Surface currents are shallow, in the upper few hundred metres of the ocean Clockwise gyres in North Atlantic and North Pacific Anti-clockwise gyres in South Atlantic and South Pacific How long do you think it takes for a trip around the North Pacific gyre? A 6 months B 1 year C 10 years D 20 years E 50 years D= ~ 20 years 6 Maximum in surface water salinity shows the gyres excess evaporation over precipitation results in higher surface water salinity Gyres are underneath, and driven by, the bands of Trade Winds and Westerlies 7 Which wind belt is Hawaii in? A Westerlies B Trade
    [Show full text]
  • Waves in the Westerlies
    Operational Weather Analysis … www.wxonline.info Chapter 9 Waves in the Westerlies Operational meteorologists track middle latitude disturbances in the middle to upper troposphere as part of their analysis of the atmosphere. This chapter describes these waves and highlights the importance of these waves to day-to-day weather changes at the Earth’s surface. The Westerlies Atmospheric flow above the Earth’s surface in the middle latitudes is primarily westerly. That is, the winds have a prevailing westerly component with numerous north and south meanders that impose wave-like undulations upon the basic west- to-east flow. This flow extends from the subtropical high pressure belt poleward to around 65 degrees latitude. A glance at any upper level chart from 700 mb upward to 200 mb shows that the westerlies dominate in the middle and upper troposphere. The term westerlies will refer to this layer unless otherwise specified. Upper Level Charts The westerlies are easily identified on charts of constant pressure in the middle to upper troposphere. That is, charts are prepared from upper level data at specified pressure levels (called standard levels). Traditionally, lines are drawn on these charts to represent the height of the pressure surface above mean sea level, temperature, and, on some charts, wind speed. With modern computer workstations, any observed or derived parameter may be drawn on an upper level chart. Standard levels include charts for 925, 850, 700, 500, 300, 250, 200, 150 and 100 mb. For our discussion of the westerlies, only levels from 700 mb upward to 200 mb will be considered.
    [Show full text]
  • The Cyclone of 1936: the Most Destructive Storm of the Twentieth Century?
    Weather and Climate (2000) 20: 23-28 23 THE CYCLONE OF 1936: THE MOST DESTRUCTIVE STORM OF THE TWENTIETH CENTURY? Erick Brenstrum MetService In late January 1936 a weakening tropical of New Zealand on the 31st and intensified cyclone moving towards New Zealand then crossed the North Island on the 2nd of interacted with a cold front over the north February. It was not assigned a name, as the Tasman Sea to form one of the deepest practice of routinely naming tropical cyclones depressions ever to cross the country. The did not begin until 1963. meteorological aspects of the depression were described in a report published by Barnett in FLOODING 1938. He did not describe in detail the destruction caused by the storm, limiting Heavy rain fell over the entire North Island himself to the comment" Graphic descriptions bringing most of the major rivers into flood. of the effects of the storm can be found in the The Mangakahia River in Northland rose 19 daily press for the few days following the 2nd metres at Titoki. Kaitaia main-street was February." flooded a metre deep and one man was The following article is a summary of the drowned there when a house was washed accounts in the newspapers, and shows that away as he was trying to retrieve a friend's this was probably the most destructive storm belongings. Another man was killed near to affect New Zealand during the twentieth Thames in the Coromandel when his hut was century. carried into a flooded stream by a slip. The tropical cyclone formed south of the In Whangerei almost 300 mm of rain fell in Solomon Islands on January 28 then moved 24 hours and floodwater ran through the southeast to pass between New Caledonia and business district tearing up footpaths and Vanuatu.
    [Show full text]
  • Contrasting Recent Trends in Southern Hemisphere Westerlies Across
    RESEARCH LETTER Contrasting Recent Trends in Southern Hemisphere 10.1029/2020GL088890 Westerlies Across Different Ocean Basins Key Points: Darryn W. Waugh1,2 , Antara Banerjee3,4, John C. Fyfe5, and Lorenzo M. Polvani6 • There are substantial zonal variations in past trends in the 1Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD, USA, 2School of Mathematics magnitude and latitude of the peak 3 Southern Hemisphere zonal winds and Statistics, University of New South Wales, Sydney, New South Wales, Australia, Cooperative Institute for Research in • Only over the Atlantic and Indian Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA, 4Chemical Sciences Laboratory, National Oceans have peak winds shifted Oceanic and Atmospheric Administration, Boulder, CO, USA, 5Canadian Centre for Climate Modelling and Analysis, poleward, with an equatorward (yet Environment and Climate Change Canada, Victoria, British Columbia, Canada, 6Department of Applied Physics and insignificant) shift over the Pacific • Climate model simulations indicate Applied Mathematics, Columbia University, New York, NY, USA that the differential movement of the westerlies is due to internal atmospheric variability Abstract Many studies have documented the trends in the latitudinal position and strength of the midlatitude westerlies in the Southern Hemisphere. However, very little attention has been paid to the Supporting Information: longitudinal variations of these trends. Here, we specifically focus on the zonal asymmetries in the southern • Supporting Information S1 hemisphere wind trends between 1980 and 2018. Meteorological reanalyses show a large strengthening and a statistically insignificant equatorward shift of peak near‐surface winds over the Pacific, in contrast to a fi Correspondence to: weaker strengthening and signi cant poleward shift over the Atlantic and Indian Ocean sectors.
    [Show full text]
  • Weather and Climate Science 4-H-1024-W
    4-H-1024-W LEVEL 2 WEATHER AND CLIMATE SCIENCE 4-H-1024-W CONTENTS Air Pressure Carbon Footprints Cloud Formation Cloud Types Cold Fronts Earth’s Rotation Global Winds The Greenhouse Effect Humidity Hurricanes Making Weather Instruments Mini-Tornado Out of the Dust Seasons Using Weather Instruments to Collect Data NGSS indicates the Next Generation Science Standards for each activity. See www. nextgenscience.org/next-generation-science- standards for more information. Reference in this publication to any specific commercial product, process, or service, or the use of any trade, firm, or corporation name See Purdue Extension’s Education Store, is for general informational purposes only and does not constitute an www.edustore.purdue.edu, for additional endorsement, recommendation, or certification of any kind by Purdue Extension. Persons using such products assume responsibility for their resources on many of the topics covered in the use in accordance with current directions of the manufacturer. 4-H manuals. PURDUE EXTENSION 4-H-1024-W GLOBAL WINDS How do the sun’s energy and earth’s rotation combine to create global wind patterns? While we may experience winds blowing GLOBAL WINDS INFORMATION from any direction on any given day, the Air that moves across the surface of earth is called weather systems in the Midwest usually wind. The sun heats the earth’s surface, which warms travel from west to east. People in Indiana can look the air above it. Areas near the equator receive the at Illinois weather to get an idea of what to expect most direct sunlight and warming. The North and the next day.
    [Show full text]
  • Synoptic Meteorology
    Lecture Notes on Synoptic Meteorology For Integrated Meteorological Training Course By Dr. Prakash Khare Scientist E India Meteorological Department Meteorological Training Institute Pashan,Pune-8 186 IMTC SYLLABUS OF SYNOPTIC METEOROLOGY (FOR DIRECT RECRUITED S.A’S OF IMD) Theory (25 Periods) ❖ Scales of weather systems; Network of Observatories; Surface, upper air; special observations (satellite, radar, aircraft etc.); analysis of fields of meteorological elements on synoptic charts; Vertical time / cross sections and their analysis. ❖ Wind and pressure analysis: Isobars on level surface and contours on constant pressure surface. Isotherms, thickness field; examples of geostrophic, gradient and thermal winds: slope of pressure system, streamline and Isotachs analysis. ❖ Western disturbance and its structure and associated weather, Waves in mid-latitude westerlies. ❖ Thunderstorm and severe local storm, synoptic conditions favourable for thunderstorm, concepts of triggering mechanism, conditional instability; Norwesters, dust storm, hail storm. Squall, tornado, microburst/cloudburst, landslide. ❖ Indian summer monsoon; S.W. Monsoon onset: semi permanent systems, Active and break monsoon, Monsoon depressions: MTC; Offshore troughs/vortices. Influence of extra tropical troughs and typhoons in northwest Pacific; withdrawal of S.W. Monsoon, Northeast monsoon, ❖ Tropical Cyclone: Life cycle, vertical and horizontal structure of TC, Its movement and intensification. Weather associated with TC. Easterly wave and its structure and associated weather. ❖ Jet Streams – WMO definition of Jet stream, different jet streams around the globe, Jet streams and weather ❖ Meso-scale meteorology, sea and land breezes, mountain/valley winds, mountain wave. ❖ Short range weather forecasting (Elementary ideas only); persistence, climatology and steering methods, movement and development of synoptic scale systems; Analogue techniques- prediction of individual weather elements, visibility, surface and upper level winds, convective phenomena.
    [Show full text]
  • Shifting Westerlies to Shift After the Last Glacial Period? J
    PERSPECTIVES CLIMATE CHANGE What caused atmospheric westerly winds Shifting Westerlies to shift after the last glacial period? J. R. Toggweiler he westerlies are the prevailing ica-rich deep water must be drawn to the sur- winds in the middle latitudes of face. As mentioned above, silica-rich deep Earth’s atmosphere, blowing water tends to be high in CO . It is also T 2 from west to east between the high- warmer than the near-freezing surface pressure areas of the subtropics and waters around Antarctica. the low-pressure areas over the poles. A shift of the westerlies that draws They have strengthened and shifted more warm, silica-rich deep water to poleward over the past 50 years, pos- the surface is thus a simple way to sibly in response to warming from explain the CO2 steps, the silica pulses, rising concentrations of atmospheric and the fact that Antarctica warmed carbon dioxide (CO2) (1–4). Some- along with higher CO2 during the two thing similar appears to have happened steps. Anderson et al.’s two silica pulses 17,000 years ago at the end of the last ice occur right along with the two CO2 steps, age: Earth warmed, atmospheric CO2 in- which implies that the westerlies shifted creased, and the Southern Hemisphere wester- early as the level of CO2 in the atmosphere lies seem to have shifted toward Antarctica began to rise. Had the westerlies shifted in (5, 6). Data reported by Anderson et al. on response to higher CO , one would expect to Southward movement. At the end of the last ice 2 page 1443 of this issue (7) suggest that the see more upwelling and more silica accumula- on October 23, 2009 age, the ITCZ and the Southern Hemisphere wester- shift 17,000 years ago occurred before the lies winds moved southward in response to a flatter tion after the second CO2 step when the level of warming and that it caused the CO2 increase.
    [Show full text]
  • On the Dynamics of Tropical Cyclone Structural Changes
    Quart. J. R. Met. SOC. (1984), 110, pp. 723-745 551.515.21 On the dynamics of tropical cyclone structural changes By GREG. J. HOLLAND. and ROBERT T. MERRILL Department of Atmospheric Science, Colorado State University (Received 16 March 1983; revised 17 January 1%) SUMMARY Tropical cyclone structural change is separated into three modes: intensity, strength and size. The possible physical mechanisms behind these three modes are examined using observations .in the Australiadsouth-west Pacific region and an axisymmetric diagnostic model. We propose that, though dependent on moist convection and other internal processes, the ultimate intensity, strength or sue of a cyclone is regulated by interactions with its environment. Possible mechanisms whereby these interactions occur are described. 1. INTRODUCTION Most of the work on tropical cyclone development in past years has been concerned with ‘genesis’ and ‘intensification’, even though no precise definition exists for either term. The result has been confusion in interpreting some aspects of cyclone structural changes, and the neglect of other aspects altogether. More precise and comprehensive interpretations are possible if we separate tropical cyclone structural changes into three modes: intensity, strength, and size (Merrill and Gray 1983). These are illustrated in Fig. 1 as changes from an initial tangential wind profile. ‘Intensity’ is defined by the maximum wind, or by the central pressure if no maximum wind data are available, and has received the most attention in the literature. ‘Strength’ is defined by the average relative angular momentum of the low-level inner circulation (inside 300 km radius). ‘Size’ is defined by the axisymmetric extent of gale force winds, or by the radius of the outermost closed isobar.
    [Show full text]
  • Chapter 7 – Atmospheric Circulations (Pp
    Chapter 7 - Title Chapter 7 – Atmospheric Circulations (pp. 165-195) Contents • scales of motion and turbulence • local winds • the General Circulation of the atmosphere • ocean currents Wind Examples Fig. 7.1: Scales of atmospheric motion. Microscale → mesoscale → synoptic scale. Scales of Motion • Microscale – e.g. chimney – Short lived ‘eddies’, chaotic motion – Timescale: minutes • Mesoscale – e.g. local winds, thunderstorms – Timescale mins/hr/days • Synoptic scale – e.g. weather maps – Timescale: days to weeks • Planetary scale – Entire earth Scales of Motion Table 7.1: Scales of atmospheric motion Turbulence • Eddies : internal friction generated as laminar (smooth, steady) flow becomes irregular and turbulent • Most weather disturbances involve turbulence • 3 kinds: – Mechanical turbulence – you, buildings, etc. – Thermal turbulence – due to warm air rising and cold air sinking caused by surface heating – Clear Air Turbulence (CAT) - due to wind shear, i.e. change in wind speed and/or direction Mechanical Turbulence • Mechanical turbulence – due to flow over or around objects (mountains, buildings, etc.) Mechanical Turbulence: Wave Clouds • Flow over a mountain, generating: – Wave clouds – Rotors, bad for planes and gliders! Fig. 7.2: Mechanical turbulence - Air flowing past a mountain range creates eddies hazardous to flying. Thermal Turbulence • Thermal turbulence - essentially rising thermals of air generated by surface heating • Thermal turbulence is maximum during max surface heating - mid afternoon Questions 1. A pilot enters the weather service office and wants to know what time of the day she can expect to encounter the least turbulent winds at 760 m above central Kansas. If you were the weather forecaster, what would you tell her? 2.
    [Show full text]
  • NERMN Beach Profile Monitoring 2011
    NERMN beach profi le monitoring 2011 Prepared by Shane Iremonger, Environmental Scientist Bay of Plenty Regional Council Environmental Publication 2011/14 5 Quay Street P O Box 364 Whakatane NEW ZEALAND ISSN: 1175 9372 (Print) ISSN: 1179 9471 (Online) Working with our communities for a better environment E mahi ngatahi e pai ake ai te taiao NERMN beach profile monitoring 2011 Publication and Number 2011/14 ISSN: 1175 9372 (Print) 1179 9471 (Online) 11 March 2011 Bay of Plenty Regional Council 5 Quay Street PO Box 364 Whakatane 3158 NEW ZEALAND Prepared by Shane Iremonger, Environmental Scientist Cover Photo: Annabel Beattie undertaking a beach profile using the Emery Pole method, 2010. Acknowledgements The assistance of Annabel Beattie in the compilation of the beach profile data sets is acknowledged, as is the efforts of the whole Environmental Data Services team, in the collection of the beach profile data. The 2011 field photography undertaken by Lauren Schick and Tim Senior is greatly appreciated. The cartography expertise of Trig Yates and the document specialist skills of Rachael Musgrave, in the creation of this document have also been invaluable. Environmental Publication 2011/14 – NERMN beach profile monitoring 2011 i Executive summary This is the third report detailing the results of the coastal monitoring network initiated by Bay of Plenty Regional Council in 1990 as part of its Natural Environment Regional Monitoring Network (NERMN) programme. A total of 53 sites are profiled on an annual basis within the current coastal monitoring programme. Some selected sites are monitored quarterly; others are monitored as necessary, i.e.
    [Show full text]