Extirpated and Rare Species of New York State Elk (Red Deer: Cervus Elaphus • Historically Low Densities in NYS • 1893 – 1906: 332 Rocky Mtn

Total Page:16

File Type:pdf, Size:1020Kb

Extirpated and Rare Species of New York State Elk (Red Deer: Cervus Elaphus • Historically Low Densities in NYS • 1893 – 1906: 332 Rocky Mtn Extirpated and Rare Species of New York State Elk (Red Deer: Cervus elaphus • Historically low densities in NYS • 1893 – 1906: 332 Rocky Mtn. elk were introduced to Adirondack Park • 1953: extirpated (hunting, poaching and roundworm brain worm; loss of lg. predators, increase in deer, spread of brain worm) • Matriarchal and social (males keep harems) • Considered pests by farmers • 6 tined antlers • Noisiest deer species Wolverine: Gulo gulo Historically present - last known in NYS in1840 Habitat: large expanses of forests and other isolated, boreal ecosystems. Reproduction: Breed in summer; 30-50 day gestation; birth in Spring? (~ 250 days later) Induced ovulation and Delayed implantation Now described as “The Rarest Mammal in North America” Causes of decline: • Require large, undeveloped areas • Increased human access (hunting, trapping) • decline of large mammals and their carcasses (which wolverines fed on) Canada lynx: Lynx canadensis 15 kg; ~ twice as large as bobcat (L. rufus) Historically present in ADKs and northern forests of NYS 1890: last confirmed specimen in NYS Causes for Extirpation: Deforestation, over-hunting and trapping Require large, intact wilderness, snowshoe hares (winter) Reintroduction: 1988 – 1990 • 83 released (from a Canadian populations); hard release (instead of in stages) in Adirondacks by ESF and DEC researchers • mortalities on roads, etc. • One dispersed to NJ • Unsuccessful: Lack of funding, inadequate follow-up and no report or data made available for improved plan Wolf: Canis lupus and C. rufus Historically present in NYS (Grey in north; Red in south) • One of its largest native predators; maintained population levels of prey, including deer (prevented over-grazing, …) • 1890: Last confirmed population Causes for Extirpation: •Persecution – hunting, trapping and bounties •Fragmentation •Loss of large expansive of undisturbed, undeveloped lands •Reintroductions successful in Yellowstone, … •Others expanding south into Great Lakes Region on their own prey Grey wolf: Canis lupus Red wolf: Canis rufus Mountain lion: Puma concolor Historically present: one of largest predators since the ice age • 1908: Last specimen in NYS • Causes for decline: Persecution Yellow – historic range Fragmentation Decline in Prey (elk, …) Allegheny woodrat: Neotoma magister • Historically present in southern NYS • 1987: Last specimen • Causes for decline: Habitat fragmentation, chestnut blight Parasite – “raccoon” roundworm Vector: raccoon Packrats – collect material to their nest/middens, including feces of raccoons spread the roundworms ~ 350 g Long-tailed Short-tailed (80 g) Least (50 g) Least weasel: 300g (males), Mustela nivalis • Smallest carnivore in North America • Consumes ½ weight, ~ 2-3 mice, per day • Generally widespread and abundant where it occurs, but now rare in NYS M o l ar, carnassial, 2 premolars • Factors for decline: Competition with other weasel species Climate change (it is a northern species) Adults ~ 1 kg New England cottontail: Sylvilagus transitionalis • Range declined by 75% since 1960: IUCN Vulnerable Smaller than Easter CT, with • Occasionally present in extreme eastern NYS black on head and ears • Often misidentified/confused with eastern cottontail rabbit • Distribution limited to parts of New England, and is declining • Habitat – early successional woodlands and thickets with tangled vegetation (provides food and cover from predators) • Causes for decline • Forest maturation • Introduction of non-native plants (multiflora rose, honeysuckle bush and autumn olive) replace preferred plants • Competition with S. floridanus (whose range is expanding) We didn’t kill them all! Successful “management” actions (often involves stopping mis-management = over-harvesting, habitat loss, …) • Closed hunting/trapping seasons and • Habitat restoration, • Reintroductions recovery of some species in NYS Odocoileus virginianus Perhaps too successful! Overabundance over-browsing, decline in habitat for other species (passerine birds); spread disease, round worm ( brain worm in Elk) habitat management for this mid-successional (edge habitat) species decline of late-successional (mature forest) species. Castor canadensis Decline: overharvesting - trapped for their fur and for castor (used in “perfumes”) Recovery: controlled trapping Now, considered a nuisance at times depending on where dams are built (along highways): provide critical habitat for many amphibians, fish and other aquatic organisms or species depending on wet soils Lutra canadensis Decline: overharvesting - trapped for their fur and for castor (used in “perfumes”) Recovery: controlled trapping and reintroductions Martes americana (Marten) • Declined substantially the late 1800s and early 1900s, primarily due to habitat loss caused by intensive logging, and overharvesting by trappers. • In 1936, New York closed the marten trapping season. Over the next 42 years, martens re-occupied much of their former Adirondack range. Martes pennanti (Fisher) • Declined substantially the late 1800s and early 1900s, primarily due to habitat loss (prefer mature coniferous forests) caused by intensive logging, and over-trappers. • Populations rebounded after trapping season was closed, and while forest succession continued toward more mature stands of coniferous forests. Extirpated, Rare Species, and Recovering Mammals of New York State.
Recommended publications
  • MINNESOTA MUSTELIDS Young
    By Blane Klemek MINNESOTA MUSTELIDS Young Naturalists the Slinky,Stinky Weasel family ave you ever heard anyone call somebody a weasel? If you have, then you might think Hthat being called a weasel is bad. But weasels are good hunters, and they are cunning, curious, strong, and fierce. Weasels and their relatives are mammals. They belong to the order Carnivora (meat eaters) and the family Mustelidae, also known as the weasel family or mustelids. Mustela means weasel in Latin. With 65 species, mustelids are the largest family of carnivores in the world. Eight mustelid species currently make their homes in Minnesota: short-tailed weasel, long-tailed weasel, least weasel, mink, American marten, OTTERS BY DANIEL J. COX fisher, river otter, and American badger. Minnesota Conservation Volunteer May–June 2003 n e MARY CLAY, DEMBINSKY t PHOTO ASSOCIATES r mammals a WEASELS flexible m Here are two TOM AND PAT LEESON specialized mustelid feet. b One is for climb- ou can recognize a ing and the other for hort-tailed weasels (Mustela erminea), long- The long-tailed weasel d most mustelids g digging. Can you tell tailed weasels (M. frenata), and least weasels eats the most varied e food of all weasels. It by their tubelike r which is which? (M. nivalis) live throughout Minnesota. In also lives in the widest Ybodies and their short Stheir northern range, including Minnesota, weasels variety of habitats and legs. Some, such as badgers, hunting. Otters and minks turn white in winter. In autumn, white hairs begin climates across North are heavy and chunky. Some, are excellent swimmers that hunt to replace their brown summer coat.
    [Show full text]
  • Weasel, Short-Tailed
    Short-tailed Weasel Mustela ermine Other common names Ermine, stoat Introduction The short-tailed weasel is one of the smaller members of the weasel family. In winter, their coat turns pure white to help them blend into their surroundings. This white pelt has been prized by the fur trade for hundreds of years, and it was even considered a symbol of royalty in Europe. Physical Description and Anatomy Short-tailed weasels change their fur according to the season. From December to March or April their coat is pure white and the tip of the tail is black. This allows them to blend into their snowy surroundings. Only the white individuals, as well as their pelts, are referred to as ermine. In warmer seasons, the upper part of the body is brown, and the lower parts are cream colored, while the tip of the tail remains black. The change in coat is triggered by day length as well as ambient temperature. Like other members of the weasel family, short-tailed weasels have a long, slender body and short legs. Adults are 7 – 13 inches (17.8 – 33.0 cm) long, and only weigh 1 – 4 ounces (28.4 – 113.4 g). The tail is less than 44% of the length of the head and body, giving this species its name. Short-tailed weasel pelt. Identifying features (tracks, scat, calls) Short-tailed weasels are easily confused with long-tailed weasels, as they have very similar proportions and coloration. The most reliable way to differentiate between the two species is to measure the length of the tail.
    [Show full text]
  • Wolf Interactions with Non-Prey
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USGS Northern Prairie Wildlife Research Center US Geological Survey 2003 Wolf Interactions with Non-prey Warren B. Ballard Texas Tech University Ludwig N. Carbyn Canadian Wildlife Service Douglas W. Smith US Park Service Follow this and additional works at: https://digitalcommons.unl.edu/usgsnpwrc Part of the Animal Sciences Commons, Behavior and Ethology Commons, Biodiversity Commons, Environmental Policy Commons, Recreation, Parks and Tourism Administration Commons, and the Terrestrial and Aquatic Ecology Commons Ballard, Warren B.; Carbyn, Ludwig N.; and Smith, Douglas W., "Wolf Interactions with Non-prey" (2003). USGS Northern Prairie Wildlife Research Center. 325. https://digitalcommons.unl.edu/usgsnpwrc/325 This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USGS Northern Prairie Wildlife Research Center by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 10 Wolf Interactions with Non-prey Warren B. Ballard, Ludwig N. Carbyn, and Douglas W. Smith WOLVES SHARE THEIR ENVIRONMENT with many an­ wolves and non-prey species. The inherent genetic, be­ imals besides those that they prey on, and the nature of havioral, and morphological flexibility of wolves has the interactions between wolves and these other crea­ allowed them to adapt to a wide range of habitats and tures varies considerably. Some of these sympatric ani­ environmental conditions in Europe, Asia, and North mals are fellow canids such as foxes, coyotes, and jackals. America. Therefore, the role of wolves varies consider­ Others are large carnivores such as bears and cougars.
    [Show full text]
  • 2021 Fur Harvester Digest 3 SEASON DATES and BAG LIMITS
    2021 Michigan Fur Harvester Digest RAP (Report All Poaching): Call or Text (800) 292-7800 Michigan.gov/Trapping Table of Contents Furbearer Management ...................................................................3 Season Dates and Bag Limits ..........................................................4 License Types and Fees ....................................................................6 License Types and Fees by Age .......................................................6 Purchasing a License .......................................................................6 Apprentice & Youth Hunting .............................................................9 Fur Harvester License .....................................................................10 Kill Tags, Registration, and Incidental Catch .................................11 When and Where to Hunt/Trap ...................................................... 14 Hunting Hours and Zone Boundaries .............................................14 Hunting and Trapping on Public Land ............................................18 Safety Zones, Right-of-Ways, Waterways .......................................20 Hunting and Trapping on Private Land ...........................................20 Equipment and Fur Harvester Rules ............................................. 21 Use of Bait When Hunting and Trapping ........................................21 Hunting with Dogs ...........................................................................21 Equipment Regulations ...................................................................22
    [Show full text]
  • Monitoring Wolverines in Northeast Oregon
    Monitoring Wolverines in Northeast Oregon January 2011 – December 2012 Final Report Authors: Audrey J. Magoun Patrick Valkenburg Clinton D. Long Judy K. Long Submitted to: The Wolverine Foundation, Inc. February 2013 Cite as: A. J. Magoun, P. Valkenburg, C. D. Long, and J. K. Long. 2013. Monitoring wolverines in northeast Oregon. January 2011 – December 2012. Final Report. The Wolverine Foundation, Inc., Kuna, Idaho. [http://wolverinefoundation.org/] Copies of this report are available from: The Wolverine Foundation, Inc. [http://wolverinefoundation.org/] Oregon Department of Fish and Wildlife [http://www.dfw.state.or.us/conservationstrategy/publications.asp] Oregon Wildlife Heritage Foundation [http://www.owhf.org/] U. S. Forest Service [http://www.fs.usda.gov/land/wallowa-whitman/landmanagement] Major Funding and Logistical Support The Wolverine Foundation, Inc. Oregon Department of Fish and Wildlife Oregon Wildlife Heritage Foundation U. S. Forest Service U. S. Fish and Wildlife Service Wolverine Discovery Center Norcross Wildlife Foundation Seattle Foundation Wildlife Conservation Society National Park Service 2 Special thanks to everyone who provided contributions, assistance, and observations of wolverines in the Wallowa-Whitman National Forest and other areas in Oregon. We appreciate all the help and interest of the staffs of the Oregon Department of Fish and Wildlife, Oregon Wildlife Heritage Foundation, U. S. Forest Service, U. S. Fish and Wildlife Service, Wildlife Conservation Society, and the National Park Service. We also thank the following individuals for their assistance with the field work: Jim Akenson, Holly Akenson, Malin Aronsson, Norma Biggar, Ken Bronec, Steve Bronson, Roblyn Brown, Vic Coggins, Alex Coutant, Cliff Crego, Leonard Erickson, Bjorn Hansen, Mike Hansen, Hans Hayden, Tim Hiller, Janet Hohmann, Pat Matthews, David McCullough, Glenn McDonald, Jamie McFadden, Kendrick Moholt, Mark Penninger, Jens Persson, Lynne Price, Brian Ratliff, Jamie Ratliff, John Stephenson, John Wyanens, Rebecca Watters, Russ Westlake, and Jeff Yanke.
    [Show full text]
  • The 2008 IUCN Red Listings of the World's Small Carnivores
    The 2008 IUCN red listings of the world’s small carnivores Jan SCHIPPER¹*, Michael HOFFMANN¹, J. W. DUCKWORTH² and James CONROY³ Abstract The global conservation status of all the world’s mammals was assessed for the 2008 IUCN Red List. Of the 165 species of small carni- vores recognised during the process, two are Extinct (EX), one is Critically Endangered (CR), ten are Endangered (EN), 22 Vulnerable (VU), ten Near Threatened (NT), 15 Data Deficient (DD) and 105 Least Concern. Thus, 22% of the species for which a category was assigned other than DD were assessed as threatened (i.e. CR, EN or VU), as against 25% for mammals as a whole. Among otters, seven (58%) of the 12 species for which a category was assigned were identified as threatened. This reflects their attachment to rivers and other waterbodies, and heavy trade-driven hunting. The IUCN Red List species accounts are living documents to be updated annually, and further information to refine listings is welcome. Keywords: conservation status, Critically Endangered, Data Deficient, Endangered, Extinct, global threat listing, Least Concern, Near Threatened, Vulnerable Introduction dae (skunks and stink-badgers; 12), Mustelidae (weasels, martens, otters, badgers and allies; 59), Nandiniidae (African Palm-civet The IUCN Red List of Threatened Species is the most authorita- Nandinia binotata; one), Prionodontidae ([Asian] linsangs; two), tive resource currently available on the conservation status of the Procyonidae (raccoons, coatis and allies; 14), and Viverridae (civ- world’s biodiversity. In recent years, the overall number of spe- ets, including oyans [= ‘African linsangs’]; 33). The data reported cies included on the IUCN Red List has grown rapidly, largely as on herein are freely and publicly available via the 2008 IUCN Red a result of ongoing global assessment initiatives that have helped List website (www.iucnredlist.org/mammals).
    [Show full text]
  • Molecular Phylogeny and Taxonomy of the Genus Mustela
    Mammal Study 33: 25–33 (2008) © the Mammalogical Society of Japan Molecular phylogeny and taxonomy of the genus Mustela (Mustelidae, Carnivora), inferred from mitochondrial DNA sequences: New perspectives on phylogenetic status of the back-striped weasel and American mink Naoko Kurose1, Alexei V. Abramov2 and Ryuichi Masuda3,* 1 Department of Biological Sciences, Faculty of Science, Kanagawa University, Kanagawa 259-1293, Japan 2 Zoological Institute, Russian Academy of Sciences, Saint-Petersburg 199034, Russia 3 Creative Research Initiative “Sousei”, Hokkaido University, Sapporo 060-0810, Japan Abstract. To further understand the phylogenetic relationships among the mustelid genus Mustela, we newly determined nucleotide sequences of the mitochondrial 12S rRNA gene from 11 Eurasian species of Mustela, including the domestic ferret and the American mink. Phylogenetic relationships inferred from the 12S rRNA sequences were similar to those based on previously reported mitochondrial cytochrome b data. Combined analyses of the two genes demonstrated that species of Mustela were divided into two primary clades, named “the small weasel group” and “the large weasel group”, and others. The Japanese weasel (Mustela itatsi) formerly classified as a subspecies of the Siberian weasel (M. sibirica), was genetically well-differentiated from M. sibirica, and the two species clustered with each other. The European mink (M. lutreola) was closely related to “the ferret group” (M. furo, M. putorius, and M. eversmanii). Both the American mink of North America and the back-striped weasel (M. strigidorsa) of Southeast Asia were more closely related to each other than to other species of Mustela, indicating that M. strigidorsa originated from an independent lineage that differs from other Eurasian weasels.
    [Show full text]
  • The Scientific Basis for Conserving Forest Carnivores: American Marten, Fisher, Lynx and Wolverine in the Western United States
    United States The Scientific Basis for Conserving Forest Carnivores Department of Agriculture Forest Service American Marten, Fisher, Lynx, Rocky Mountain and Wolverine Forest and Range Experiment Station in the Western United States Fort Collins, Colorado 80526 General Technical Report RM-254 Abstract Ruggiero, Leonard F.; Aubry, Keith B.; Buskirk, Steven W.; Lyon, L. Jack; Zielinski, William J., tech. eds. 1994. The Scientific Basis for Conserving Forest Carnivores: American Marten, Fisher, Lynx and Wolverine in the Western United States. Gen. Tech. Rep. RM-254. Ft. Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. 184 p. This cooperative effort by USDA Forest Service Research and the National Forest System assesses the state of knowledge related to the conservation status of four forest carnivores in the western United States: American marten, fisher, lynx, and wolverine. The conservation assessment reviews the biology and ecology of these species. It also discusses management considerations stemming from what is known and identifies information needed. Overall, we found huge knowledge gaps that make it difficult to evaluate the species’ conservation status. In the western United States, the forest carnivores in this assessment are limited to boreal forest ecosystems. These forests are characterized by extensive landscapes with a component of structurally complex, mesic coniferous stands that are characteristic of late stages of forest development. The center of the distrbution of this forest type, and of forest carnivores, is the vast boreal forest of Canada and Alaska. In the western conterminous 48 states, the distribution of boreal forest is less continuous and more isolated so that forest carnivores and their habitats are more fragmented at the southern limits of their ranges.
    [Show full text]
  • Tenth Western Black Bear Workshop
    PROCEEDINGS of the TENTH WESTERN BLACK BEAR WORKSHOP The Changing Climate for Bear Conservation and Management in Western North America Lake Tahoe, Nevada Image courtesy of Reno Convention and Visitors Authority 18-22 May 2009 Peppermill Resort, Reno, Nevada Hosted by The Nevada Department of Wildlife A WAFWA Sanctioned Event Carl W. Lackey and Richard A. Beausoleil, Editors PROCEEDINGS OF THE TENTH WESTERN BLACK BEAR WORKSHOP 18-22 May 2009 Peppermill Resort, Reno, Nevada Hosted by Nevada Department of Wildlife A WAFWA Sanctioned Event Carl W. Lackey & Richard A. Beausoleil Editors International Association for Bear Research and Management SPECIAL THANKS TO OUR WORKSHOP SPONSORS International Association for Bear Research & Management Wildlife Conservation Society Nevada Wildlife Record Book Nevada Bighorns Unlimited - Reno Nevada Department of Wildlife Carson Valley Chukar Club U.S. Forest Service – Carson Ranger District Safari Club International University of Nevada, Reno - Cast & Blast Outdoors Club Berryman Institute Suggested Citation: Author’s name(s). 2010. Title of article or abstract. Pages 00-00 in C. Lackey and R. A. Beausoleil, editors, Western Black Bear Workshop 10:__-__. Nevada Department of Wildlife 1100 Valley Road Reno, NV 89512 Information on how to order additional copies of this volume or other volumes in this series, as well as volumes of Ursus, the official publication of the International Association for Bear Research and Management, may be obtained from the IBA web site: www.bearbiology.com, from the IBA newsletter International Bear News, or from Terry D. White, University of Tennessee, Department of Forestry, Wildlife and Fisheries, P.O. Box 1071, Knoxville, TN 37901-1071, USA.
    [Show full text]
  • Giant Panda Facts (Ailuropoda Melanoleuca)
    U.S. Fish & Wildlife Service Giant Panda Facts (Ailuropoda melanoleuca) Giant panda. John J. Mosesso What animal is black and white Giant pandas are bears with one or two cubs weighing 3 to 5 and loved all over the world? If you striking black and white markings. ounces each is born in a sheltered guessed the giant panda, you’re The ears, eye patches, legs and den. Usually only one cub survives. right! shoulder band are black; the rest The eyes open at 1 1/2 to 2 months of the body is whitish. They have and the cub becomes mobile at The giant panda is also known as thick, woolly coats to insulate them approximately three months of the panda bear, bamboo bear, or in from the cold. Adults are four to six age. At 12 months the cub becomes Chinese as Daxiongmao, the “large feet long and may weigh up to 350 totally independent. While their bear cat.” In fact, its scientific pounds—about the same size as average life span in the wild is name means “black and white cat- the American black bear. However, about 15 years, giant pandas in footed animal.” unlike the black bear, giant pandas captivity have been known to live do not hibernate and cannot walk well into their twenties. Giant pandas are found only in on their hind legs. the mountains of central China— Scientists have debated for more in small isolated areas of the The giant panda has unique front than a century whether giant north and central portions of the paws—one of the wrist bones is pandas belong to the bear family, Sichuan Province, in the mountains enlarged and elongated and is used the raccoon family, or a separate bordering the southernmost part of like a thumb, enabling the giant family of their own.
    [Show full text]
  • 2012-13 Furharvester Activity Summary
    Kansas Department of Wildlife and Parks Furharvester Activity Summary, 2012-13 Matt Peek, furbearer biologist Licenses: A total of 7524 adult and 263 junior resident furharvesting licenses were 31, or in the case of otter, when the 100 otter sold in 2012. This is a 14% increase from quota is reached. 2011, and a 22% increase from the 5-year average. It is also the most licenses sold Historically, the raccoon has been the most since 1987. important furbearer species in Kansas in terms of total harvest and pelt value, and season dates are set to roughly correspond Furharvester license with the time when raccoons are prime (Figure 3). In addition to ensuring the different species are conserved, emphasis is placed on having season open for all species at the same time – so a bobcat taken incidentally by a raccoon trapper in November can be kept, and a raccoon taken incidentally by a bobcat trapper in February can be kept. Last season, over 236,000 user Figure 1. Resident furharvester license sales in KS, days were spent hunting and trapping 1960-2012. furbearers in Kansas. Nonresident furharvester licenses have been November December January February March available in Kansas since 1983. Eighty-seven nd Badger were sold in 2012. The 2 most nonresident Bobcat Coyote license sales on record was 64 in 2008. Gray fox Red fox Swift fox Mink Muskrat Opossum Raccoon Skunk Otter Beaver Primeness Period Furharvesting Season Beaver/Otter Season Figure 3. Pelt primeness dates for Kansas furbearers as indicated by Kansas furdealers. Figure 2. Nonresident furharvester license sales in Harvest and Furdealer Purchases: Kansas, 1983-2012.
    [Show full text]
  • Best Management Practices for the New England Cottontail - New York
    Best Management Practices For the New England Cottontail New York Specific challenges Invasive shrubs Heathlands Canopy Retention Eastern cottontails Statement of Purpose Populations of species residing at the edge of their range are exposed to novel environments and stressors that may affect their response to management. The impacts of eastern cottontails and the prevalence of invasive shrubs have been recognized as factors limiting New England cottontail populations at the edge of their range in New York State. Here, canopy closure, heathlands, and invasive shrubs may also play a large role in providing habitat and mitigating the negative impacts of competition with the eastern cottontail. This document is meant to serve as a technical guide for managers working to restore or create New England cottontail habitat in the face of these challenges. Recent work suggests current management practices may be ineffective or even harmful when the impacts of invasive shrubs and eastern cottontails are not considered in forest management decision- making. These guidelines provide background information and updated recommendations derived from recent and ongoing research on New England cottontails for use in developing site specific forest management plans. While we use New York specific examples, many of these challenges we discuss, such as management of New England cottontails in the presence of eastern cottontails, are rapidly becoming a range-wide concern. The guidance outlined herein is adaptable to similar habitat in New England. Prepared by: Amanda Cheeseman PhD. and Jonathan Cohen PhD from the State University of New York College of Environmental Science and Forestry in partnership with the New York State Department of Environmental Conservation.
    [Show full text]