Small Bodies in Planetary Systems.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Capture of Interstellar Objects: a Source of Long-Period Comets
MNRAS 000,1–5 (2019) Preprint 7 January 2020 Compiled using MNRAS LATEX style file v3.0 Capture of interstellar objects: a source of long-period comets T. O. Hands1?, W. Dehnen2;3 1Institut f¨urComputergest¨utzteWissenschaften, Universit¨atZ¨urich, Winterthurerstrasse 190, 8057 Z¨urich, Switzerland 2Department of Physics & Astronomy, University of Leicester, University Road, Leicester, LE1 7RH, UK 3Universit¨ats-Sternwarteder Ludwig-Maximilians-Universit¨at,Scheinerstrasse 1, M¨unchen D-81679, Germany 7 January 2020 ABSTRACT We simulate the passage through the Sun-Jupiter system of interstellar objects (ISOs) sim- ilar to 1I/‘Oumuamua or 2I/Borisov. Capture of such objects is rare and overwhelmingly from low incoming speeds onto orbits akin to those of known long-period comets. This sug- gests that some of these comets could be of extra-solar origin, in particular inactive ones. Assuming ISOs follow the local stellar velocity distribution, we infer a volume capture rate of 0:051au3yr−1. Current estimates for orbital lifetimes and space densities then imply steady- state captured populations of ∼ 102 comets and ∼ 105 ‘Oumuamua-like rocks, of which 0.033% are within 6 au at any time. Key words: comets:general – asteroids:general – celestial mechanics – minor planets, aster- oids: individual: 1I/‘Oumuamua – comets: individual: 2I/Borisov – Oort cloud 1 INTRODUCTION obvious cometary activity (see e.g., Guzik et al. 2019; Fitzsimmons et al. 2019). It was also discovered relatively early on its approach Comets have fascinated humanity for centuries. These exotic ob- to the Solar system, meaning we can expect further observations jects present what many believe to be an immaculate sample of the in the coming months. -
Science Objectives May Be Summarized As Follows
MAGNETOSPHERE IMAGING INSTRUMENT (MIMI) 9 ON THE CASSINI MISSION TO SATURN/TITAN 2. Scientific Objectives MIMI science objectives may be summarized as follows: Saturn • Determine the global configuration and dynamics of hot plasma in the magneto- sphere of Saturn through energetic neutral particle imaging of ring current, radia- tion belts, and neutral clouds. • Study the sources of plasmas and energetic ions through in situ measurements of energetic ion composition, spectra, charge state, and angular distributions. • Search for, monitor, and analyze magnetospheric substorm-like activity at Saturn. • Determine through the imaging and composition studies the magnetosphere– satellite interactions at Saturn and understand the formation of clouds of neutral hydrogen, nitrogen, and water products. •Investigate the modification of satellite surfaces and atmospheres through plasma and radiation bombardment. • Study Titan’s cometary interaction with Saturn’s magnetosphere (and the solar wind) via high-resolution imaging and in situ ion and electron measurements. • Measure the high energy (Ee > 1 MeV, Ep > 15 MeV) particle component in the inner (L < 5 RS) magnetosphere to assess cosmic ray albedo neutron decay (CRAND) source characteristics. •Investigate the absorption of energetic ions and electrons by the satellites and rings in order to determine particle losses and diffusion processes within the mag- netosphere. • Study magnetosphere–ionosphere coupling through remote sensing of aurora and in situ measurements of precipitating energetic ions and electrons. Jupiter • Study ring current(s), plasma sheet, and neutral clouds in the magnetosphere and magnetotail of Jupiter during Cassini flyby, using global imaging and in situ mea- surements. S. M. KRIMIGIS ET AL. 10 Interplanetary • Determine elemental and isotopic composition of local interstellar medium through measurements of interstellar pickup ions. -
Observations from Orbiting Platforms 219
Dotto et al.: Observations from Orbiting Platforms 219 Observations from Orbiting Platforms E. Dotto Istituto Nazionale di Astrofisica Osservatorio Astronomico di Torino M. A. Barucci Observatoire de Paris T. G. Müller Max-Planck-Institut für Extraterrestrische Physik and ISO Data Centre A. D. Storrs Towson University P. Tanga Istituto Nazionale di Astrofisica Osservatorio Astronomico di Torino and Observatoire de Nice Orbiting platforms provide the opportunity to observe asteroids without limitation by Earth’s atmosphere. Several Earth-orbiting observatories have been successfully operated in the last decade, obtaining unique results on asteroid physical properties. These include the high-resolu- tion mapping of the surface of 4 Vesta and the first spectra of asteroids in the far-infrared wave- length range. In the near future other space platforms and orbiting observatories are planned. Some of them are particularly promising for asteroid science and should considerably improve our knowledge of the dynamical and physical properties of asteroids. 1. INTRODUCTION 1800 asteroids. The results have been widely presented and discussed in the IRAS Minor Planet Survey (Tedesco et al., In the last few decades the use of space platforms has 1992) and the Supplemental IRAS Minor Planet Survey opened up new frontiers in the study of physical properties (Tedesco et al., 2002). This survey has been very important of asteroids by overcoming the limits imposed by Earth’s in the new assessment of the asteroid population: The aster- atmosphere and taking advantage of the use of new tech- oid taxonomy by Barucci et al. (1987), its recent extension nologies. (Fulchignoni et al., 2000), and an extended study of the size Earth-orbiting satellites have the advantage of observing distribution of main-belt asteroids (Cellino et al., 1991) are out of the terrestrial atmosphere; this allows them to be in just a few examples of the impact factor of this survey. -
Ice& Stone 2020
Ice & Stone 2020 WEEK 33: AUGUST 9-15 Presented by The Earthrise Institute # 33 Authored by Alan Hale About Ice And Stone 2020 It is my pleasure to welcome all educators, students, topics include: main-belt asteroids, near-Earth asteroids, and anybody else who might be interested, to Ice and “Great Comets,” spacecraft visits (both past and Stone 2020. This is an educational package I have put future), meteorites, and “small bodies” in popular together to cover the so-called “small bodies” of the literature and music. solar system, which in general means asteroids and comets, although this also includes the small moons of Throughout 2020 there will be various comets that are the various planets as well as meteors, meteorites, and visible in our skies and various asteroids passing by Earth interplanetary dust. Although these objects may be -- some of which are already known, some of which “small” compared to the planets of our solar system, will be discovered “in the act” -- and there will also be they are nevertheless of high interest and importance various asteroids of the main asteroid belt that are visible for several reasons, including: as well as “occultations” of stars by various asteroids visible from certain locations on Earth’s surface. Ice a) they are believed to be the “leftovers” from the and Stone 2020 will make note of these occasions and formation of the solar system, so studying them provides appearances as they take place. The “Comet Resource valuable insights into our origins, including Earth and of Center” at the Earthrise web site contains information life on Earth, including ourselves; about the brighter comets that are visible in the sky at any given time and, for those who are interested, I will b) we have learned that this process isn’t over yet, and also occasionally share information about the goings-on that there are still objects out there that can impact in my life as I observe these comets. -
Color Study of Asteroid Families Within the MOVIS Catalog David Morate1,2, Javier Licandro1,2, Marcel Popescu1,2,3, and Julia De León1,2
A&A 617, A72 (2018) Astronomy https://doi.org/10.1051/0004-6361/201832780 & © ESO 2018 Astrophysics Color study of asteroid families within the MOVIS catalog David Morate1,2, Javier Licandro1,2, Marcel Popescu1,2,3, and Julia de León1,2 1 Instituto de Astrofísica de Canarias (IAC), C/Vía Láctea s/n, 38205 La Laguna, Tenerife, Spain e-mail: [email protected] 2 Departamento de Astrofísica, Universidad de La Laguna, 38205 La Laguna, Tenerife, Spain 3 Astronomical Institute of the Romanian Academy, 5 Cu¸titulde Argint, 040557 Bucharest, Romania Received 6 February 2018 / Accepted 13 March 2018 ABSTRACT The aim of this work is to study the compositional diversity of asteroid families based on their near-infrared colors, using the data within the MOVIS catalog. As of 2017, this catalog presents data for 53 436 asteroids observed in at least two near-infrared filters (Y, J, H, or Ks). Among these asteroids, we find information for 6299 belonging to collisional families with both Y J and J Ks colors defined. The work presented here complements the data from SDSS and NEOWISE, and allows a detailed description− of− the overall composition of asteroid families. We derived a near-infrared parameter, the ML∗, that allows us to distinguish between four generic compositions: two different primitive groups (P1 and P2), a rocky population, and basaltic asteroids. We conducted statistical tests comparing the families in the MOVIS catalog with the theoretical distributions derived from our ML∗ in order to classify them according to the above-mentioned groups. We also studied the background populations in order to check how similar they are to their associated families. -
Tidal Fragmentation As the Origin of 1I/2017 U1 ('Oumua- Mua)
Tidal fragmentation as the origin of 1I/2017 U1 (‘Oumua- mua) Yun Zhang1;2;3;4˚ & Douglas N.C. Lin5;2 1National Astronomical Observatories, Chinese Academy of Sciences, Beijing, China. 2Institute for Advanced Studies, Tsinghua University, Beijing, China. 3Universite´ Coteˆ d’Azur, Observatoire de la Coteˆ d’Azur, CNRS, Laboratoire Lagrange, Nice, France. 4Department of Astronomy, University of Maryland, College Park, MD, USA. 5Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA, USA. *To whom correspondence should be addressed; Email: [email protected] The first discovered interstellar object (ISO), ‘Oumuamua (1I/2017 U1) shows a dry and rocky surface, an unusually elongated short-to-long axis ratio c{a À 1{6, a low velocity rela- tive to the local standard of rest („ 10 km s´1), non-gravitational accelerations, and tumbles on a few hours timescale1–9. The inferred number density („ 3:5 ˆ 1013 ´ 2 ˆ 1015 pc´3) for a population of asteroidal ISOs10, 11 outnumbers cometary ISOs12 by ¥ 103, in contrast to the much lower ratio (À 10´2) of rocky/icy Kuiper belt objects13. Although some scenarios can cause the ejection of asteroidal ISOs14, 15, a unified formation theory has yet to comprehen- sively link all ‘Oumuamua’s puzzling characteristics and to account for the population. Here we show by numerical simulations that ‘Oumuamua-like ISOs can be prolifically produced through extensive tidal fragmentation and ejected during close encounters of their volatile- rich parent bodies with their host stars. Material strength enhanced by the intensive heating during periastron passages enables the emergence of extremely elongated triaxial ISOs with shape c{a À 1{10, sizes a „ 100 m, and rocky surfaces. -
Ice& Stone 2020
Ice & Stone 2020 WEEK 51: DECEMBER 13-19 Presented by The Earthrise Institute # 51 Authored by Alan Hale COMET OF THE WEEK: The Great Comet of 1680 Perihelion: 1680 December 18.49, q = 0.006 AU The Great Comet of 1680 over Rotterdam in The Netherlands, during late December 1680 as painted by the Dutch artist Lieve Verschuier. This particular comet was undoubtedly one of the brightest comets of the 17th Century, but it is also one of the most important comets in history from a scientific perspective, and perhaps even from the perspective of overall human history. While there were certainly plenty of superstitions attached to the comet’s appearance, the scientific investigations made of it were among the beginnings of the era in European history we now call The Enlightenment, and indeed, in a sense the Great Comet of 1680 can perhaps be considered as one of the sparks of that era. The significance began with the comet’s discovery, which was made on the morning of November 14, 1680, by a German astronomer residing in Coburg, Gottfried Kirch – the first comet ever to be discovered by means of a telescope. It was already around 4th magnitude at that time, and located near the star Regulus in the constellation Leo; from that point it traveled eastward and brightened rapidly, being closest to Earth (0.42 AU) on November 30. By that time it was a conspicuous naked-eye object with a tail 20 to 30 degrees long, and it remained visible for another week before disappearing into morning twilight. -
Detecting the Yarkovsky Effect Among Near-Earth Asteroids From
Detecting the Yarkovsky effect among near-Earth asteroids from astrometric data Alessio Del Vignaa,b, Laura Faggiolid, Andrea Milania, Federica Spotoc, Davide Farnocchiae, Benoit Carryf aDipartimento di Matematica, Universit`adi Pisa, Largo Bruno Pontecorvo 5, Pisa, Italy bSpace Dynamics Services s.r.l., via Mario Giuntini, Navacchio di Cascina, Pisa, Italy cIMCCE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universits, UPMC Univ. Paris 06, Univ. Lille, 77 av. Denfert-Rochereau F-75014 Paris, France dESA SSA-NEO Coordination Centre, Largo Galileo Galilei, 1, 00044 Frascati (RM), Italy eJet Propulsion Laboratory/California Institute of Technology, 4800 Oak Grove Drive, Pasadena, 91109 CA, USA fUniversit´eCˆote d’Azur, Observatoire de la Cˆote d’Azur, CNRS, Laboratoire Lagrange, Boulevard de l’Observatoire, Nice, France Abstract We present an updated set of near-Earth asteroids with a Yarkovsky-related semi- major axis drift detected from the orbital fit to the astrometry. We find 87 reliable detections after filtering for the signal-to-noise ratio of the Yarkovsky drift esti- mate and making sure the estimate is compatible with the physical properties of the analyzed object. Furthermore, we find a list of 24 marginally significant detec- tions, for which future astrometry could result in a Yarkovsky detection. A further outcome of the filtering procedure is a list of detections that we consider spurious because unrealistic or not explicable with the Yarkovsky effect. Among the smallest asteroids of our sample, we determined four detections of solar radiation pressure, in addition to the Yarkovsky effect. As the data volume increases in the near fu- ture, our goal is to develop methods to generate very long lists of asteroids with reliably detected Yarkovsky effect, with limited amounts of case by case specific adjustments. -
“Phobos Events”—Signatures of Solar Wind Interaction with a Gas Torus?
Earth Planets Space, 50, 453–462, 1998 “Phobos events”—Signatures of solar wind interaction with a gas torus? K. Baumgärtel1,7, K. Sauer2,7, E. Dubinin2,3,7, V. Tarrasov4,5,7, and M. Dougherty6 1Astrophysikalisches Institut Potsdam, 14482 Potsdam, Germany 2Max-Planck-Institut für Aeronomie, 37191 Katlenburg-Lindau, Germany 3Institute of Space Research, 117810 Moscow, Russia 4Centre d’Etude des Environments Terrestre et Planetaires, 78140 Velizy, France 5Lviv Centre of the Institute of Space Research, 290601 Lviv, Ukraine 6Space and Atmospheric Physics, Imperial College, London SW72AZ, U.K. 7International Space Science Institute (ISSI), 3012 Bern, Switzerland (Received August 28, 1997; Revised January 30, 1998; Accepted February 20, 1998) Following recent simulations of the Phobos dust belt formation (Krivov and Hamilton, 1997), the effective dust- induced charge density as estimated is too small to account for the significant solar wind (sw) plasma and magnetic field perturbations observed by the Phobos-2 spacecraft in 1989 near the crossings of the Phobos orbit. In this paper the sw interaction with the Phobos neutral gas torus is re-investigated in a two-ion plasma model in which the newly created ions are treated as unmagnetized, forming a beam (not a ring beam) in the sw frame. A linear instability analysis based on both a cold fluid and a kinetic approach shows that electromagnetic ion beam waves in the whistler range of frequencies, driven most unstable at oblique propagation and appearing as almost purely growing waves in the beam frame, aquire high growth rates and provide a likely mechanism to cause the observed events. -
~XECKDING PAGE BLANK WT FIL,,Q
1,. ,-- ,-- ~XECKDING PAGE BLANK WT FIL,,q DYNAMICAL EVIDENCE REGARDING THE RELATIONSHIP BETWEEN ASTEROIDS AND METEORITES GEORGE W. WETHERILL Department of Temcltricrl kgnetism ~amregie~mtittition of Washington Washington, D. C. 20025 Meteorites are fragments of small solar system bodies (comets, asteroids and Apollo objects). Therefore they may be expected to provide valuable information regarding these bodies. How- ever, the identification of particular classes of meteorites with particular small bodies or classes of small bodies is at present uncertain. It is very unlikely that any significant quantity of meteoritic material is obtained from typical ac- tive comets. Relatively we1 1-studied dynamical mechanisms exist for transferring material into the vicinity of the Earth from the inner edge of the asteroid belt on an 210~-~year time scale. It seems likely that most iron meteorites are obtained in this way, and a significant yield of complementary differec- tiated meteoritic silicate material may be expected to accom- pany these differentiated iron meteorites. Insofar as data exist, photometric measurements support an association between Apollo objects and chondri tic meteorites. Because Apol lo ob- jects are in orbits which come close to the Earth, and also must be fragmented as they traverse the asteroid belt near aphel ion, there also must be a component of the meteorite flux derived from Apollo objects. Dynamical arguments favor the hypothesis that most Apollo objects are devolatilized comet resiaues. However, plausible dynamical , petrographic, and cosmogonical reasons are known which argue against the simple conclusion of this syllogism, uiz., that chondri tes are of cometary origin. Suggestions are given for future theoretical , observational, experimental investigations directed toward improving our understanding of this puzzling situation. -
Accurate Positions of Pluto and Asteroids Observed in Bucharest During the Year 1932
ACCURATE POSITIONS OF PLUTO AND ASTEROIDS OBSERVED IN BUCHAREST DURING THE YEAR 1932 GHEORGHE BOCŞA, PETRE POPESCU, MIHAELA LICULESCU Astronomical Institute of the Romanian Academy Str. Cuţitul de Argint 5, 040557 Bucharest, Romania E-mail: [email protected] Abstract. The paper contains the observations of minor planets performed in Bucharest Astronomical Observatory in the year 1932 with the 380/6000 mm astrograph. Both Turner’s (constants) and Schlesinger’s (dependences) methods were used in the computation of the normal coordinates of the objects. Keywords: photographic astrometry – minor planets. 1. INTRODUCTION The article is a continuation of the complete investigation of Bucharest Wide-Field Plates Archive initiated in 2010; it contains the plates with asteroids observed in 1932. That year 185 plates were exposed and were stored in the archive, but were not reduced. After analysing them, 98 plates were detected to contain measurable minor planets. The first observed positions in this year were of planet Pluto. They were exposed on 1318cm plates, with 52 minutes exposure .The observations were performed by the famous Romanian astronomer Professor Gheorghe Demetrescu. The most difficult problem was the identification of the planet, the three plates obtained in 1932 having dozens of stars with up to 15 magnitudes. As all the observations were performed in the same month and the planet did not have a great proper motion, it was possible to superpose two plates and to identify Pluto. The values (O–C)α and (O–C)δ were calculated by M. Svechnikov from the Institute of Applied Astronomy in Sankt Petersburg on the basis of precise positions obtained in Bucharest, which we integrated in Pluto’s orbit. -
Dust Clouds and Plasmoids in Saturn's Magnetosphere
Dust clouds and plasmoids in Saturn’s Magnetosphere as seen with four Cassini instruments Emil Khalisi1 Max-Planck-Institute for Nuclear Physics, Saupfercheckweg 1, D–69117 Heidelberg, Germany Abstract We revisit the evidence for a ”dust cloud” observed by the Cassini space- craft at Saturn in 2006. The data of four instruments are simultaneously compared to interpret the signatures of a coherent swarm of dust that would have remained near the equatorial plane for as long as six weeks. The con- spicuous pattern, as seen in the dust counters of the Cosmic Dust Analyser (CDA), clearly repeats on three consecutive revolutions of the spacecraft. That particular cloud is estimated to about 1.36 Saturnian radii in size, and probably broadening. We also present a reconnection event from the magnetic field data (MAG) that leave behind several plasmoids like those reported from the Voyager flybys in the early 1980s. That magnetic bubbles happened at the dawn side of Saturn’s magnetosphere. At their nascency, the magnetic field showed a switchover of its alignment, disruption of flux tubes and a recovery on a time scale of about 30 days. However, we cannot rule out that different events might have taken place. Empirical evidence is shown at another occasion when a plasmoid was carrying a cloud of tiny dust particles such that a connection between plasmoids and coherent dust clouds is probable. Keywords: Dust clouds, Saturn, Cassini mission, Cosmic Dust Analyser, arXiv:1702.01579v1 [astro-ph.EP] 6 Feb 2017 Magnetosphere URL: DOI: http://dx.doi.org/10.1016/j.asr.2016.12.030 (Emil Khalisi) 1Corresponding author: [email protected] Preprint accepted by Advances in Space Research [JASR13029] 7th February 2017 1.