Reca-Dependent Mutants in Escherichia Coli Reveal Strategies to Avoid Chromosomal Fragmentation

Total Page:16

File Type:pdf, Size:1020Kb

Reca-Dependent Mutants in Escherichia Coli Reveal Strategies to Avoid Chromosomal Fragmentation RecA-dependent mutants in Escherichia coli reveal strategies to avoid chromosomal fragmentation Elena A. Kouzminova, Ella Rotman, Lee Macomber, Jian Zhang, and Andrei Kuzminov* Department of Microbiology, University of Illinois at Urbana–Champaign, Urbana, IL 61801-3709 Edited by Charles M. Radding, Yale University School of Medicine, New Haven, CT, and approved October 4, 2004 (received for review August 12, 2004) RecA- and RecBC-catalyzed repair in eubacteria assembles chromo- mutants are predicted to have elevated levels of chromosomal somes fragmented by double-strand breaks. We propose that recA fragmentation. mutants, being unable to repair fragmented chromosomes, de- There are three knockout mutants in E. coli that cause RecA pend on various strategies designed to avoid chromosomal frag- dependence. The dam mutants are deficient in GATC site- mentation. To identify chromosomal fragmentation-avoidance specific DNA adenine methylase (17). Replication-caused tran- strategies, we screened for Escherichia coli mutants synthetically sient hemimethylation of GATC sites is used by E. coli to identify inhibited in combination with recA inactivation by identifying the old DNA strand as the proper template for mismatch repair, clones unable to lose a plasmid carrying the recA؉ gene. Using this whereas lack of GATC methylation in dam mutants results in screen, we have isolated several RecA-dependent mutants and double-strand DNA breaks due to a disoriented mismatch repair assigned them to three distinct areas of metabolism. The tdk and (18). The rdgB mutants depend on RecA and degrade their Ϫ rdgB mutants affect synthesis of DNA precursors. The fur, ubiE, and chromosomal DNA in recA conditions (19), because they are ubiH mutants are likely to have increased levels of reactive oxygen deficient in ITP͞XTPase, an enzyme believed to intercept the species. The seqA, topA mutants and an insertion in smtA perturb- improper DNA precursor dITP, thus preventing hypoxanthine ing the downstream mukFEB genes affect nucleoid administration. incorporation into DNA (20). In the absence of RdgB, hypo- All isolated mutants show varying degree of SOS induction, indi- xanthine is proposed to occasionally incorporate into DNA in cating elevated levels of chromosomal lesions. As predicted, mu- place of guanine, its subsequent excision by EndoV translating tants in rdgB, seqA, smtA, topA, and fur show increased levels of into chromosomal fragmentation (20). Last, fur mutants are chromosomal fragmentation in recBC mutant conditions. Future deficient in the repression of iron assimilation and, as a result, characterization of these RecA-dependent mutants will define experience iron overload (21), which is postulated to lead to mechanisms of chromosomal fragmentation avoidance. increased oxidative DNA damage and RecA dependence in aerobic conditions (22). It is not known whether fur mutants suffer from chromosomal fragmentation. hromosomal fragmentation due to double-strand DNA The dam, rdgB, and fur mutants identify three potential breaks and disintegrated replication forks is a major con- C strategies to avoid chromosomal fragmentation: (i) guidance of tributor to genome instability in all organisms (1, 2). The two proteins that can damage DNA directly (the way Dam methyl- major pathways used by eukaryotic cells to repair fragmented ation guides mismatch-repair enzymes); (ii) quality control in the chromosomes are nonhomologous end joining and homologous DNA precursor metabolism (rdgB); and (iii) reduction in the recombination (3). Nonhomologous end joining is an imprecise level of DNA-damaging species (fur). To find other strategies of repair, frequently involving loss of genetic information, but it is chromosomal fragmentation avoidance or other activities that nevertheless an efficient way to repair double-strand breaks in use the known strategies, we designed an approach to system- cells of higher eukaryotes (4). However, disintegrated replica- atically search for RecA-dependent mutants in E. coli. We then tion forks, having a single double-strand end, cannot be reas- tested the isolated mutants for elevated levels of chromosomal sembled by nonhomologous end joining and require error-free fragmentation. recombinational repair (5, 6). The importance of recombina- tional repair in higher eukaryotes is illustrated by the inviability Materials and Methods of recombinational repair mutants in mice (7) and by the rapid Media, growth conditions, bacterial strains and plasmids, inser- death of recombinational repair-defective vertebrate cells due to tional mutagenesis, color screen, and mutant sequencing are chromosomal fragmentation (8). In the model eubacterium described in Supporting Text, which is published as supporting Escherichia coli, recombinational repair of fragmented chromo- information on the PNAS web site; see also Tables 1 and 2, which somes is catalyzed by the RecA and RecBCD enzymes (9). are published as supporting information on the PNAS web site. RecBCD is an exonuclease͞helicase that prepares the double- strand DNA ends of the break for RecA polymerization (10). SOS Induction. The level of SOS induction due to a particular RecA filament catalyzes homologous strand exchange of the mutation was measured in a derivative of AK43 (into which the broken DNA duplex with an intact sister duplex, thus creating an mutation was introduced by P1 transduction to kanamycin opportunity for double-strand break repair (11). resistance) according to the protocol of Miller (23) with the In recA or recBC mutants of E. coli, double-strand DNA breaks following modifications: (i) cells were grown in LB at 42°C are not repaired (12) and cause chromosomal loss and cell death without antibiotics; (ii) 200 ␮l of the culture with OD600 between (13, 14). However, recA mutant E. coli strains are still 50% viable 0.5 and 0.8 was combined with 2 ml of Z buffer (100 mM Na (15, 16), which indicates that the chromosomal fragmentation is Phos, pH 7.0͞10 mM KCl͞ 1 mM MgSO4͞50 mM 2-mercapto- not a frequent event in E. coli and suggests the existence of ethanol) containing 0.00125% SDS and 25 ␮l of chloroform; (iii) strategies designed to avoid chromosomal fragmentation. Inac- 60 ␮lof4mg͞ml O-nitrophenyl ␤-D-galactoside in Z buffer was tivation of one of these hypothetical avoidance activities should make the corresponding mutant dependent on recombinational repair (‘‘synthetically inhibited’’ in combination with recA inac- This paper was submitted directly (Track II) to the PNAS office. tivation), because both the avoidance of chromosomal fragmen- Abbreviation: IPTG, isopropyl ␤-D-thiogalactoside. tation and the subsequent recombinational repair are not avail- *To whom correspondence should be addressed. E-mail: [email protected]. able in such a double mutant. Moreover, such RecA-dependent © 2004 by The National Academy of Sciences of the USA 16262–16267 ͉ PNAS ͉ November 16, 2004 ͉ vol. 101 ͉ no. 46 www.pnas.org͞cgi͞doi͞10.1073͞pnas.0405943101 Downloaded by guest on September 26, 2021 added to the opened cells; and (iv) color development was for 10 min with shaking at 28°C. Quantification of Chromosomal Fragmentation by Pulsed-Field Gel Electrophoresis. Overnight 2-ml LB cultures were shaken at 22°C. In the morning, the cultures were diluted to OD600 0.02–0.06 (for further growth at 22°C) or to OD600 0.001–0.02 (for further growth at 37°C) into 2 ml of LB medium supplemented with 10 ␮Ci͞ml [32P]orthophosphoric acid (1 Ci ϭ 37 GBq). Variations in dilutions accommodate slower growth of some strains. All strains were grown at 22°C for 1 h, and then 37°C samples were shifted to 37°C for 4 h. The 22°C samples were left at 22°C for another5hofgrowth.Growing cultures (OD600 for 37°C samples varied from 0.7 to 1.1; for 22°C samples, variation was from 0.4 to 0.6) were normalized to OD600 0.35, and 0.5 ml of the normalized cultures was pelleted and washed once with 1 ml of TE buffer (10 mM Tris͞1 mM EDTA, pH 8.0) to remove unincorporated radioactivity. Plug preparation was as described (20). Half of the plug was inserted in 1% agarose gel on 0.5 ϫ TBE buffer (89 mM Tris͞89 mM boric acid͞2.0 mM EDTA, pH 7.8) and run for 24 h at 6 V͞cm with a switch time ramp 60–120 seconds, in CHEF-DRII Pulsed-Field Gel Electrophoresis (Bio- Rad). The portion of the gel containing the Yeast Chromosome PFG Marker (New England Biolabs) was stained in 1 ␮g͞ml ethidium bromide solution to estimate the size of fragmented chromosomes. The portion of the gel with radioactive samples was vacuum-dried for2hat80°C to 3MM Whatman paper and directly scanned by PhosphorImager (FujiFilm FLA-3000, Fuji). The fraction of chromosomal DNA escaping from the well into Fig. 1. The color screen for recA-dependent mutants. The screen looks for the inability to lose a temperature-sensitive plasmid carrying the recAϩ gene. the gel was calculated by dividing the counts found in the gel ϩ ϩ (starting at a position halfway between the center of the well and (A) The properties of the strain S295 [lacZ recA p(ori-Ts)-lacZ -recA ] at three temperatures, plated on MacConkey-lactose agar. S295 is lacZϩ recAϩ at 28°C, the center of the compression zone) by the total amount found ϩ ϩ lacZ recA mutant at 42°C, and a mixture of lacZ recA and lacZ recA mutant in the whole lane, including the well. cells (sectoring colonies) at 34°C. (B) The scheme of the experimental strain and the expected colony phenotype of a recA-dependent mutant (converging GENETICS Results arrows). (Inset) Test plating of the original S295 strain and its two derivatives Color Screen. To search for chromosomal fragmentation avoid- carrying mutations known to confer recA dependence, S296 (S295 rdgB3) and ance activities, we set up a screen for recombination-dependent S297 (S295 dut-1), at 34°C. Sectoring colonies are those of the original strain, mutants in E. coli consisting of a lacZ recA mutant strain, which the small nonsectoring colonies are dut-1 mutants, and the midsize nonsec- harbors a lacZϩ recAϩ plasmid with a temperature-sensitive toring colonies are rdgB3 mutants.
Recommended publications
  • Examining the Mechanism of a Heavy- Metal ABC Exporter Dennis Hicks University of San Francisco, [email protected]
    The University of San Francisco USF Scholarship: a digital repository @ Gleeson Library | Geschke Center Master's Theses Theses, Dissertations, Capstones and Projects Spring 3-31-2019 NaAtm1: Examining the mechanism of a Heavy- metal ABC Exporter Dennis Hicks University of San Francisco, [email protected] Follow this and additional works at: https://repository.usfca.edu/thes Part of the Biochemistry Commons Recommended Citation Hicks, Dennis, "NaAtm1: Examining the mechanism of a Heavy-metal ABC Exporter" (2019). Master's Theses. 1204. https://repository.usfca.edu/thes/1204 This Thesis is brought to you for free and open access by the Theses, Dissertations, Capstones and Projects at USF Scholarship: a digital repository @ Gleeson Library | Geschke Center. It has been accepted for inclusion in Master's Theses by an authorized administrator of USF Scholarship: a digital repository @ Gleeson Library | Geschke Center. For more information, please contact [email protected]. NaAtm1: Examining the mechanism of a Heavy-metal ABC Exporter A thesis presented to the faculty of the Department of Chemistry at the University of San Francisco in partial fulfillment of the requirements for the degree of Master of Science in Chemistry Written by Dennis Hicks Bachelor of Science in Biochemistry San Francisco State University August 2019 NaAtm1: Examining the mechanism of a Heavy-metal ABC Exporter Thesis written by Dennis Hicks This thesis is written under the guidance of the Faculty Advisory Committee, and approved by all its members, has been accepted in partial fulfillment of the requirements for the degree of Master of Science in Chemistry at the University of San Francisco Thesis Committee Janet G.
    [Show full text]
  • Structure and Mechanism of a Group-I Cobalt Energy Coupling Factor Transporter
    Cell Research (2017) 27:675-687. © 2017 IBCB, SIBS, CAS All rights reserved 1001-0602/17 $ 32.00 ORIGINAL ARTICLE www.nature.com/cr Structure and mechanism of a group-I cobalt energy coupling factor transporter Zhihao Bao1, 2, 3, *, Xiaofeng Qi1, 3, *, Sen Hong1, 3, Ke Xu1, 3, Fangyuan He1, Minhua Zhang1, Jiugeng Chen1, Daiyin Chao1, Wei Zhao4, Dianfan Li4, Jiawei Wang5, Peng Zhang1 1National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; 2Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; 3University of Chinese Academy of Sciences, Beijing 100049, China; 4State Key Laboratory of Molecular Biology, National Center for Protein Sciences, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chi- nese Academy of Sciences, Shanghai 200031, China; 5State Key Laboratory of Membrane Biology, School of Life Sciences, Tsing- hua University, Beijing 100084, China Energy-coupling factor (ECF) transporters are a large family of ATP-binding cassette transporters recently iden- tified in microorganisms. Responsible for micronutrient uptake from the environment, ECF transporters are mod- ular transporters composed of a membrane substrate-binding component EcfS and an ECF module consisting of an integral membrane scaffold component EcfT and two cytoplasmic ATP binding/hydrolysis components EcfA/A’. ECF transporters are classified into groups I and II. Currently, the molecular understanding of group-I ECF transport- ers is very limited, partly due to a lack of transporter complex structural information.
    [Show full text]
  • Reca and DNA Recombination: a Review of Molecular Mechanisms
    Biochemical Society Transactions (2019) 47 1511–1531 https://doi.org/10.1042/BST20190558 Review Article RecA and DNA recombination: a review of molecular mechanisms Downloaded from https://portlandpress.com/biochemsoctrans/article-pdf/47/5/1511/859295/bst-2019-0558.pdf by Tata Institute of Fundamental Research user on 20 January 2020 Elsa del Val1,2, William Nasser1, Hafid Abaibou2 and Sylvie Reverchon1 1Microbiologie, Adaptation et Pathogénie, Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, UMR5240, 11 Avenue Jean Capelle, F-69621 Villeurbanne, France; 2Molecular Innovation Unit, Centre Christophe Mérieux, BioMérieux, 5 rue des Berges, 38024 Grenoble Cedex 01, France Correspondence: Sylvie Reverchon ([email protected]) or Hafid Abaibou ([email protected]) Recombinases are responsible for homologous recombination and maintenance of genome integrity. In Escherichia coli, the recombinase RecA forms a nucleoprotein filament with the ssDNA present at a DNA break and searches for a homologous dsDNA to use as a template for break repair. During the first step of this process, the ssDNA is bound to RecA and stretched into a Watson–Crick base-paired triplet conformation. The RecA nucleoprotein filament also contains ATP and Mg2+, two cofactors required for RecA activity. Then, the complex starts a homology search by interacting with and stretching dsDNA. Thanks to supercoiling, intersegment sampling and RecA clustering, a genome-wide homology search takes place at a relevant metabolic timescale. When a region of homology 8–20 base pairs in length is found and stabilized, DNA strand exchange proceeds, forming a heteroduplex complex that is resolved through a combin- ation of DNA synthesis, ligation and resolution.
    [Show full text]
  • The Universal Stress Proteins of Bacteria
    The Universal Stress Proteins of Bacteria Dominic Bradley Department of Life Sciences A thesis submitted for the degree of Doctor of Philosophy and the Diploma of Imperial College London The Universal Stress Proteins of Bacteria Declaration of Originality I, Dominic Bradley, declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institute of tertiary education. Information derived from the published and unpublished work of others has been acknowledged in the text and a list of references is given in the bibliography. 1 The Universal Stress Proteins of Bacteria Abstract Universal stress proteins (USPs) are a widespread and abundant protein family often linked to survival during stress. However, their exact biochemical and cellular roles are incompletely understood. Mycobacterium tuberculosis (Mtb) has 10 USPs, of which Rv1636 appears to be unique in its domain structure and being the only USP conserved in M. leprae. Over-expression of Rv1636 in M. smegmatis indicated that this protein does not share the growth arrest phenotype of another Mtb USP, Rv2623, suggesting distinct roles for the Mtb USPs. Purified Rv1636 was shown to have novel nucleotide binding capabilities when subjected to UV crosslinking. A range of site-directed mutants of Rv1636 were produced, including mutations within a predicted nucleotide binding motif, with the aim of identifying and characterising key residues within the Rv1636 protein. Further putative biochemical activities, including nucleotide triphosphatase, nucyleotidylyation and auto-phosphorylation were also investigated in vitro; however Rv1636 could not be shown to definitively possess these activities, raising the possibility that addition factors may be present in vivo.
    [Show full text]
  • Mismatch Repair Inhibits Homeologous Recombination Via Coordinated Directional Unwinding of Trapped DNA Structures
    Molecular Cell Article Mismatch Repair Inhibits Homeologous Recombination via Coordinated Directional Unwinding of Trapped DNA Structures Khek-Chian Tham,1 Nicolaas Hermans,1 Herrie H.K. Winterwerp,3 Michael M. Cox,4 Claire Wyman,1,2 Roland Kanaar,1,2 and Joyce H.G. Lebbink1,2,* 1Department of Genetics, Cancer Genomics Netherlands 2Department of Radiation Oncology Erasmus Medical Center, Rotterdam 3000 CA, The Netherlands 3Division of Biochemistry and Center for Biomedical Genetics, Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands 4Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA *Correspondence: [email protected] http://dx.doi.org/10.1016/j.molcel.2013.07.008 SUMMARY transduction (Zahrt and Maloy, 1997), transformation (Majewski et al., 2000), and conjugational E. coli-E. coli crosses that involve Homeologous recombination between divergent the creation of mismatches (Feinstein and Low, 1986). Likewise, DNA sequences is inhibited by DNA mismatch repair. in eukaryotes, individual MMR proteins have roles of varying In Escherichia coli, MutS and MutL respond to DNA magnitude in the prevention of homeologous recombination mismatches within recombination intermediates (Selva et al., 1995; Datta et al., 1996; Nicholson et al., 2000; de and prevent strand exchange via an unknown mech- Wind et al., 1995). Inhibition of homeologous reactions is thought anism. Here, using purified proteins and DNA sub- to protect the genome from recombination events between divergent repeats (de Wind et al., 1999). This is important in hu- strates, we find that in addition to mismatches within mans, in which the amount of repetitive DNA is as high as 50%. the heteroduplex region, secondary structures within An intriguing question is how MMR and recombination path- the displaced single-stranded DNA formed during ways are integrated at the molecular level.
    [Show full text]
  • Recbcd-Dependent Joint Molecule Formation Promoted by The
    Proc. Nail. Acad. Sci. USA Vol. 88, pp. 3367-3371, April 1991 Biochemistry RecBCD-dependent joint molecule formation promoted by the Escherichia coli RecA and SSB proteins (single-stranded DNA-binding protein/genetic recombination/homologous pairing) LINDA J. ROMAN, DAN A. DIXON, AND STEPHEN C. KOWALCZYKOWSKI* Department of Molecular Biology, Northwestern University Medical School, Chicago, IL 60611 Communicated by Bruce M. Alberts, December 18, 1990 (receivedfor review September 22, 1990) ABSTRACT We describe the formation of homologously We previously described a reaction in which heteroduplex paired joint molecules in an in vitro reaction that is dependent DNA formation between ssDNA and homologous linear on the concerted actions ofpurified RecA and RecBCD proteins dsDNA required both the dsDNA-unwinding activity of and is stimulated by single-stranded DNA-binding protein RecBCD and the ssDNA-renaturation activity of RecA (15). (SSB). RecBCD enzyme initiates the process by unwinding the In this paper, we expand upon the previous in vitro studies to linear double-stranded DNA to produce single-stranded DNA, include DNA substrates that are more representative of the which is trapped by SSB and RecA. RecA uses this single- substrates encountered in vivo (i.e., homologous linear ds- stranded DNA to catalyze the invasion of a supercoiled double- DNA and supercoiled dsDNA) and that require the joint stranded DNA molecule, forming a homologously paired joint molecule formation activity of RecA protein. RecA alone is molecule. At low RecBCD enzyme concentrations, the rate- unable to catalyze pairing between two dsDNA molecules limiting step is the unwinding of duplex DNA by RecBCD, unless one of them contains ssDNA in a region of homology whereas at higher RecBCD concentrations, the rate-limiting (16).
    [Show full text]
  • High Fidelity of Reca-Catalyzed Recombination: a Watchdog of Genetic Diversity
    High fidelity of RecA-catalyzed recombination: a watchdog of genetic diversity Dror Sagi, Tsvi Tlusty and Joel Stavans Department of Physics of Complex Systems, The Weizmann Institute of Science, Rehovot 76100, Israel ABSTRACT delicately balanced, to give the highest chance to the functional maintenance of coded proteins. Furthermore, the Homologous recombination plays a key role in extent of recombination between related organisms, such as generating genetic diversity, while maintaining Escherichia coli and Salmonella, controls their genetic isola- protein functionality. The mechanisms by which tion and speciation (3). Therefore, inhibition of chromosomal RecA enables a single-stranded segment of DNA gene transfer isolates related species. to recognize a homologous tract within a whole In prokaryotes, recombination is carried out by RecA (4), a genome are poorly understood. The scale by which protein that also plays a fundamental role during the repair homology recognition takes place is of a few tens of and bypass of DNA lesions, enabling the resumption of base pairs, after which the quest for homology is DNA replication at stalled replication forks. According to over. To study the mechanism of homology recogni- the prevailing view, the RecA-catalyzed recombination tion, RecA-promoted homologous recombination process proceeds along the following steps. First, a nucleo- protein complex is formed by the polymerization of RecA between short DNA oligomers with different degrees along a single-stranded DNA (ssDNA) substrate. ssDNA, of heterology was studied in vitro, using fluores- which is accepted to be a prerequisite, is produced by the cence resonant energy transfer. RecA can detect recombination-specific helicases RecBCD and RecG at single mismatches at the initial stages of recombi- double strand breaks (5), or as a byproduct of DNA repair nation, and the efficiency of recombination is processes at stalled replication forks (6).
    [Show full text]
  • The Specificity of the Secondary DNA Binding Site of Reca Protein
    Proc. Natl. Acad. Sci. USA Vol. 93, pp. 10673-10678, October 1996 Biochemistry The specificity of the secondary DNA binding site of RecA protein defines its role in DNA strand exchange (genetic recombination/homologous pairing/DNA-protein interactions) ALEXANDER V. MAZIN* AND STEPHEN C. KOWALCZYKOWSKIt Division of Biological Sciences, Sections of Microbiology and of Molecular and Cellular Biology, University of California, Davis, CA 95616-8665 Communicated by Frank Stahl, University of Oregon, Eugene, OR, July 1, 1996 (received for review April 17, 1996) ABSTRACT The RecA protein-single-stranded DNA They suggested that the observed binding specificity is deter- (ssDNA) filament can bind a second DNA molecule. Binding mined by non-Watson-Crick bonds that are formed between of ssDNA to this secondary site shows specificity, in that ssDNA in the primary site and ssDNA bound to the secondary polypyrimidinic DNA binds to the RecA protein-ssDNA fila- site of the nucleoprotein filament, so-called "self-recognition," ment with higher affinity than polypurinic sequences. The as a part of a homology search process. affinity of ssDNA, which is identical in sequence to that bound Despite rather extensive characterization, the precise nature in the primary site, is not always greater than that of and function of the secondary DNA binding site remains nonhomologous DNA. Moreover, this specificity of DNA bind- unknown. Consequently, we sought to determine its role in ing does not depend on the sequence of the DNA bound to the DNA strand exchange and the basis for the apparently novel RecA protein primary site. We conclude that the specificity sequence-specificity attributed to this site.
    [Show full text]
  • Mismatch Repair Proteins Muts and Mutl Inhibit Reca-Catalyzed Strand
    Proc. Natd. Acad. Sci. USA Vol. 91, pp. 3238-3241, April 1994 Biochemistry Mismatch repair proteins MutS and MutL inhibit RecA-catalyzed strand transfer between diverged DNAs LEROY WORTH, JR.*, SUSANNA CLARK*, MIROSLAV RADMANt, AND PAUL MODRICH*I *Department of Biochemistry, Duke University Medical Center, Durham, NC 27710; and tLaboratoire de Mutagenese, Institut Jacques Monod, 2 Place Jussieu, Tour 43, 75251 Paris-C6dex 05, France Contributed by Paul Modrich, December 29, 1993 ABSTRACT Bacterial mutS and mutL mutatons confer are 20%o divergent at the sequence level (6), and also controls large increases in recombination between sequences that are the frequency of chromosomal rearrangements occurring in divergent by several percent at the nucleotide level, an effect E. coli as a consequence ofrecombination between rhs repeat attributed to a role for products of these genes In control of elements, which are about 1% divergent at the sequence level recombinatlon fidelity. Since MutS and MutL are proteins (8). Recombination between homeologous sequences scored involved in the eriest steps of mismatch repair, Inclug in either of these systems is increased 1-2 orders of magni- mismatch recognition by MutS, we have tested the psibility tude in mutL or mutS mutants. that they may affect strand exchange in response to occurrence In regular genetic crosses between isogenic genomes, of mspairs within the recombation heteroduplex. We show where the only sources of mismatches are the genetic mark- that MutS aboies RecA-catalyzed strand transfer between fd ers used to score recombinants, one can observe so-called and M13 bacteriophage DNAs, which vary by 3% at the marker effects, which depend on the activity of mismatch- nucleoide level, but Is without effect on M13-M13 or fd-fd repair systems, but appear only when the markers are close exchange.
    [Show full text]
  • Mismatch Repair This Is Backup to Replicative Proofreading By
    Mismatch repair This is backup to replicative proofreading by correcting mismatched nucleotides remaining in DNA after replication. Mismatches often involve the normal four bases in DNA. For example, a T may be mis-paired with a G. Because both T and G are normal components of DNA, mismatch repair systems need some way to determine whether the T or the G is the correct base at a given site. The repair system makes this distinction by identifying the template strand, which contains the original nucleotide sequence, and the newly synthesized strand, which contains the misincorporated base (the error). In bacteria, this distinction can be made based on the pattern of methylation in newly replicated DNA. In E. coli, the A in GATC sequences is methylated subsequent to its synthesis. Thus, a time interval occurs during which the template strand is methylated, and the newly synthesized strand is unmethylated. The mismatch repair system uses this difference in methylation state to excise the mismatched nucleotide in the nascent strand and replace it with the correct nucleotide by using the methylated parental strand of DNA as template. • In E. coli, mismatch repair requires the products of four genes, mutH, mutL, mutS, and mutU (uvrD). • The MutS protein recognizes mismatches and binds to them to initiate the repair process. • MutH and MutL proteins then join the complex. • MutH contains a GATC-specific endonuclease activity that cleaves the unmethylated strand at hemimethylated (that is, half methylated) GATC sites either 5’ or 3’ to the mismatch. The incision sites may be 1000 nucleotide pairs or more from the mismatch.
    [Show full text]
  • Dissecting the Reca-(In)Dependent Response to Mitomycin C in Mycobacterium Tuberculosis Using Transcriptional Profiling and Proteomics Analyses
    cells Article Dissecting the RecA-(In)dependent Response to Mitomycin C in Mycobacterium tuberculosis Using Transcriptional Profiling and Proteomics Analyses Anna Brzostek 1,*,† , Przemysław Płoci ´nski 1,2,† , Alina Minias 1 , Aneta Ciszewska 1, Filip G ˛asior 1 , Jakub Pawełczyk 1 , Bozena˙ Dziadek 3, Marcin Słomka 4 and Jarosław Dziadek 1,* 1 Institute of Medical Biology of the Polish Academy of Sciences, Lodowa 106, 93-232 Łód´z,Poland; [email protected] (P.P.); [email protected] (A.M.); [email protected] (A.C.); fi[email protected] (F.G.); [email protected] (J.P.) 2 Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łód´z,Banacha 12/16, 90-237 Łód´z,Poland 3 Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Łód´z, Banacha 12/16, 90-237 Łód´z,Poland; [email protected] 4 Biobank Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łód´z,Pomorska 139, 90-235 Łód´z,Poland; [email protected] * Correspondence: [email protected] (A.B.); [email protected] (J.D.) † These authors equally contributed to this work. Abstract: Mycobacteria exploit at least two independent global systems in response to DNA damage: the LexA/RecA-dependent SOS response and the PafBC-regulated pathway. Intracellular pathogens, Citation: Brzostek, A.; Płoci´nski,P.; such as Mycobacterium tuberculosis, are exposed to oxidative and nitrosative stress during the course of Minias, A.; Ciszewska, A.; G ˛asior, F.; infection while residing inside host macrophages.
    [Show full text]
  • Role of Reca in the Protection of DNA Damage by UV-A in Escherichia Coli
    Journal of Experimental Microbiology and Immunology Vol. 12:39-44 Copyright © April 2008, M&I UBC Role of RecA in the Protection of DNA Damage by UV-A in Escherichia coli. Amanda Chau, Karen Giang, Marcus Leung and Natalie Tam Department of Microbiology and Immunology, UBC Solar Water Disinfection (SODIS) is a simple, yet effective method for water decontamination by utilizing heat and UV-A from sunlight to kill microbes. However, the mechanism for UV-A mediated cell death is unknown. UV-A has been shown to cause DNA damage by the induction of reactive oxygen species (ROS). This damage might cause cell death in SODIS. Therefore, we investigated whether limiting the repair of DNA damaged by UV-A can increase bacterial susceptibility to UV-A. RecA is a DNA repair regulator protein that is activated upon stresses such as heat and reactive oxygen. In this study, we used Escherichia coli strains with and without RecA to determine survival frequencies after UV-A irradiation. recA+ cells with functional RecA showed a higher survival frequency compared to RecA- mutants after 120 minutes of UV-A exposure, while a smaller difference was observed when cells were cultured without light. These results suggest that the absence of RecA is correlated with an increased vulnerability of cells under UV-A exposure. This difference in sensitivity is most likely due to the inability of mutant bacteria to repair DNA damages. Further studies are required to determine not only the effects of RecA on repairing DNA damage, but also other bactericidal mechanisms exerted by UV-A because the presence of RecA was insufficient to fully protect the treated cells.
    [Show full text]