Meteorites: What We Know, and Don’T Know

Total Page:16

File Type:pdf, Size:1020Kb

Meteorites: What We Know, and Don’T Know © A.Ruzicka Meteorites: What we know, and don’t know Outline: Meteorites Meteorite parent bodies Meteorite diversity Organic synthesis Pre-solar grains Fiery rain Short-lived nuclides Rock swapping © A.Ruzicka Meteorites Meteorites What is a meteorite? • On Earth, all extraterrestrial rocks • Any rock that did not form on the body which it is found • Mostly 4.56 b.y. old (exceptions) Leonid meteor shower, 1998 (European Fireball Network Image) Meteoroid Meteor (fireball) << Unclassified meteorite from Meteorite Northwest Africa © A.Ruzicka Meteorites 1992 Peekskill fireball video clips (How to turn a $300 car into one worth $10,000.) Meteorites © A.Ruzicka Meteorite parent bodies What we know – Parent bodies Most meteorites were derived from parent bodies in the asteroid belt. Meteoroid orbits © A.Ruzicka Meteorite parent bodies Asteroids as the main source of meteorites © A.Ruzicka Meteorite parent bodies How do meteorites get from asteroids to the Earth? (1) Gravitational perturbations by Jupiter & Mars can put asteroidal material into asteroid-crossing orbits. (2) Collisions between asteroids fragment material into smaller pieces. (3) The Yarkovsky Effect can cause rotating m-sized objects to spiral inwards to (or outwards from) the sun. Cosmic-ray exposure (CRE) ages of meteorites (~1 Ma to ~0.5 Ga) give travel time needed for m-sized object-- consistent with Yarkovsky Effect © A.Ruzicka Meteorite parent bodies 4-Vesta: probable parent body of HED meteorites H = howardite, E = eucrite, D = diogenite diameter = 540 km albedo = 0.38 Prot = 5.3 hr spectral class = V (nearly unique match to HED meteorites) density = 3.4 g/cm3 a = 2.36 AU giant south polar basin howardite (NWA 2060) © A.Ruzicka Meteorite parent bodies What we don’t know: 1. Which asteroids (besides Vesta) supplied our meteorites? 2. Did they form there, or move in from elsewhere? 3. How were materials assembled and processed in small bodies? © A.Ruzicka Meteorite parent bodies Was collisional disruption common? Rubble pile Break-up Reassembly © A.Ruzicka Meteorite diversity What we know – Diversity Meteorites are highly variable in their properties. • Include both melted & unmelted types • Unmelted meteorites (chondrites) formed in unique environment: the solar nebula • Melted meteorites formed in differentiated bodies © A.Ruzicka Meteorite diversity Meteorites: different types Designation Type of rock Chondrite agglomerate-- never melted (stony) All else igneous; impact breccias-- (stony, stony- melted at least once iron, iron) © A.Ruzicka solar nebula: our proplyd Chondrite formation setting: protoplanetary disks (proplyds) around young stellar objects (YSOs) W.K. Hartmann © A.Ruzicka note light elements— variable amounts in different chondrites Chondrites have “solar composition” for most elements © A.Ruzicka Meteorite diversity Different chondrite groups 16 chondrite groups recognized © A.Ruzicka Meteorite diversity Melted Gibeon (IVA iron) Millbillillie (eucrite) (differentiated) meteorites • achondrites • irons • stony irons DAG 485 (ureilite) © A.Ruzicka Meteorite diversity What we don’t know What is the exact relationship between chondrites and melted (igneous) meteorites? It’s assumed that igneous meteorites were derived from chondritic parent bodies that were melted However, dating suggests that some chondrites formed after igneous meteorites How were different chondrites and igneous meteorites produced? © A.Ruzicka Organic synthesis What we know – Organics Pre-biotic organic synthesis occurred in solar system building blocks. • Organic compounds found in interstellar medium (ISM)-- molecular clouds-- and in carbonaceous chondrite meteorites • Solar system formed by collapse of molecular cloud; chondrites formed in the early solar system © A.Ruzicka Organic synthesis Molecular clouds cold, dense areas in interstellar medium (ISM) Horsehead Nebula Mainly molecular H2, also dust, T ~ 10s of K © A.Ruzicka Organic synthesis Carbonaceous chondrite— Rich in organic material © A.Ruzicka Organic synthesis Many organic compounds in carbonaceous chondrites Include: macromolecular (kerogen-like) carbon, carboxylic acids, dicarboxylic acids, amino acids, lower alkanes, higher alkanes, aromatic hydrocarbons, N-compounds Synthesis possible in different ways, environments: • in molecular clouds • in our solar system-- within parent bodies, maybe in dispersed grains within the solar nebula © A.Ruzicka Organic synthesis What we don’t know 1. How much and what type of pre-biotic organic synthesis occurred via different mechanisms? 2. Were these pre-biotic compounds used to help jump-start life on Earth? © A.Ruzicka Pre-solar grains What we know – Pre solar grains Pre-solar grains were incorporated & preserved in chondritic meteorites. << contains microscopic pre-solar grains, found by acid dissolution, gas extraction, or isotope mapping © A.Ruzicka Pre-solar grains Pre-solar material in meteorites material suggested astrophysical site Ne-E exploding nova S-Xe Red Giant or Supergiant Xe-HL supernovae Macromolecular C low-T ISM SiC C-rich AGB stars, supernovae Corundum AGB stars Nanodiamond supernovae Graphite, Si3N4 supernovae These materials are released into the ISM when stars die. © A.Ruzicka Pre-solar grains Supernova remnants Planetary nebulas Note: planetary nebula have nothing to do with planets! © A.Ruzicka Pre-solar grains What we don’t know 1. How many different pre-solar stars contributed matter to our solar system? 2. Besides contributing matter, did shock waves from dying stars help trigger the formation of our solar system? © A.Ruzicka Fiery rain What we know – Fiery rain A substantial amount of dust in the early solar system was processed by intense heating events to make chondrules & CAIs (Ca-Al-rich inclusions). • Chondrules formed as free-floating melt droplets (“fiery rain”) in early solar system, accreted to form chondrites. Chondrites accreted to form other bodies (including planets). • CAIs formed by an approach to equilibrium at high temperatures, either as vaporization residues or condensates. Most were molten. © A.Ruzicka NWA 2697 (CV3 chondrite) Ca-Al-rich inclusions (CAIs) chondrules matrix © A.Ruzicka Fiery rain Chondrule textures in thin-section << barred olivine, almost completely remelted << microporphyritic olivine >> mostly remelted radial pyroxene & microporphyritic pyroxene , completely or partly remelted >> © A.Ruzicka Fiery rain What we don’t know 1. What was the nature of the heating events that formed chondrules and CAIs? Many possibilities. 2. How did these heating events chemically and isotopically modify the objects? 3. What is the relationship of chondrules & CAIs to one another & to other meteorite components? 4. What do these components have to tell us about the evolution of the solar nebula & how planets formed? © A.Ruzicka Short-lived nuclides What we know - Short lived nuclides The decay of short-lived radioactive nuclides was an important heat source in the early solar system. • Evidence for many short-lived nuclides found in various meteorites, can be used as relative chronometers • Many meteorite parent bodies melted, and short-lived radioactive decay most promising heat source © A.Ruzicka Short-lived nuclides Radionuclide Half-life (Ma) Daughter Ratio measured 26Al 0.73 26Mg 26Mg/24Mg 60Fe 1.5 60Ni 60Ni/58Ni 53Mn 3.7 53Cr 53Cr/52Cr 129I 15.7 129Xe 129Xe/130Xe + others HED meteorite parent body melted & differentiated while 53Mn present slope proportional to 53Mn/55Mn Proportional to 53Cr/52Cr Hutchison (2004) © A.Ruzicka Short-lived nuclides What we don’t know 1. What were the most important heat sources for asteroidal differentiation? (leading candidate: 26Al) 2. Can various short-lived decay schemes be reconciled to give a coherent timescale of early solar system evolution? 3. What do short-lived chronometers tell us about how long it took to form the solar system? © A.Ruzicka Rock swapping What we know - Rock swapping Planetary rock-swapping has occurred throughout solar system history. • ~150 martian meteorites, ~150 lunar meteorites (as of 2019) recognized on Earth; younger than 4.56 b.y. • Impact-blasted off surfaces; brought to Earth in last ~0.1-10 m.y. probably many more at earlier times • Now finding meteorites on the Moon and Mars << Iron meteorite Meridiani Planum (MER Opportunity image, sol 339) © A.Ruzicka Rock swapping Ancient terrain on farside of Moon— Impact battered Rock swapping © A.Ruzicka © << Mars meteorite found in Northwest Africa NWA 773 Lunar meteorite >> found in Northwest Africa © A.Ruzicka Rock swapping << Mars meteorite EETA 79001 C1, C2, C3 = EETA79001 glass A, B = Zagami glass Normal = Zagami Log number molecules isotope ratios in 2 meteorites Hutchison (2004) © A.Ruzicka Rock swapping What we don’t know 1. How much swapping occurred in early solar system? 2. Did Earth receive samples from planets other than Mars? 3. Could life have been transplanted? © A.Ruzicka Summary Meteorites present major interdisciplinary problems for progress, will require increased collaboration from scientists from different fields-- geology chemistry biology astronomy astrophysics © A.Ruzicka Questions? .
Recommended publications
  • Accretion of Water in Carbonaceous Chondrites: Current Evidence and Implications for the Delivery of Water to Early Earth
    ACCRETION OF WATER IN CARBONACEOUS CHONDRITES: CURRENT EVIDENCE AND IMPLICATIONS FOR THE DELIVERY OF WATER TO EARLY EARTH Josep M. Trigo-Rodríguez1,2, Albert Rimola3, Safoura Tanbakouei1,3, Victoria Cabedo Soto1,3, and Martin Lee4 1 Institute of Space Sciences (CSIC), Campus UAB, Facultat de Ciències, Torre C5-parell-2ª, 08193 Bellaterra, Barcelona, Catalonia, Spain. E-mail: [email protected] 2 Institut d’Estudis Espacials de Catalunya (IEEC), Edif.. Nexus, c/Gran Capità, 2-4, 08034 Barcelona, Catalonia, Spain 3 Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain. E-mail: [email protected] 4 School of Geographical and Earth Sciences, University of Glasgow, Gregory Building, Lilybank Gardens, Glasgow G12 8QQ, UK. Manuscript Pages: 37 Tables: 2 Figures: 10 Keywords: comet; asteroid; meteoroid; meteorite; minor bodies; primitive; tensile strength Accepted in Space Science Reviews (SPAC-D-18-00036R3, Vol. Ices in the Solar System) DOI: 10.1007/s11214-019-0583-0 Abstract: Protoplanetary disks are dust-rich structures around young stars. The crystalline and amorphous materials contained within these disks are variably thermally processed and accreted to make bodies of a wide range of sizes and compositions, depending on the heliocentric distance of formation. The chondritic meteorites are fragments of relatively small and undifferentiated bodies, and the minerals that they contain carry chemical signatures providing information about the early environment available for planetesimal formation. A current hot topic of debate is the delivery of volatiles to terrestrial planets, understanding that they were built from planetesimals formed under far more reducing conditions than the primordial carbonaceous chondritic bodies.
    [Show full text]
  • Laboratory Spectroscopy of Meteorite Samples at UV-Vis-NIR Wavelengths: Analysis and Discrimination by Principal Components Analysis
    Laboratory spectroscopy of meteorite samples at UV-Vis-NIR wavelengths: Analysis and discrimination by principal components analysis Antti Penttil¨aa,∗, Julia Martikainena, Maria Gritsevicha, Karri Muinonena,b aDepartment of Physics, P.O. Box 64, FI-00014 University of Helsinki, Finland bFinnish Geospatial Research Institute FGI, National Land Survey of Finland, Geodeetinrinne 2, FI-02430 Masala, Finland Abstract Meteorite samples are measured with the University of Helsinki integrating-sphere UV-Vis- NIR spectrometer. The resulting spectra of 30 meteorites are compared with selected spectra from the NASA Planetary Data System meteorite spectra database. The spectral measure- ments are transformed with the principal component analysis, and it is shown that different meteorite types can be distinguished from the transformed data. The motivation is to im- prove the link between asteroid spectral observations and meteorite spectral measurements. Keywords: Meteorites, spectroscopy, principal component analysis 1. Introduction While a planet orbits the Sun, it is subject to impacts by objects ranging from tiny dust particles to much larger asteroids and comet nuclei. Such collisions of small Solar System bodies with planets have taken place frequently over geological time and played an 5 important role in the evolution of planets and development of life on the Earth. Every day approximately 30{180 tons of interplanetary material enter the Earth's atmosphere [1, 2]. This material is mostly represented by smaller meteoroids that undergo rapid ablation in the atmosphere. Under favorable initial conditions part of a meteoroid may survive the atmospheric entry and reach the ground [3]. The fragments recovered on the ground are 10 called meteorites, our valuable samples of the Solar System.
    [Show full text]
  • Chondrites and Chondrules Analogous to Sediments Dr
    Chondrites and Chondrules Analogous to Sediments Dr. Richard K. Herd Curator, National Meteorite Collection, Geological Survey of Canada, Natural Resources Canada (Retired) 51st Annual Lunar and Planetary Science Conference Houston, Texas March 16-20, 2020 Introduction and Summary • Comparing chondrites and terrestrial conglomerates [1] continues • Meteorites are fragmental rocks, continually subjected to impacts and collisions, whatever their ultimate origin in space and time • Space outside Earth’s atmosphere may be considered a 4D debris field • Of the debris that reaches the surface of Earth and is available for study, > 80 % are chondrites • Chondrites and chondrules are generally considered the product of heating of dust in the early Solar System, and therefore effectively igneous in origin • Modelling these abundant and important space rocks as analogous to terrestrial detrital sediments, specifically conglomerates, is innovative, can help derive data on their true origins and history, and provide con text for ongoing analyses Chondrites and Chondrules • Chondrites are rocks made of rocks • They are composed of chondrules and chondrule-like objects from which they take their name • Chondrules are roughly spheroidal pebble-like rocks predominantly composed of olivine, pyroxene, feldspar, iron-nickel minerals, chromite, magnetite, sulphides etc. • They range from nanoscale to more than a centimetre, with some size variation by chondrite type. There are thousands/millions of them available for study • Hundreds of chondrules fill the area of a single 3.5 x 2.5 cm standard thin section What is Known ? • Adjacent chondrules may be millions of years different in age • They date from the time of earliest solar system objects (viz.
    [Show full text]
  • Chondrule Sizes, We Have Compiled and Provide Commentary on Available Chondrule Dimension Literature Data
    Invited review Chondrule size and related physical properties: a compilation and evaluation of current data across all meteorite groups. Jon M. Friedricha,b,*, Michael K. Weisbergb,c,d, Denton S. Ebelb,d,e, Alison E. Biltzf, Bernadette M. Corbettf, Ivan V. Iotzovf, Wajiha S. Khanf, Matthew D. Wolmanf a Department of Chemistry, Fordham University, Bronx, NY 10458 USA b Department of Earth and Planetary Sciences, American Museum of Natural History, New York, NY 10024 USA c Department of Physical Sciences, Kingsborough College of the City University of New York, Brooklyn, NY 11235, USA d Graduate Center of the City University of New York, 365 5th Ave, New York, NY 10016 USA e Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York 10964 USA f Fordham College at Rose Hill, Fordham University, Bronx, NY 10458 USA In press in Chemie der Erde – Geochemistry 21 August 2014 *Corresponding Author. Tel: +718 817 4446; fax: +718 817 4432. E-mail address: [email protected] 2 ABSTRACT The examination of the physical properties of chondrules has generally received less emphasis than other properties of meteorites such as their mineralogy, petrology, and chemical and isotopic compositions. Among the various physical properties of chondrules, chondrule size is especially important for the classification of chondrites into chemical groups, since each chemical group possesses a distinct size-frequency distribution of chondrules. Knowledge of the physical properties of chondrules is also vital for the development of astrophysical models for chondrule formation, and for understanding how to utilize asteroidal resources in space exploration. To examine our current knowledge of chondrule sizes, we have compiled and provide commentary on available chondrule dimension literature data.
    [Show full text]
  • Pyrrhotite and Pentlandite in Ll3 to Ll6 Chondrites: Determining Compositional and Microstructural Indicators of Formation Conditions
    49th Lunar and Planetary Science Conference 2018 (LPI Contrib. No. 2083) 2621.pdf PYRRHOTITE AND PENTLANDITE IN LL3 TO LL6 CHONDRITES: DETERMINING COMPOSITIONAL AND MICROSTRUCTURAL INDICATORS OF FORMATION CONDITIONS. D. L. Schrader1 and T. J. Zega2, 1Center for Meteorite Studies, School of Earth and Space Exploration, Arizona State Uni- versity, Tempe, AZ 85287-1404, USA ([email protected]), 2Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona 85721, USA ([email protected]). Introduction: The compositions, textures, and electron microscope (FIB-SEM) at UAz and the JEOL crystal structures of sulfides can be used to constrain JXA-8530F Hyperprobe EPMA at Arizona State Uni- oxygen fugacity, aqueous, thermal, and cooling history versity (ASU). The FIB-SEM was also used to extract [e.g., 1–5]. The most abundant sulfides in extraterres- ~10 × 5 µm sections transecting the pyrrhotite- trial samples are the pyrrhotite group [(Fe,Ni,Co,Cr)1– pentlandite interfaces within sulfide grains from each xS], which can occur with pentlandite [(Fe,Ni,Co,Cr)9– meteorite, which were thinned to electron transparency xS8]. The pyrrhotite group sulfides are largely non- (<100 nm) using methods of [14]. FIB sections were stoichiometric and have a range of compositions then analyzed using the 200 keV aberration-corrected (0<x<0.125) and distinct crystal structures (polytypes). Hitachi HF5000 scanning transmission electron micro- The stoichiometric end members are 2C (troilite; FeS, scope (TEM) at UAz. hexagonal) and 4C (Fe7S8, monoclinic) pyrrhotite. There are also non-integral NC-pyrrhotites with inter- mediate compositions with 0<x<0.125 (all hexagonal); which includes the integral 5C (Fe9S10), 6C (Fe11S12), and 11C (Fe10S11) pyrrhotites [e.g., 6–8].
    [Show full text]
  • Radar-Enabled Recovery of the Sutter's Mill Meteorite, A
    RESEARCH ARTICLES the area (2). One meteorite fell at Sutter’sMill (SM), the gold discovery site that initiated the California Gold Rush. Two months after the fall, Radar-Enabled Recovery of the Sutter’s SM find numbers were assigned to the 77 me- teorites listed in table S3 (3), with a total mass of 943 g. The biggest meteorite is 205 g. Mill Meteorite, a Carbonaceous This is a tiny fraction of the pre-atmospheric mass, based on the kinetic energy derived from Chondrite Regolith Breccia infrasound records. Eyewitnesses reported hearing aloudboomfollowedbyadeeprumble.Infra- Peter Jenniskens,1,2* Marc D. Fries,3 Qing-Zhu Yin,4 Michael Zolensky,5 Alexander N. Krot,6 sound signals (table S2A) at stations I57US and 2 2 7 8 8,9 Scott A. Sandford, Derek Sears, Robert Beauford, Denton S. Ebel, Jon M. Friedrich, I56US of the International Monitoring System 6 4 4 10 Kazuhide Nagashima, Josh Wimpenny, Akane Yamakawa, Kunihiko Nishiizumi, (4), located ~770 and ~1080 km from the source, 11 12 10 13 Yasunori Hamajima, Marc W. Caffee, Kees C. Welten, Matthias Laubenstein, are consistent with stratospherically ducted ar- 14,15 14 14,15 16 Andrew M. Davis, Steven B. Simon, Philipp R. Heck, Edward D. Young, rivals (5). The combined average periods of all 17 18 18 19 20 Issaku E. Kohl, Mark H. Thiemens, Morgan H. Nunn, Takashi Mikouchi, Kenji Hagiya, phase-aligned stacked waveforms at each station 21 22 22 22 23 Kazumasa Ohsumi, Thomas A. Cahill, Jonathan A. Lawton, David Barnes, Andrew Steele, of 7.6 s correspond to a mean source energy of 24 4 24 2 25 Pierre Rochette, Kenneth L.
    [Show full text]
  • N Arieuican%Mllsellm
    n ARieuican%Mllsellm PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK 24, N.Y. NUMBER 2I63 DECEMBER I9, I963 The Pallasites BY BRIAN MASON' INTRODUCTION The pallasites are a comparatively rare type of meteorite, but are remarkable in several respects. Historically, it was a pallasite for which an extraterrestrial origin was first postulated because of its unique compositional and structural features. The Krasnoyarsk pallasite was discovered in 1749 about 150 miles south of Krasnoyarsk, and seen by P. S. Pallas in 1772, who recognized these unique features and arranged for its removal to the Academy of Sciences in St. Petersburg. Chladni (1794) examined it and concluded it must have come from beyond the earth, at a time when the scientific community did not accept the reality of stones falling from the sky. Compositionally, the combination of olivine and nickel-iron in subequal amounts clearly distinguishes the pallasites from all other groups of meteorites, and the remarkable juxtaposition of a comparatively light silicate mineral and heavy metal poses a nice problem of origin. Several theories of the internal structure of the earth have postulated the presence of a pallasitic layer to account for the geophysical data. No apology is therefore required for an attempt to provide a comprehensive account of this remarkable group of meteorites. Some 40 pallasites are known, of which only two, Marjalahti and Zaisho, were seen to fall (table 1). Of these, some may be portions of a single meteorite. It has been suggested that the pallasite found in Indian mounds at Anderson, Ohio, may be fragments of the Brenham meteorite, I Chairman, Department of Mineralogy, the American Museum of Natural History.
    [Show full text]
  • Infrared Reflectance Spectra of Heds and Carbonaceous Chondrites
    44th Lunar and Planetary Science Conference (2013) 1276.pdf KEYS TO DETECT SPACE WEATHERING ON VESTA: CHANGES OF VISIBLE AND NEAR- INFRARED REFLECTANCE SPECTRA OF HEDS AND CARBONACEOUS CHONDRITES. T. Hiroi1, S. Sasaki2, T. Misu3, and T. Nakamura3, 1Department of Geological Sciences, Brown University, Providence, RI 02912, USA ([email protected]), 2RISE Project, .National Astronomical Observatory of Japan, 2-12 Hoshigaoka-cho, Mizusawa-ku, Oshu, Iwate 023-0861, Japan, 3Department of Earth and Planetary Materials Science, Faculty of Science, Tohoku University, Aramaki, Aoba, Sendai, Miyagi 980-8578, Japan. Introduction: Space weathering is known to change the visible and near-infrared (VNIR) reflectance spectra of asteroidal surfaces. Past studies clearly showed the dependency of the rate of space weathering on iron content or crystal structure [1, 2]. In that respect, it is supposed that HED meteorite parent bodies would be very hard to space-weather, and space weathering of carbonaceous chondrite (CC) parent bodies would be very different from that of S- type asteroids [3]. Investigated in this study are key features useful for detecting space weathering in the VNIR spectra of HED and CC parent bodies. Experimental: Powder samples of CCs (<125 µm): Orgueil-Ivuna mixture (CI1), MAC 88100 (CM2), ALH 83108 (CO3), and ALH 85002 (CK4), and howardite EET 87503 (<25 m) were pressed into pellets, and their VNIR reflectance spectra (0.3-2.5 µm) were measured. The pellets were irradiated with pulse laser with energies of 5 and 10 mJ for the CC pellets and 75 mJ for the howardite pellet according to the procedure in [4], and their VNIR reflectance spectra were measured after each irradiation.
    [Show full text]
  • Team Studies Rare Meteorite Possibly from the Outer Asteroid Belt 20 December 2012
    Team studies rare meteorite possibly from the outer asteroid belt 20 December 2012 The asteroid approached on an orbit that still points to the source region of CM chondrites. From photographs and video of the fireball, Jenniskens calculated that the asteroid approached on an unusual low-inclined almost comet-like orbit that reached the orbit of Mercury, passing closer to the sun than known from other recorded meteorite falls. "It circled the sun three times during a single orbit of Jupiter, in resonance with that planet," Jenniskens said. Based on the unusually short time that the asteroid was exposed to cosmic rays, there was not much time to go slower or faster around the sun. That puts the original source asteroid very (Phys.org)—Scientists found treasure when they close to this resonance, in a low inclined orbit. studied a meteorite that was recovered April 22, 2012 at Sutter's Mill, the gold discovery site that "A good candidate source region for CM chondrites led to the 1849 California Gold Rush. Detection of now is the Eulalia asteroid family, recently the falling meteorites by Doppler weather radar proposed as a source of primitive C-class asteroids allowed for rapid recovery so that scientists could in orbits that pass Earth," adds Jenniskens. study for the first time a primitive meteorite with little exposure to the elements, providing the most pristine look yet at the surface of primitive asteroids. An international team of 70 researchers reported in today's issue of Science that this meteorite was classified as a Carbonaceous-Mighei or CM-type carbonaceous chondrite and that they were able to identify for the first time the source region of these meteorites.
    [Show full text]
  • The Amino Acid Composition of the Sutterв•Žs Mill CM2 Carbonaceous
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln NASA Publications National Aeronautics and Space Administration 2014 The minoa acid composition of the Sutter’s Mill CM2 carbonaceous chondrite Aaron Burton 1NASA Johnson Space Center, [email protected] Daniel Glavin NASA Goddard Space Flight Center Jamie Elsila NASA Goddard Space Flight Center Jason Dworkin NASA Goddard Space Flight Center Peter Jenniskens SETI Institute, NASA Ames Research Center See next page for additional authors Follow this and additional works at: http://digitalcommons.unl.edu/nasapub Burton, Aaron; Glavin, Daniel; Elsila, Jamie; Dworkin, Jason; Jenniskens, Peter; and Yin, Qing-Zhu, "The minoa acid composition of the Sutter’s Mill CM2 carbonaceous chondrite" (2014). NASA Publications. 134. http://digitalcommons.unl.edu/nasapub/134 This Article is brought to you for free and open access by the National Aeronautics and Space Administration at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in NASA Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Aaron Burton, Daniel Glavin, Jamie Elsila, Jason Dworkin, Peter Jenniskens, and Qing-Zhu Yin This article is available at DigitalCommons@University of Nebraska - Lincoln: http://digitalcommons.unl.edu/nasapub/134 Meteoritics & Planetary Science 1–13 (2014) doi: 10.1111/maps.12281 The amino acid composition of the Sutter’s Mill CM2 carbonaceous chondrite Aaron S. BURTON1* , Daniel P. GLAVIN2, Jamie E. ELSILA2, Jason P. DWORKIN2, Peter JENNISKENS3,4, and Qing-Zhu YIN5 1NASA Johnson Space Center, 2101 Space Center Parkway, Houston, Texas 77058, USA 2NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, Maryland 20771, USA 3SETI Institute, 189 Bernardo Avenue, Mountain View, California 94043, USA 4NASA Ames Research Center, Moffett Field, California 94035, USA 5Department of Earth and Planetary Sciences, University of California at Davis, Davis, California 95616, USA *Corresponding author.
    [Show full text]
  • Closing in on HED Meteorite Sources
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Earth Planets Space, 53, 1077–1083, 2001 Closing in on HED meteorite sources Mark V. Sykes1 and Faith Vilas2 1Steward Observatory, University of Arizona, Tucson, Arizona 85721, U.S.A. 2NASA Johnson Space Center, SN3, Houston, Texas 77058, U.S.A. (Received March 25, 2001; Revised June 1, 2001; Accepted June 28, 2001) Members of the Vesta dynamical family have orbital elements consistent with ejecta from a single large exca- vating collision from a single hemisphere of Vesta. The portion of Vesta’s orbit at which such an event must have occurred is slightly constrained and depends on the hemisphere impacted. There is some evidence for subsequent disruptions of these ejected objects. Spectroscopy suggests that the dynamical family members are associated with material from Vesta’s interior that was excavated by the event giving rise to the crater covering much of Vesta’s southern hemisphere. The 505-nm pyroxene feature seen in HED meteorites is relatively absent in a sample of Vesta dynamical family members raising the question of whether this collisional event was the source of the HED meteorites. Asteroids spectroscopically associated with Vesta that possess this feature are dynamically distinct and could have arisen from a different collisional event on Vesta or originated from a body geochemically similar to Vesta that was disrupted early in the history of the solar system. 1. Introduction discovery of asteroid families by Hirayama (1918), such dy- The howardite-eucrite-diogenite (HED) meteorites com- namical clusters of objects have been thought to arise from prise ∼6% of present meteorite falls (McSween, 1999).
    [Show full text]
  • Expanding Band Parameter Analysis Methods for HED Meteorites and V-Type Asteroids
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 5-2021 Expanding Band Parameter Analysis Methods for HED Meteorites and V-type Asteroids Noah Adm Haverkamp Frere University of Tennessee, Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Physical Processes Commons, and the The Sun and the Solar System Commons Recommended Citation Frere, Noah Adm Haverkamp, "Expanding Band Parameter Analysis Methods for HED Meteorites and V- type Asteroids. " Master's Thesis, University of Tennessee, 2021. https://trace.tennessee.edu/utk_gradthes/6217 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Noah Adm Haverkamp Frere entitled "Expanding Band Parameter Analysis Methods for HED Meteorites and V-type Asteroids." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in . Sean S. Lindsay, Major Professor We have read this thesis and recommend its acceptance: Andrew W. Steiner, Tony Mezzacappa Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Expanding Band Parameter Analysis Methods for HED Meteorites and V-type Asteroids A Thesis Presented for the Master of Science Degree The University of Tennessee, Knoxville Noah Adm Haverkamp Frere May 2021 Copyright © by Noah Adm Haverkamp Frere, 2021 All Rights Reserved.
    [Show full text]