Investigation of Natural Biofilms Formed During the Production of Drinking

Total Page:16

File Type:pdf, Size:1020Kb

Investigation of Natural Biofilms Formed During the Production of Drinking ARTICLE IN PRESS Water Research 38 (2004) 1197–1206 Investigation of natural biofilms formed during the production of drinking water from surface water embankment filtration Farahnaz Emtiazi, Thomas Schwartz*, Silke Mareike Marten, Peter Krolla-Sidenstein, Ursula Obst Department of Environmental Microbiology, Forschungszentrum Karlsruhe GmbH, Institute for Technical Chemistry–Water Technology and Geotechnology Division, P.O. Box 3640, Karlsruhe D-76021, Germany Received 5 June 2003; received in revised form 8 October 2003; accepted 13 October 2003 Abstract Populations of bacteria in biofilms from different sites of a drinking water production system were analysed. Polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) analyses revealed changing DNA band patterns, suggesting a population shift during bank filtration and processing at the waterworks. In addition, common DNA bands that were attributed to ubiquitous bacteria were found. Biofilms even developed directly after UV disinfection (1–2 m distance). Their DNA band patterns only partly agreed with those of the biofilms from the downstream distribution system. Opportunistic pathogenic bacteria in biofilms were analysed using PCR and Southern blot hybridisation (SBH). Surface water appeared to have a direct influence on the composition of biofilms in the drinking water distribution system. In spite of preceding filtration and UV disinfection, opportunistic pathogens such as atypical mycobacteria and Legionella spp. were found in biofilms of drinking water, and Pseudomonas aeruginosa was detected sporadically. Enterococci were not found in any biofilm. Bacterial cell counts in the biofilms from surface water to drinking water dropped significantly, and esterase and alanine-aminopeptidase activity decreased. b-glucosidase activity was not found in the biofilms. Contrary to the results for planktonic bacteria, inhibitory effects were not observed in biofilms. This suggested an increased tolerance of biofilm bacteria against toxic compounds. r 2003 Elsevier Ltd. All rights reserved. Keywords: Biofilms; Population shifts; Opportunistic pathogenic bacteria; Enzyme activities; Molecular-biological techniques 1. Introduction reduced and eliminated. Research results obtained with respect to the hydraulic, physico-chemical, and chemi- Bank filtration and artificial groundwater enrichment cal/biological processes revealed a good and stable long- are frequently employed for the production of drinking term cleaning efficiency of bank filtration. This also water. When surface water enters the aquifer via an applies to the removal of particles, pathogens, a number underground passage due to potential gradients gener- of organic, and most trace substances [1] except for some ated by wells, this is referred to as bank filtration. individual organic polar compounds which are persis- During underground passage, a variety of chemical and tent in a nearly unrestricted manner [2]. Microorganisms biological processes occur, by which compounds are significantly contribute to cleaning during the under- ground passage by enzymatic degradation or partial *Corresponding author. Tel.: +49-7247-826-802; fax: +49- metabolism of water impurities and by physico-chemical 7247-826-858. processes, e.g. adsorption. However, specific manipula- E-mail address: [email protected] tion and use of these microbial elimination processes (T. Schwartz). have failed, and knowledge of the processes is too 0043-1354/$ - see front matter r 2003 Elsevier Ltd. All rights reserved. doi:10.1016/j.watres.2003.10.056 ARTICLE IN PRESS 1198 F. Emtiazi et al. / Water Research 38 (2004) 1197–1206 incomplete. Still these biological processes during 2. Material and methods natural underground passage are suited as environmen- tally compatible and low-cost stage for sustainable 2.1. Biofilm sampling method drinking water processing. This is not only true for Central Europe with its large river basins, but also for For biofilm formation in drinking water distribution many Third World and threshold countries that have to systems, special devices were used [6,7]. The core of these produce drinking water from highly contaminated devices consisted of a hollow stainless steel cylindrical surface waters. Yet few data are available for the element, where stainless steel bolts holding steel platelets comparative description of function and population for biofilm growth were screwed into place. The platelet changes of adhesive bacteria (biofilms) during the (15 mm  30 mm  2.5 mm) was attached to the end of a underground passage and in the downstream drinking bolt with a small screw. To study natural biofilms, these water production facilities. devices were installed at different sampling points in the Among the major ecological units of aquatic systems, waterworks, i.e. downstream of the granular activated which affect water quality, are biofilms that cover carbon filtration (GAC) and downstream of UV practically all accessible wet surfaces. Biofilms may be disinfection (DIS). Two devices were installed in house composed of algae, bacteria, fungi and other eukaryotic branch connections within the municipal drinking water microorganisms, and cover surfaces, e.g. in storage distribution system (DW1 and DW2) 1–2 km down- basins, filter systems, and drinking water distribution stream of the waterworks. Additionally, platelets lines. As biofilms represent the predominating biological (170 mm  20 mm  2 mm) were incubated in surface form of life in habitats of water and soil, it is urgently water used for embankment filtration (SW, Rhine river) required to improve the understanding of the structure and raw water (RW) from a well downstream of bank and function of these biocoenoses. There is a lack of filtration. To examine the biofilm populations, the methods for the detection of adhesive bacteria in platelets were removed after 3–4 weeks, the biofilms classical drinking water analysis. Cultivation processes were scraped from the surface using a sterile cell scraper cover a small part of the natural planktonic population (Nunc, Wiesbaden, Germany) and suspended in 10 ml only [3]. The limitation of nutrients and environmental water from the sampling site. The biofilm suspensions stress situations may induce physiological and morpho- were centrifuged for 10 min at 10 000g. The pellet was logical changes in many aquatic bacteria. A dormant resuspended in 1 ml sterile water. DNA was extracted status was described for pathogenic bacteria, such from biofilms from the surface water and horizontal well as Campylobacter spp., E. coli, and Legionella pneumo- (QIAamps DNA Mini Kit-50, Qiagen). These DNA phila [4,5] which makes their isolation and identi- preparations were used as template in PCR. The biofilm fication problematic. Therefore, cultivation-independent suspensions from GAC, DIS, and DW were used molecular-biological methods targeting nucleic acids are without extraction for subsequent molecular-biological required in addition to biochemico-metabolic analyses analysis. [5]. Our investigations covered biofilms from surface 2.2. PCR-DGGE analysis of different aquatic biofilms water, raw water after bank filtration, processed drinking water prior to and after UV disinfection as PCR primers targeting the regions (V1-3) of 16S well as from the downstream municipal distribution rDNA of bacteria were used for biofilm analysis system. As an alternative to classical cultivation (Table 1) [8,9]. For DGGE analysis, a sequence of methods, molecular-biological methods were applied multiple guanines (G) and cytosines (C) was attached to with the DNA as target molecule, which exists in each the 50end of the forward primer [10]. A ‘‘touch-down’’ cell irrespective of its physiological state. Oligonucleo- PCR profile published by Kilb et al. [9] was applied. The tide probes developed for a number of environmental final 100 ml reaction mixture contained 2.5 U of HotStar bacteria and pathogens allowed to comprehensively Taq-DNA polymerase (Qiagen, Germany), 30 pmol of describe bacterial populations or identify pathogens each primer, 1  PCR buffer, 1.5 mM MgCl2, 200 mM without a cultivation pre-enrichment. By means of the dNTPs, and 10 ml biofilm suspension or template DNA. polymerase chain reaction (PCR), denaturing gradient A GeneAmp PCR System 9700 (Applied Biosystems) gel electrophoresis (DGGE), and southern blot hybridi- was used for PCR. Aliquots of 5 ml were analysed by sation (SBH), population shifts of the bacterial biofilms electrophoresis in a 1% agarose gel containing ethidium were investigated and the occurrence of facultatively bromide to check the sizes and amounts of the pathogenic bacteria, such as legionellae, mycobacteria, amplicons. PCR products were purified using phenol- and enterococci, was studied. Enzyme activities were chloroform-isoamyl alcohol (25:24:1 vol.), precipitated measured in biofilm samples to determine the metabolic with isopropanol, washed with 70% ethanol, dried, and performance and physiological states of the bacterial resuspended in 20 ml sterile water. DGGE analysis of biocoenoses. PCR products (B526 bp and 349 bp) was performed ARTICLE IN PRESS F. Emtiazi et al. / Water Research 38 (2004) 1197–1206 1199 Table 1 PCR primers and SBH probes used Primer/probes Organism Sequence (50-30) Target site Reference Primer GC27Fa Bacteria AGAGTTTGATCMTGGCTCAGb 8–27 (16S rDNA) [9] Primer 517R Bacteria ATTACCGCGGCTGCTGG 534–517 (16S rDNA) [9] Primer 342R Bacteria CTGCTGCCTCCCGTAG 357–342 (16S rDNA) [8] Primer-Eub338F Bacteria ACTCCTACGGGAGGCAGC
Recommended publications
  • The Ecological Role of Bacterial Seed Endophytes Associated with Wild Cabbage in the United Kingdom
    Received: 16 July 2019 | Revised: 25 September 2019 | Accepted: 27 September 2019 DOI: 10.1002/mbo3.954 ORIGINAL ARTICLE The ecological role of bacterial seed endophytes associated with wild cabbage in the United Kingdom Olaf Tyc1,2 | Rocky Putra1,3,4 | Rieta Gols3 | Jeffrey A. Harvey5,6 | Paolina Garbeva1 1Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO- Abstract KNAW), Wageningen, The Netherlands Endophytic bacteria are known for their ability in promoting plant growth and de- 2 Department of Internal Medicine I, Goethe fense against biotic and abiotic stress. However, very little is known about the micro- University, University Hospital Frankfurt, Frankfurt, Germany bial endophytes living in the spermosphere. Here, we isolated bacteria from the seeds 3Laboratory of Entomology, Wageningen of five different populations of wild cabbage (Brassica oleracea L) that grow within University, Wageningen, The Netherlands 15 km of each other along the Dorset coast in the UK. The seeds of each plant popu- 4Hawkesbury Institute for the Environment, Western Sydney University, Penrith, lation contained a unique microbiome. Sequencing of the 16S rRNA genes revealed Australia that these bacteria belong to three different phyla (Actinobacteria, Firmicutes, and 5Department of Terrestrial Ecology, Proteobacteria). Isolated endophytic bacteria were grown in monocultures or mix- Netherlands Institute of Ecology, Wageningen, The Netherlands tures and the effects of bacterial volatile organic compounds (VOCs) on the growth 6 Department of Ecological Sciences, Section and development on B. oleracea and on resistance against a insect herbivore was Animal Ecology, VU University Amsterdam, Amsterdam, The Netherlands evaluated. Our results reveal that the VOCs emitted by the endophytic bacteria had a profound effect on plant development but only a minor effect on resistance against Correspondence Olaf Tyc, Department of Microbial Ecology, an herbivore of B.
    [Show full text]
  • Alpine Soil Bacterial Community and Environmental Filters Bahar Shahnavaz
    Alpine soil bacterial community and environmental filters Bahar Shahnavaz To cite this version: Bahar Shahnavaz. Alpine soil bacterial community and environmental filters. Other [q-bio.OT]. Université Joseph-Fourier - Grenoble I, 2009. English. tel-00515414 HAL Id: tel-00515414 https://tel.archives-ouvertes.fr/tel-00515414 Submitted on 6 Sep 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour l’obtention du titre de l'Université Joseph-Fourier - Grenoble 1 École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Par Bahar SHAHNAVAZ Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr. Thierry HEULIN Rapporteur Dr. Christian JEANTHON Rapporteur Dr. Sylvie NAZARET Examinateur Dr. Jean MARTIN Examinateur Dr. Yves JOUANNEAU Président du jury Dr. Roberto GEREMIA Directeur de thèse Thèse préparée au sien du Laboratoire d’Ecologie Alpine (LECA, UMR UJF- CNRS 5553) THÈSE Pour l’obtention du titre de Docteur de l’Université de Grenoble École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Bahar SHAHNAVAZ Directeur : Roberto GEREMIA Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr.
    [Show full text]
  • For Publication European and Mediterranean Plant Protection Organization PM 7/24(3)
    For publication European and Mediterranean Plant Protection Organization PM 7/24(3) Organisation Européenne et Méditerranéenne pour la Protection des Plantes 18-23616 (17-23373,17- 23279, 17- 23240) Diagnostics Diagnostic PM 7/24 (3) Xylella fastidiosa Specific scope This Standard describes a diagnostic protocol for Xylella fastidiosa. 1 It should be used in conjunction with PM 7/76 Use of EPPO diagnostic protocols. Specific approval and amendment First approved in 2004-09. Revised in 2016-09 and 2018-XX.2 1 Introduction Xylella fastidiosa causes many important plant diseases such as Pierce's disease of grapevine, phony peach disease, plum leaf scald and citrus variegated chlorosis disease, olive scorch disease, as well as leaf scorch on almond and on shade trees in urban landscapes, e.g. Ulmus sp. (elm), Quercus sp. (oak), Platanus sycamore (American sycamore), Morus sp. (mulberry) and Acer sp. (maple). Based on current knowledge, X. fastidiosa occurs primarily on the American continent (Almeida & Nunney, 2015). A distant relative found in Taiwan on Nashi pears (Leu & Su, 1993) is another species named X. taiwanensis (Su et al., 2016). However, X. fastidiosa was also confirmed on grapevine in Taiwan (Su et al., 2014). The presence of X. fastidiosa on almond and grapevine in Iran (Amanifar et al., 2014) was reported (based on isolation and pathogenicity tests, but so far strain(s) are not available). The reports from Turkey (Guldur et al., 2005; EPPO, 2014), Lebanon (Temsah et al., 2015; Habib et al., 2016) and Kosovo (Berisha et al., 1998; EPPO, 1998) are unconfirmed and are considered invalid. Since 2012, different European countries have reported interception of infected coffee plants from Latin America (Mexico, Ecuador, Costa Rica and Honduras) (Legendre et al., 2014; Bergsma-Vlami et al., 2015; Jacques et al., 2016).
    [Show full text]
  • Università Degli Studi Di Padova Dipartimento Di Biomedicina Comparata Ed Alimentazione
    UNIVERSITÀ DEGLI STUDI DI PADOVA DIPARTIMENTO DI BIOMEDICINA COMPARATA ED ALIMENTAZIONE SCUOLA DI DOTTORATO IN SCIENZE VETERINARIE Curriculum Unico Ciclo XXVIII PhD Thesis INTO THE BLUE: Spoilage phenotypes of Pseudomonas fluorescens in food matrices Director of the School: Illustrious Professor Gianfranco Gabai Department of Comparative Biomedicine and Food Science Supervisor: Dr Barbara Cardazzo Department of Comparative Biomedicine and Food Science PhD Student: Andreani Nadia Andrea 1061930 Academic year 2015 To my family of origin and my family that is to be To my beloved uncle Piero Science needs freedom, and freedom presupposes responsibility… (Professor Gerhard Gottschalk, Göttingen, 30th September 2015, ProkaGENOMICS Conference) Table of Contents Table of Contents Table of Contents ..................................................................................................................... VII List of Tables............................................................................................................................. XI List of Illustrations ................................................................................................................ XIII ABSTRACT .............................................................................................................................. XV ESPOSIZIONE RIASSUNTIVA ............................................................................................ XVII ACKNOWLEDGEMENTS ....................................................................................................
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7476,532 B2 Schneider Et Al
    USOO7476532B2 (12) United States Patent (10) Patent No.: US 7476,532 B2 Schneider et al. (45) Date of Patent: Jan. 13, 2009 (54) MANNITOL INDUCED PROMOTER Makrides, S.C., "Strategies for achieving high-level expression of SYSTEMIS IN BACTERAL, HOST CELLS genes in Escherichia coli,” Microbiol. Rev. 60(3):512-538 (Sep. 1996). (75) Inventors: J. Carrie Schneider, San Diego, CA Sánchez-Romero, J., and De Lorenzo, V., "Genetic engineering of nonpathogenic Pseudomonas strains as biocatalysts for industrial (US); Bettina Rosner, San Diego, CA and environmental process.” in Manual of Industrial Microbiology (US) and Biotechnology, Demain, A, and Davies, J., eds. (ASM Press, Washington, D.C., 1999), pp. 460-474. (73) Assignee: Dow Global Technologies Inc., Schneider J.C., et al., “Auxotrophic markers pyrF and proC can Midland, MI (US) replace antibiotic markers on protein production plasmids in high cell-density Pseudomonas fluorescens fermentation.” Biotechnol. (*) Notice: Subject to any disclaimer, the term of this Prog., 21(2):343-8 (Mar.-Apr. 2005). patent is extended or adjusted under 35 Schweizer, H.P.. "Vectors to express foreign genes and techniques to U.S.C. 154(b) by 0 days. monitor gene expression in Pseudomonads. Curr: Opin. Biotechnol., 12(5):439-445 (Oct. 2001). (21) Appl. No.: 11/447,553 Slater, R., and Williams, R. “The expression of foreign DNA in bacteria.” in Molecular Biology and Biotechnology, Walker, J., and (22) Filed: Jun. 6, 2006 Rapley, R., eds. (The Royal Society of Chemistry, Cambridge, UK, 2000), pp. 125-154. (65) Prior Publication Data Stevens, R.C., “Design of high-throughput methods of protein pro duction for structural biology.” Structure, 8(9):R177-R185 (Sep.
    [Show full text]
  • Diversity of Pectolytic, Fluorescent Pseudomonads Causing Soft Rots of Fresh Vegetables at Produce Markets
    Postharvest Pathology and Mycotoxins Diversity of Pectolytic, Fluorescent Pseudomonads Causing Soft Rots of Fresh Vegetables at Produce Markets C. H. Liao and J. M. Wells Research plant pathologists, Eastern Regional Research Center, Agricultural Research Services, U.S. Department of Agriculture, Philadelphia, PA 19118. We thank J. E. Butterfield and R. Oseredczuk for technical assistance. Accepted for publication 2 October 1986. ABSTRACT Liao, C. H., and Wells, J. M. 1987. Diversity of pectolytic, fluorescent pseudomonads causing soft rots of fresh vegetables at produce markets. Phytopathology 77:673-677. Pectolytic bacteria (128 strains) isolated from rotted specimens of 10 according to their ability to use 10 out of 30 organic compounds tested as vegetables were characterized. Sixty-four strains (50%) were identified as energy or carbon sources. Oxidase-positive strains (Groups 1-3) were Erwinia carotovora,55 strains (43%) as fluorescent Pseudomonasspp., and similar to but did not exactly fit into the ideal phenotype of P.fluorescens the remaining nine strains (7%) as Bacillus sp., Cytophagajohnsonae, or biovar II, biovar IV, or biovar V. Oxidase-negative strains (Group 4) Xanthomonas campestris. Fluorescent pseudomonads accounting for constituting 29% (16 strains) of the total pseudomonads isolated were almost half of vegetable rots found at markets were divided into four closely related to P. viridiflava, but II strains were unable to induce groups based on six physiological tests. Each group was nutritionally hypersensitive response on tobacco and four strains unable to use sorbitol. heterogenous and could be divided into several (four to 11) subgroups Additional key words: Erwinia carotovora, postharvest decays, Pseudomonasfluorescens, P. marginalis, soft-rot bacteria.
    [Show full text]
  • High Quality Draft Genome Sequence of the Type Strain of Pseudomonas
    Kwak et al. Standards in Genomic Sciences (2016) 11:51 DOI 10.1186/s40793-016-0173-7 SHORT GENOME REPORT Open Access High quality draft genome sequence of the type strain of Pseudomonas lutea OK2T,a phosphate-solubilizing rhizospheric bacterium Yunyoung Kwak, Gun-Seok Park and Jae-Ho Shin* Abstract Pseudomonas lutea OK2T (=LMG 21974T, CECT 5822T) is the type strain of the species and was isolated from the rhizosphere of grass growing in Spain in 2003 based on its phosphate-solubilizing capacity. In order to identify the functional significance of phosphate solubilization in Pseudomonas Plant growth promoting rhizobacteria, we describe here the phenotypic characteristics of strain OK2T along with its high-quality draft genome sequence, its annotation, and analysis. The genome is comprised of 5,647,497 bp with 60.15 % G + C content. The sequence includes 4,846 protein-coding genes and 95 RNA genes. Keywords: Pseudomonad, Phosphate-solubilizing, Plant growth promoting rhizobacteria (PGPR), Biofertilizer Abbreviations: HGAP, Hierarchical genome assembly process; IMG-ER, Integrated microbial genomes-expert review; KO, Kyoto encyclopedia of genes and genomes Orthology; PGAP, Prokaryotic genome annotation pipeline; PGPR, Plant growth-promoting rhizobacteria; RAST, Rapid annotation using subsystems technology; SMRT, Single molecule real-time Introduction promote plant development by facilitating direct and in- Phosphorus, one of the major essential macronutrients direct plant growth promotion through the production of for plant growth and development, is usually found in phytohormones and enzymes or through the suppression insufficient quantities in soil because of its low solubility of soil-borne diseases by inducing systemic resistance in and fixation [1, 2].
    [Show full text]
  • Denitrification Likely Catalyzed by Endobionts in an Allogromiid Foraminifer
    The ISME Journal (2012) 6, 951–960 & 2012 International Society for Microbial Ecology All rights reserved 1751-7362/12 www.nature.com/ismej ORIGINAL ARTICLE Denitrification likely catalyzed by endobionts in an allogromiid foraminifer Joan M Bernhard1, Virginia P Edgcomb1, Karen L Casciotti2,4, Matthew R McIlvin2 and David J Beaudoin3 1Geology and Geophysics Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA; 2Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA and 3Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA Nitrogen can be a limiting macronutrient for carbon uptake by the marine biosphere. The process of denitrification (conversion of nitrate to gaseous compounds, including N2 (nitrogen gas)) removes bioavailable nitrogen, particularly in marine sediments, making it a key factor in the marine nitrogen budget. Benthic foraminifera reportedly perform complete denitrification, a process previously considered nearly exclusively performed by bacteria and archaea. If the ability to denitrify is widespread among these diverse and abundant protists, a paradigm shift is required for biogeochemistry and marine microbial ecology. However, to date, the mechanisms of foraminiferal denitrification are unclear, and it is possible that the ability to perform complete denitrification is because of the symbiont metabolism in some foraminiferal species. Using sequence analysis and GeneFISH, we show that for a symbiont-bearing foraminifer, the potential for denitrification resides in the endobionts. Results also identify the endobionts as denitrifying pseudomonads and show that the allogromiid accumulates nitrate intracellularly, presumably for use in denitrification. Endobionts have been observed within many foraminiferal species, and in the case of associations with denitrifying bacteria, may provide fitness for survival in anoxic conditions.
    [Show full text]
  • Marginal Leaf Blight of Lettuce
    134 FLORIDA STATE HORTICULTURAL SOCIETY, 1967 sects may not be necessary until somewhere in treat soybeans for worm control. Highlights of Agr. Res. 10 (2). excess of 33% of the leaf area is removed, or the 2. Begum, Anwara, and W. G. Eden. 1964. Influence of pod is in jeopardy. Further experimentation is defoliation on yield and quality of soybeans. J. Econ. Entomol. 58 (3) : 591-592. necessary to substantiate this premise. 3. Camery, M. P., and C. R. Weber. 1954. Effects of certain components of simulated hail injury on soybeans and corn. Iowa Agr. Exp. Sta. Res. Bull. 400: 465-487. 4. Kalton, R. P., C. R. Weber, and J. C. Eldridge. 1945. Acknowledgment The effect of injury simulating hail damage to soybeans. Iowa Agr. Exp. Sta. Res. Bull. 357: 733-796. The authors gratefully acknowledge the help 5. McAlister, Dean F., and Orland A. Krober. 1958. Response of soybeans to leaf and pod removal. Agron. J. and assistance of Mr. B. J. Hughes, Field As 50: 674-677. 6. McGregor, W. C, D. R. Hansen, and A. I. Magee. sistant, Central Florida Experiment Station. 1953. Artificial defoliation of field beans. Can. J. of Agr. Sci. 33: 125-131. 7. Weber, C. R. 1955. Effects of defoliation and top pings simulating hail injury to soybeans. Agron. J. 47: LITERATURE CITED 262-266. 1. Begum, Anwara, and W. G. Eden. 1963. When to MARGINAL LEAF BLIGHT OF LETTUCE R. D. BERGER ported in field grown lettuce and related crops in California (12), New York (3), England Everglades Experiment Station (11), Belgium (8), and Argentina (9).
    [Show full text]
  • 2020 Issn: 2456-8643
    International Journal of Agriculture, Environment and Bioresearch Vol. 5, No. 04; 2020 ISSN: 2456-8643 A NEW RECORD OF Pseudomonas marginalis CAUSING BACTERIAL BLIGHT DISEASE IN Centella asiatica(L.) Urban IN VIETNAM Toan Le Thanh1*, Hoang Nguyen Huy1,2, Narendra Kumar Papathoti3 and Natthiya Buensanteai2 1Department of Plant Protection, College of Agriculture, Can Tho University, Can Tho City, 900000, Viet Nam. 2School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand. 3R&D Division, Sri Yuva Biotech Pvt Ltd, Hyderabad, Telangana, India https://doi.org/10.35410/IJAEB.2020.5541 ABSTRACT Indian pennywort (Centella asiatica (L.) Urban) is an important vegetable and medicinal herb. On the south of Vietnam, a new disease withsymptoms of bacterial blight in stems, stolons, petioles and laminasoccurred and caused severe damage at Indian pennywort fields. The purpose of this study is to identify the causal agent of the new disease and its effecton Indian pennywort at post-harvest stage. The results showed that 7 of 18 pathogen strains coded H1-1, H1-3, H2-1, H3-1, H4-4, H5-2, H6-2, caused severe blight damage. Characteristics of the bacterial strains were Gram negative, aerobicand produced fluorescence onto King’s B medium, indicating thepathogen belongs to Pseudomonas genus. This bacterial Pseudomonas was positive of levan production and potato soft rot, which were confirmed that it wasPseudomonasmarginalis. This bacterial pathogenalso caused soft rot in post-harvest Indian pennywort. This is the first report ofP. marginalis on Indian pennywort in Vietnam. Keywords: bacterial blight disease; Centella asiatica; Pseudomonas marginalis.
    [Show full text]
  • INTERNATIONAL BULLETIN of BACTERIOLOGICAL NOMENCLATURE and TAXONOMY Volume 10 No
    INTERNATIONAL BULLETIN OF BACTERIOLOGICAL NOMENCLATURE AND TAXONOMY Volume 10 No. 3 July 15, 1960 pp. 197-204 STATUS OF SYNONYMY AND PLANT PATHOGENICI'I'Y OF PSEUDOMONAS MARGINALIS AND P. AERUGINOSA' B.A. Friedman Market Pathology Laboratory U. S. Department of Agriculture New York, N. Y. A recent statement that Pseudomonas aeru inosa is a plant pathogen as well as an animal pathoghndre- ports to be discussed below that the plant pathogen ,P. mar- ginalis is identical withg. aeruginosa make it desirable to examine the question of the synonymy of these names and the role of _P. aeruginosa as a plant pathogen. Literature Survey In 1918 N. A. Brown described ,P. marginalis as the cause of a marginal leaf discoloration of lettuce. The new, fluores- cent species was reported to have a maximum growth tem- perature at 38'C; no mention was made of the formation of pyocyanin (4). In 1924 Mehta and Berridge reported one subculture of ,P. marginalis, originally received by S. G. Paine from N.A. Brown, as identical with ,P. aeruginosa. No report was made on pyocyanin production or on the max- imum growth temperature. The strain of ,P. marginalis used differed in several respects from Brown's original description, vi%., it produced a greenish discoloration on steamed potato and failed to produce acid from sucrose. A 'The following synonymy is used (2,14~-Pseudomonas-aeru- ginosa (Schroeter)'Migula (Bacterium aeruginosum Schroe- ter, Bacillus pyocyaneus Gessard, Pseudomonas oc anea Migula); Pseudomonas marginalis (Brown) Steve:-{ terium marginale Brown, Phytomonas marginalis (Brown) Bergey et al. , Phytomonas intybi Swingle); Preudomonaa polycolor Clara (Phytomonas polycolor Clara, Bacterium polycolor (Clara) Burgwita); Pseudomonas aptam and Jamieson) Stevens (Bacterium aptatum Brown and Jamieson, Phytomonas apw- and Jamieson) Ber- Bey et 4- Page 198 INTERNATIONAL BULLETIN culture of ,P.
    [Show full text]
  • EUROPEAN PATENT APPLICATION Published in Accordance with Art
    (19) & (11) EP 2 083 070 A1 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 153(4) EPC (43) Date of publication: (51) Int Cl.: 29.07.2009 Bulletin 2009/31 C12N 1/20 (2006.01) A01M 1/20 (2006.01) A01N 63/02 (2006.01) A01P 3/00 (2006.01) (2006.01) (21) Application number: 07831263.4 C12N 15/09 (22) Date of filing: 06.11.2007 (86) International application number: PCT/JP2007/071531 (87) International publication number: WO 2008/056653 (15.05.2008 Gazette 2008/20) (84) Designated Contracting States: (72) Inventor: MAEDA, Mitsunori AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Makinohara-shi HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE Shizuoka 421-0412 (JP) SI SK TR (74) Representative: Cabinet Plasseraud (30) Priority: 08.11.2006 JP 2006302263 52, rue de la Victoire 75440 Paris Cedex 09 (FR) (71) Applicant: Nippon Soda Co., Ltd. Tokyo 100-8165 (JP) (54) MICROORGANISM CAPABLE OF CONTROLLING PLANT DISEASES AND PLANT DISEASE- CONTROLLING AGENT USING THE MICROORGANISM (57) The object of the present invention is to provide prising applying the plant disease controlling agent to the a microorganism which places little burden on the envi- plant and/or the grove soil thereof. A plant disease con- ronment, shows an extremely low possibility of a resistant trolling agent is used which contains a bacterial cell of pathogenic bacterium to emerge, and has a superior con- Pseudomonas rhodesiae having controlling ability trolling ability against various plant diseases (in particu- against plant diseases, preferably a bacterial cell of lar, soft rot and canker of leaf and root vegetables) ; a Pseudomonas rhodesiae FERM BP-10912 or its variant plant disease controlling agent containing the microor- having controlling ability against plant diseases.
    [Show full text]