Deep Semantic Compression for Tabular Data

Total Page:16

File Type:pdf, Size:1020Kb

Deep Semantic Compression for Tabular Data Research 19: Machine Learning Systems and Applications SIGMOD ’20, June 14–19, 2020, Portland, OR, USA DeepSqueeze: Deep Semantic Compression for Tabular Data Amir Ilkhechi Andrew Crotty Alex Galakatos Yicong Mao Grace Fan Xiran Shi Ugur Cetintemel Department of Computer Science, Brown University [email protected] ABSTRACT 1 INTRODUCTION With the rapid proliferation of large datasets, efficient data In nearly every domain, datasets continue to grow in both compression has become more important than ever. Colum- size and complexity, driven primarily by a “log everything” nar compression techniques (e.g., dictionary encoding, run- mentality with the assumption that the data will be use- length encoding, delta encoding) have proved highly effec- ful or necessary at some time in the future. Applications tive for tabular data, but they typically compress individual that produce these enormous datasets range from central- columns without considering potential relationships among ized (e.g., scientific instruments) to widely distributed (e.g., columns, such as functional dependencies and correlations. telemetry data from autonomous vehicles, geolocation co- Semantic compression techniques, on the other hand, are ordinates from mobile phones). In many cases, long-term designed to leverage such relationships to store only a subset archival for such applications is crucial, whether for analysis of the columns necessary to infer the others, but existing or compliance purposes. approaches cannot effectively identify complex relationships For example, current Tesla vehicles have a huge number across more than a few columns at a time. of on-board sensors, including cameras, ultrasonic sensors, We propose DeepSqeeze, a novel semantic compression and radar, all of which produce high-resolution readings [11]. framework that can efficiently capture these complex rela- Data from every vehicle is sent to the cloud and stored in- tionships within tabular data by using autoencoders to map definitely [30], a practice that has proved useful for a variety tuples to a lower-dimensional representation. DeepSqeeze of technical and legal reasons. In 2014, for instance, Tesla also supports guaranteed error bounds for lossy compression patched an engine overheating issue after identifying the of numerical data and works in conjunction with common problem by analyzing archived sensor readings [30]. columnar compression formats. Our experimental evaluation However, the cost of data storage and transmission has uses real-world datasets to demonstrate that DeepSqeeze not kept pace with this trend, and effective compression al- can achieve over a 4× size reduction compared to state-of- gorithms have become more important than ever. For tabular the-art alternatives. data, columnar compression techniques [12] (e.g., dictionary encoding, run-length encoding, delta encoding) can often ACM Reference Format: achieve much greater size reductions than general-purpose Amir Ilkhechi, Andrew Crotty, Alex Galakatos, Yicong Mao, Grace tools (e.g., gzip [9], bzip2 [4]). Yet, traditional approaches that Fan, Xiran Shi, Ugur Cetintemel. 2020. DeepSqueeze: Deep Seman- operate on individual columns miss an important insight: tic Compression for Tabular Data. In Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data (SIG- inherent relationships among columns frequently exist in MOD’20), June 14–19, 2020, Portland, OR, USA. ACM, New York, NY, real-world datasets. USA, 14 pages. https://doi.org/10.1145/3318464.3389734 Semantic compression, therefore, attempts to leverage these relationships in order to store the minimum number of columns needed to accurately reconstruct all values of entire Permission to make digital or hard copies of all or part of this work for tuples. A classic example is to retain only the zip code of a personal or classroom use is granted without fee provided that copies are not mailing address while discarding the city and state, since the made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components former can be used to uniquely recover the latter two. Ex- of this work owned by others than ACM must be honored. Abstracting with isting semantic compression approaches [14, 22, 25, 26, 31], credit is permitted. To copy otherwise, or republish, to post on servers or to though, can only capture simple associations (e.g., functional redistribute to lists, requires prior specific permission and/or a fee. Request dependencies, pairwise correlations), thereby failing to iden- permissions from [email protected]. tify complex relationships across more than a few columns at SIGMOD’20, June 14–19, 2020, Portland, OR, USA a time. Moreover, some require extensive manual tuning [22], © 2020 Association for Computing Machinery. ACM ISBN 978-1-4503-6735-6/20/06...$15.00 while others work only for certain data types [31]. https://doi.org/10.1145/3318464.3389734 1733 Research 19: Machine Learning Systems and Applications SIGMOD ’20, June 14–19, 2020, Portland, OR, USA To overcome these limitations, we present DeepSqeeze, 2.1.1 Lossless. As the name suggests, lossless compression a new semantic compression framework for tabular data is reversible, meaning that the original input can be perfectly that uses autoencoders to map tuples to a lower-dimensional recovered from the compressed format. Lossless compression space. We additionally introduce several enhancements to algorithms typically operate by identifying and removing sta- the basic model, as well as columnar compression techniques tistical redundancy in the input data. For example, Huffman that we have adapted for our approach. As we show in coding [24] replaces symbols with variable-length codes, as- our evaluation, DeepSqeeze can outperform existing ap- signing shorter codes to more frequent symbols such that proaches by over 4× on several real-world datasets. they require less space. In summary, we make the following contributions: One common family of lossless compression algorithms includes LZ77 [43], LZ78 [44], LZSS [36], and LZW [42], • We present DeepSqeeze, a new semantic compres- among others. These approaches work in a streaming fash- sion framework that uses autoencoders to capture com- ion to replace sequences with dictionary codes built over a plex relationships among both categorical and numer- sliding window. ical columns in tabular data. Many hybrid algorithms exist that utilize multiple lossless • We propose several optimizations, including exten- compression techniques in conjunction. For example, DE- sions to the basic model (e.g., automatic hyperparam- FLATE [20] combines Huffman coding and LZSS, whereas eter tuning) and columnar compression techniques Zstandard [16] uses a combination of LZ77, Finite State En- specifically tailored to our approach. tropy coding, and Huffman coding. A number of common • Our experimental results show that DeepSqeeze can tools (e.g., gzip [9], bzip2 [4]) also implement hybrid varia- outperform state-of-the-art semantic compression tech- tions of these core techniques. niques by over 4×. The remainder of this paper is organized as follows. Sec- 2.1.2 Lossy. Unlike lossless compression, lossy compression tion 2 provides background on a wide range of compression reduces data size by discarding nonessential information, techniques, including the most closely related work. Next, such as truncating the least significant digits of a measure- in Section 3, we present DeepSqeeze and give a high-level ment or subsampling an image. Due to the loss of infor- overview of our approach. Then, Sections 4-6 describe each mation, the process is not reversible. While some use cases stage of DeepSqeeze’s compression pipeline in detail. Fi- require perfect recoverability of the input (e.g., banking trans- nally, we present our experimental evaluation in Section 7 actions), our work focuses on data archival scenarios that and conclude in Section 8. can usually tolerate varying degrees of lossiness. The discrete cosine transform [13] (DCT), which repre- sents data as a sum of cosine functions, is the most widely 2 RELATED WORK used lossy compression algorithm. For example, DCT is the Compression is a well-studied problem, both in the context basis for a number of image (e.g., JPEG), audio (e.g., MP3), of data management and in other areas. This interest has and video (e.g., MPEG) compression techniques. spawned a huge variety of techniques, ranging from general- Another simple form of lossy compression is quantization, purpose algorithms to more specialized approaches. which involves discretizing continuous values via rounding We note that many of these techniques are not mutually or bucketing. DeepSqeeze uses a form of quantization to exclusive and can often be combined. For example, many enable lossy compression of numerical columns, which we existing semantic compression algorithms [14, 25, 26] apply describe further in Section 4. other general-purpose compression techniques to further reduce their output size. Similarly, DeepSqeeze combines 2.2 Columnar Compression ideas from semantic and deep compression methods, as well The advent of column-store DBMSs (e.g., C-Store[35], Ver- as further incorporating columnar (and even some general- tica [27]) prompted the investigation of several compression purpose) compression techniques. techniques specialized for columnar storage formats, includ- In the following, we give an overview of the compression ing dictionary
Recommended publications
  • ROOT I/O Compression Improvements for HEP Analysis
    EPJ Web of Conferences 245, 02017 (2020) https://doi.org/10.1051/epjconf/202024502017 CHEP 2019 ROOT I/O compression improvements for HEP analysis Oksana Shadura1;∗ Brian Paul Bockelman2;∗∗ Philippe Canal3;∗∗∗ Danilo Piparo4;∗∗∗∗ and Zhe Zhang1;y 1University of Nebraska-Lincoln, 1400 R St, Lincoln, NE 68588, United States 2Morgridge Institute for Research, 330 N Orchard St, Madison, WI 53715, United States 3Fermilab, Kirk Road and Pine St, Batavia, IL 60510, United States 4CERN, Meyrin 1211, Geneve, Switzerland Abstract. We overview recent changes in the ROOT I/O system, enhancing it by improving its performance and interaction with other data analysis ecosys- tems. Both the newly introduced compression algorithms, the much faster bulk I/O data path, and a few additional techniques have the potential to significantly improve experiment’s software performance. The need for efficient lossless data compression has grown significantly as the amount of HEP data collected, transmitted, and stored has dramatically in- creased over the last couple of years. While compression reduces storage space and, potentially, I/O bandwidth usage, it should not be applied blindly, because there are significant trade-offs between the increased CPU cost for reading and writing files and the reduces storage space. 1 Introduction In the past years, Large Hadron Collider (LHC) experiments are managing about an exabyte of storage for analysis purposes, approximately half of which is stored on tape storages for archival purposes, and half is used for traditional disk storage. Meanwhile for High Lumi- nosity Large Hadron Collider (HL-LHC) storage requirements per year are expected to be increased by a factor of 10 [1].
    [Show full text]
  • Arxiv:2004.10531V1 [Cs.OH] 8 Apr 2020
    ROOT I/O compression improvements for HEP analysis Oksana Shadura1;∗ Brian Paul Bockelman2;∗∗ Philippe Canal3;∗∗∗ Danilo Piparo4;∗∗∗∗ and Zhe Zhang1;y 1University of Nebraska-Lincoln, 1400 R St, Lincoln, NE 68588, United States 2Morgridge Institute for Research, 330 N Orchard St, Madison, WI 53715, United States 3Fermilab, Kirk Road and Pine St, Batavia, IL 60510, United States 4CERN, Meyrin 1211, Geneve, Switzerland Abstract. We overview recent changes in the ROOT I/O system, increasing per- formance and enhancing it and improving its interaction with other data analy- sis ecosystems. Both the newly introduced compression algorithms, the much faster bulk I/O data path, and a few additional techniques have the potential to significantly to improve experiment’s software performance. The need for efficient lossless data compression has grown significantly as the amount of HEP data collected, transmitted, and stored has dramatically in- creased during the LHC era. While compression reduces storage space and, potentially, I/O bandwidth usage, it should not be applied blindly: there are sig- nificant trade-offs between the increased CPU cost for reading and writing files and the reduce storage space. 1 Introduction In the past years LHC experiments are commissioned and now manages about an exabyte of storage for analysis purposes, approximately half of which is used for archival purposes, and half is used for traditional disk storage. Meanwhile for HL-LHC storage requirements per year are expected to be increased by factor 10 [1]. arXiv:2004.10531v1 [cs.OH] 8 Apr 2020 Looking at these predictions, we would like to state that storage will remain one of the major cost drivers and at the same time the bottlenecks for HEP computing.
    [Show full text]
  • Compressed Transitive Delta Encoding 1. Introduction
    Compressed Transitive Delta Encoding Dana Shapira Department of Computer Science Ashkelon Academic College Ashkelon 78211, Israel [email protected] Abstract Given a source file S and two differencing files ∆(S; T ) and ∆(T;R), where ∆(X; Y ) is used to denote the delta file of the target file Y with respect to the source file X, the objective is to be able to construct R. This is intended for the scenario of upgrading soft- ware where intermediate releases are missing, or for the case of file system backups, where non consecutive versions must be recovered. The traditional way is to decompress ∆(S; T ) in order to construct T and then apply ∆(T;R) on T and obtain R. The Compressed Transitive Delta Encoding (CTDE) paradigm, introduced in this paper, is to construct a delta file ∆(S; R) working directly on the two given delta files, ∆(S; T ) and ∆(T;R), without any decompression or the use of the base file S. A new algorithm for solving CTDE is proposed and its compression performance is compared against the traditional \double delta decompression". Not only does it use constant additional space, as opposed to the traditional method which uses linear additional memory storage, but experiments show that the size of the delta files involved is reduced by 15% on average. 1. Introduction Differential file compression represents a target file T with respect to a source file S. That is, both the encoder and decoder have available identical copies of S. A new file T is encoded and subsequently decoded by making use of S.
    [Show full text]
  • Implementing Compression on Distributed Time Series Database
    Implementing compression on distributed time series database Michael Burman School of Science Thesis submitted for examination for the degree of Master of Science in Technology. Espoo 05.11.2017 Supervisor Prof. Kari Smolander Advisor Mgr. Jiri Kremser Aalto University, P.O. BOX 11000, 00076 AALTO www.aalto.fi Abstract of the master’s thesis Author Michael Burman Title Implementing compression on distributed time series database Degree programme Major Computer Science Code of major SCI3042 Supervisor Prof. Kari Smolander Advisor Mgr. Jiri Kremser Date 05.11.2017 Number of pages 70+4 Language English Abstract Rise of microservices and distributed applications in containerized deployments are putting increasing amount of burden to the monitoring systems. They push the storage requirements to provide suitable performance for large queries. In this paper we present the changes we made to our distributed time series database, Hawkular-Metrics, and how it stores data more effectively in the Cassandra. We show that using our methods provides significant space savings ranging from 50 to 95% reduction in storage usage, while reducing the query times by over 90% compared to the nominal approach when using Cassandra. We also provide our unique algorithm modified from Gorilla compression algorithm that we use in our solution, which provides almost three times the throughput in compression with equal compression ratio. Keywords timeseries compression performance storage Aalto-yliopisto, PL 11000, 00076 AALTO www.aalto.fi Diplomityön tiivistelmä Tekijä Michael Burman Työn nimi Pakkausmenetelmät hajautetussa aikasarjatietokannassa Koulutusohjelma Pääaine Computer Science Pääaineen koodi SCI3042 Työn valvoja ja ohjaaja Prof. Kari Smolander Päivämäärä 05.11.2017 Sivumäärä 70+4 Kieli Englanti Tiivistelmä Hajautettujen järjestelmien yleistyminen on aiheuttanut valvontajärjestelmissä tiedon määrän kasvua, sillä aikasarjojen määrä on kasvanut ja niihin talletetaan useammin tietoa.
    [Show full text]
  • In-Place Reconstruction of Delta Compressed Files
    In-Place Reconstruction of Delta Compressed Files Randal C. Burns Darrell D. E. Long’ IBM Almaden ResearchCenter Departmentof Computer Science 650 Harry Rd., San Jose,CA 95 120 University of California, SantaCruz, CA 95064 [email protected] [email protected] Abstract results in high latency and low bandwidth to web-enabled clients and prevents the timely delivery of software. We present an algorithm for modifying delta compressed Differential or delta compression [5, 11, compactly en- files so that the compressedversions may be reconstructed coding a new version of a file using only the changedbytes without scratchspace. This allows network clients with lim- from a previous version, can be usedto reducethe size of the ited resources to efficiently update software by retrieving file to be transmitted and consequently the time to perform delta compressedversions over a network. software update. Currently, decompressingdelta encoded Delta compressionfor binary files, compactly encoding a files requires scratch space,additional disk or memory stor- version of data with only the changedbytes from a previous age, used to hold a required second copy of the file. Two version, may be used to efficiently distribute software over copiesof the compressedfile must be concurrently available, low bandwidth channels, such as the Internet. Traditional as the delta file contains directives to read data from the old methods for rebuilding these delta files require memory or file version while the new file version is being materialized storagespace on the target machinefor both the old and new in another region of storage. This presentsa problem. Net- version of the file to be reconstructed.
    [Show full text]
  • Delta Compression Techniques
    D but the concept can also be applied to multimedia Delta Compression and structured data. Techniques Delta compression should not be confused with Elias delta codes, a technique for encod- Torsten Suel ing integer values, or with the idea of coding Department of Computer Science and sorted sequences of integers by first taking the Engineering, Tandon School of Engineering, difference (or delta) between consecutive values. New York University, Brooklyn, NY, USA Also, delta compression requires the encoder to have complete knowledge of the reference files and thus differs from more general techniques for Synonyms redundancy elimination in networks and storage systems where the encoder has limited or even Data differencing; Delta encoding; Differential no knowledge of the reference files, though the compression boundaries with that line of work are not clearly defined. Definition Delta compression techniques encode a target Overview file with respect to one or more reference files, such that a decoder who has access to the same Many applications of big data technologies in- reference files can recreate the target file from the volve very large data sets that need to be stored on compressed data. Delta compression is usually disk or transmitted over networks. Consequently, applied in cases where there is a high degree of data compression techniques are widely used to redundancy between target and references files, reduce data sizes. However, there are many sce- leading to a much smaller compressed size than narios where there are significant redundancies could be achieved by just compressing the tar- between different data files that cannot be ex- get file by itself.
    [Show full text]
  • Unfoldr Dstep
    Asymmetric Numeral Systems Jeremy Gibbons WG2.11#19 Salem ANS 2 1. Coding Huffman coding (HC) • efficient; optimally effective for bit-sequence-per-symbol arithmetic coding (AC) • Shannon-optimal (fractional entropy); but computationally expensive asymmetric numeral systems (ANS) • efficiency of Huffman, effectiveness of arithmetic coding applications of streaming (another story) • ANS introduced by Jarek Duda (2006–2013). Now: Facebook (Zstandard), Apple (LZFSE), Google (Draco), Dropbox (DivANS). ANS 3 2. Intervals Pairs of rationals type Interval (Rational, Rational) = with operations unit (0, 1) = weight (l, r) x l (r l) x = + − ⇥ narrow i (p, q) (weight i p, weight i q) = scale (l, r) x (x l)/(r l) = − − widen i (p, q) (scale i p, scale i q) = so that narrow and unit form a monoid, and inverse relationships: weight i x i x unit 2 () 2 weight i x y scale i y x = () = narrow i j k widen i k j = () = ANS 4 3. Models Given counts :: [(Symbol, Integer)] get encodeSym :: Symbol Interval ! decodeSym :: Rational Symbol ! such that decodeSym x s x encodeSym s = () 2 1 1 1 1 Eg alphabet ‘a’, ‘b’, ‘c’ with counts 2, 3, 5 encoded as (0, /5), ( /5, /2), and ( /2, 1). { } ANS 5 4. Arithmetic coding encode1 :: [Symbol ] Rational ! encode1 pick foldl estep unit where = ◦ 1 estep :: Interval Symbol Interval 1 ! ! estep is narrow i (encodeSym s) 1 = decode1 :: Rational [Symbol ] ! decode1 unfoldr dstep where = 1 dstep :: Rational Maybe (Symbol, Rational) 1 ! dstep x let s decodeSym x in Just (s, scale (encodeSym s) x) 1 = = where pick :: Interval Rational satisfies pick i i.
    [Show full text]
  • Compresso: Efficient Compression of Segmentation Data for Connectomics
    Compresso: Efficient Compression of Segmentation Data For Connectomics Brian Matejek, Daniel Haehn, Fritz Lekschas, Michael Mitzenmacher, Hanspeter Pfister Harvard University, Cambridge, MA 02138, USA bmatejek,haehn,lekschas,michaelm,[email protected] Abstract. Recent advances in segmentation methods for connectomics and biomedical imaging produce very large datasets with labels that assign object classes to image pixels. The resulting label volumes are bigger than the raw image data and need compression for efficient stor- age and transfer. General-purpose compression methods are less effective because the label data consists of large low-frequency regions with struc- tured boundaries unlike natural image data. We present Compresso, a new compression scheme for label data that outperforms existing ap- proaches by using a sliding window to exploit redundancy across border regions in 2D and 3D. We compare our method to existing compression schemes and provide a detailed evaluation on eleven biomedical and im- age segmentation datasets. Our method provides a factor of 600-2200x compression for label volumes, with running times suitable for practice. Keywords: compression, encoding, segmentation, connectomics 1 Introduction Connectomics|reconstructing the wiring diagram of a mammalian brain at nanometer resolution|results in datasets at the scale of petabytes [21,8]. Ma- chine learning methods find cell membranes and create cell body labelings for every neuron [18,12,14] (Fig. 1). These segmentations are stored as label volumes that are typically encoded in 32 bits or 64 bits per voxel to support labeling of millions of different nerve cells (neurons). Storing such data is expensive and transferring the data is slow. To cut costs and delays, we need compression methods to reduce data sizes.
    [Show full text]
  • The Pillars of Lossless Compression Algorithms a Road Map and Genealogy Tree
    International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3296-3414 © Research India Publications. http://www.ripublication.com The Pillars of Lossless Compression Algorithms a Road Map and Genealogy Tree Evon Abu-Taieh, PhD Information System Technology Faculty, The University of Jordan, Aqaba, Jordan. Abstract tree is presented in the last section of the paper after presenting the 12 main compression algorithms each with a practical This paper presents the pillars of lossless compression example. algorithms, methods and techniques. The paper counted more than 40 compression algorithms. Although each algorithm is The paper first introduces Shannon–Fano code showing its an independent in its own right, still; these algorithms relation to Shannon (1948), Huffman coding (1952), FANO interrelate genealogically and chronologically. The paper then (1949), Run Length Encoding (1967), Peter's Version (1963), presents the genealogy tree suggested by researcher. The tree Enumerative Coding (1973), LIFO (1976), FiFO Pasco (1976), shows the interrelationships between the 40 algorithms. Also, Stream (1979), P-Based FIFO (1981). Two examples are to be the tree showed the chronological order the algorithms came to presented one for Shannon-Fano Code and the other is for life. The time relation shows the cooperation among the Arithmetic Coding. Next, Huffman code is to be presented scientific society and how the amended each other's work. The with simulation example and algorithm. The third is Lempel- paper presents the 12 pillars researched in this paper, and a Ziv-Welch (LZW) Algorithm which hatched more than 24 comparison table is to be developed.
    [Show full text]
  • The Deep Learning Solutions on Lossless Compression Methods for Alleviating Data Load on Iot Nodes in Smart Cities
    sensors Article The Deep Learning Solutions on Lossless Compression Methods for Alleviating Data Load on IoT Nodes in Smart Cities Ammar Nasif *, Zulaiha Ali Othman and Nor Samsiah Sani Center for Artificial Intelligence Technology (CAIT), Faculty of Information Science & Technology, University Kebangsaan Malaysia, Bangi 43600, Malaysia; [email protected] (Z.A.O.); [email protected] (N.S.S.) * Correspondence: [email protected] Abstract: Networking is crucial for smart city projects nowadays, as it offers an environment where people and things are connected. This paper presents a chronology of factors on the development of smart cities, including IoT technologies as network infrastructure. Increasing IoT nodes leads to increasing data flow, which is a potential source of failure for IoT networks. The biggest challenge of IoT networks is that the IoT may have insufficient memory to handle all transaction data within the IoT network. We aim in this paper to propose a potential compression method for reducing IoT network data traffic. Therefore, we investigate various lossless compression algorithms, such as entropy or dictionary-based algorithms, and general compression methods to determine which algorithm or method adheres to the IoT specifications. Furthermore, this study conducts compression experiments using entropy (Huffman, Adaptive Huffman) and Dictionary (LZ77, LZ78) as well as five different types of datasets of the IoT data traffic. Though the above algorithms can alleviate the IoT data traffic, adaptive Huffman gave the best compression algorithm. Therefore, in this paper, Citation: Nasif, A.; Othman, Z.A.; we aim to propose a conceptual compression method for IoT data traffic by improving an adaptive Sani, N.S.
    [Show full text]
  • Forcepoint DLP Supported File Formats and Size Limits
    Forcepoint DLP Supported File Formats and Size Limits Supported File Formats and Size Limits | Forcepoint DLP | v8.8.1 This article provides a list of the file formats that can be analyzed by Forcepoint DLP, file formats from which content and meta data can be extracted, and the file size limits for network, endpoint, and discovery functions. See: ● Supported File Formats ● File Size Limits © 2021 Forcepoint LLC Supported File Formats Supported File Formats and Size Limits | Forcepoint DLP | v8.8.1 The following tables lists the file formats supported by Forcepoint DLP. File formats are in alphabetical order by format group. ● Archive For mats, page 3 ● Backup Formats, page 7 ● Business Intelligence (BI) and Analysis Formats, page 8 ● Computer-Aided Design Formats, page 9 ● Cryptography Formats, page 12 ● Database Formats, page 14 ● Desktop publishing formats, page 16 ● eBook/Audio book formats, page 17 ● Executable formats, page 18 ● Font formats, page 20 ● Graphics formats - general, page 21 ● Graphics formats - vector graphics, page 26 ● Library formats, page 29 ● Log formats, page 30 ● Mail formats, page 31 ● Multimedia formats, page 32 ● Object formats, page 37 ● Presentation formats, page 38 ● Project management formats, page 40 ● Spreadsheet formats, page 41 ● Text and markup formats, page 43 ● Word processing formats, page 45 ● Miscellaneous formats, page 53 Supported file formats are added and updated frequently. Key to support tables Symbol Description Y The format is supported N The format is not supported P Partial metadata
    [Show full text]
  • Compression: Putting the Squeeze on Storage
    Compression: Putting the Squeeze on Storage Live Webcast September 2, 2020 11:00 am PT 1 | ©2020 Storage Networking Industry Association. All Rights Reserved. Today’s Presenters Ilker Cebeli John Kim Brian Will Moderator Chair, SNIA Networking Storage Forum Intel® QuickAssist Technology Samsung NVIDIA Software Architect Intel 2 | ©2020 Storage Networking Industry Association. All Rights Reserved. SNIA-At-A-Glance 3 3 | ©2020 Storage Networking Industry Association. All Rights Reserved. NSF Technologies 4 4 | ©2020 Storage Networking Industry Association. All Rights Reserved. SNIA Legal Notice § The material contained in this presentation is copyrighted by the SNIA unless otherwise noted. § Member companies and individual members may use this material in presentations and literature under the following conditions: § Any slide or slides used must be reproduced in their entirety without modification § The SNIA must be acknowledged as the source of any material used in the body of any document containing material from these presentations. § This presentation is a project of the SNIA. § Neither the author nor the presenter is an attorney and nothing in this presentation is intended to be, or should be construed as legal advice or an opinion of counsel. If you need legal advice or a legal opinion please contact your attorney. § The information presented herein represents the author's personal opinion and current understanding of the relevant issues involved. The author, the presenter, and the SNIA do not assume any responsibility or liability for damages arising out of any reliance on or use of this information. NO WARRANTIES, EXPRESS OR IMPLIED. USE AT YOUR OWN RISK. 5 | ©2020 Storage Networking Industry Association.
    [Show full text]