WMO LABORATORY INTERCOMPARISON of RAINFALL INTENSITY GAUGES Trappes (France) - Genoa (Italy) - De Bilt (Netherlands) September 2004 – September 2005

Total Page:16

File Type:pdf, Size:1020Kb

WMO LABORATORY INTERCOMPARISON of RAINFALL INTENSITY GAUGES Trappes (France) - Genoa (Italy) - De Bilt (Netherlands) September 2004 – September 2005 WORLD METEOROLOGICAL ORGANIZATION INSTRUMENTS AND OBSERVING METHODS REPORT No. 84 WMO LABORATORY INTERCOMPARISON OF RAINFALL INTENSITY GAUGES Trappes (France) - Genoa (Italy) - De Bilt (Netherlands) September 2004 – September 2005 L. Lanza (Italy) M. Leroy (France) C. Alexandropoulos (France) L. Stagi (Italy) W. Wauben (Netherlands) WMO/TD-No. 1304 2006 NOTE The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the World Meteorological Organization concerning the legal status of any country, territory, city or area, or its authorities, or concerning the limitation of the frontiers or boundaries. This report has been produced without editorial revision by the Secretariat. It is not an official WMO publication and its distribution in this form does not imply endorsement by the Organization of the ideas expressed. TABLE OF CONTENTS Page FOREWORD PART I RAINFALL INTENSITY MEASUREMENT INSTRUMENTS AND UNCERTAINTY 1. Rainfall Intensity 1 2. Rainfall Intensity Gauges 3 3. Uncertainty Sources and Measurement Errors 7 4. Previous related intercomparisons 12 PART II LABORATORY INTERCOMPARISON RESULTS AND CONCLUSIONS 1. Rationale 13 2. Applied Methods 16 3. The testing devices 18 4. Uncertainty of reference intensity 22 5. Description of the database 23 6. Quality control 23 7. Data policy 23 8. Participating instruments 24 9. Results 27 10. Conclusions 41 11. Recommendations 41 ACKNOWLEDGEMENTS 43 REFERENCES 44 ANNEXES Annex I: Overview of the Laboratories 46 Annex II: Questionnaire I on potential participants 52 Annex III: Questionnaire II to selected participants 54 Annex IV: Uncertainty assessment for the QM-RIM developed at the DIAM 58 laboratory, Italy Annex V: Uncertainty assessment for the bench calibration at the Trappes 62 laboratory, France Annex VI: Uncertainty assessment for the bench calibration at the KNMI laboratory, 64 The Netherlands Annex VII: Summary table: synthesis of the results 66 Annex VIII: Correction of historical rain series: a sample exercise 68 APPENDIX Instrument Data Sheets 73 FOREWORD The Thirteenth Session of the Commission for Instruments and Methods of Observation (CIMO) recognized the need to conduct an in depth assessment of rainfall intensity instruments. During this Intersessional period CIMO conducted a laboratory Intercomparison of Rainfall Intensity (RI) gauges from September 2004 through September 2005 in the laboratories of the Royal Netherlands Meteorological Institute, Meteo-France and the Italian Meteorological Service (Department of Environmental Engineering, University of Genoa). The Project Team analyzed the results of the Intercomparisons and the Final Report was published and posted to the CIMO/IMOP website in January 2006. Based on the analysis, proposals were made for standardizing procedures for laboratory calibration of RI gauges and on reference equipment for field Intercomparisons. Follow-on actions have included contacting manufacturers of the Intercomparison results assisting manufacturers in synchronizing current practices and future planning. This document constitutes the Final Report of the WMO Laboratory Intercomparison of Rainfall Intensity (RI) Gauges launched, simultaneously, in September 2004, at the laboratories of the Royal Netherlands Meteorological Institute (The Netherlands), Météo-France (France) and the Department of Environmental Engineering of University of Genoa (Italy) in collaboration with the Italian Meteorological Service. Prior to this Intercomparison there had been no international intercomparison of instruments for the measurement of RI. Following the recommendations of the Expert Meeting on Rainfall Intensity Measurements, Bratislava (Slovakia) April 2001, it was proposed that the first necessary step to be taken was to organize and conduct the first intercomparison of RI instruments under laboratory conditions. Some laboratory tests of RI gauges had been conducted and their results documented in literature, however no intercomparison of RI instruments in multiple laboratories, had ever been conducted. The main objective of the Intercomparison was to test the performance of catchment type rainfall intensity gauges utilizing different measuring principles under controlled conditions. Other objectives of the Intercomparison were to define a standardized procedure for laboratory calibration of catchment type rain gauges and to provide information relevant to improving the homogeneity of rainfall time series with special consideration given to high rainfall intensities. The CIMO Project Team consisted of the Chair of the Expert Team on Surface-based Instrument Intercomparisons and Calibration Methods, the International Organizing Committee on Surface-Based Instrument Intercomparisons, the Project Leader and three Site Managers, all of whom coordinated the work of the three laboratories involved. The 19 pairs of participating instruments proposed by 18 manufacturers were divided into three groups, with each group being tested for a period of three to six months in each of the laboratories with the purpose of obtaining a high degree of confidence in the results. All costs related to laboratory intercomparisons were born by the laboratories and the manufacturers. The gauges fell into three categories; the majority fell into the first category, tipping-bucket gauges, which are the most widely used in operational networks; the second group of instruments consisted of weighing gauges; and the third group consisted of two participating instruments using a non-common measuring principle, namely, a water level based on conductivity measurement. A general methodology was adopted for testing based on the generation of a constant water flow from a suitable hydraulic device within the range of operational use as declared by the instrument manufacturer. Water was conveyed to the funnel of each instrument under test in order to simulate constant rainwater intensity. Flows were measured by weighing the water over a given period of time. The relative difference between the measured and generated rainfall intensity was assumed as the relative error of the instrument for a given reference flow rate. In addition to measurements based on regular flow rates the step response of each instrument was checked, based on suitable devices developed by each laboratory. The results of the Intercomparison showed that tipping-bucket rain gauges equipped with proper correction software provided quality rainfall intensity measurements. The gauges where no correction was applied had larger errors. In some cases problems of water storage in the funnel occurred limitting the usable range for RI measurement. The uncertainty of the rainfall intensity is generally less for weighing gauges than for the tipping-bucket rain gauges under constant flow rate conditions provided the instrument is properly stabilized. The measurement of rainfall intensity is affected by the response time of the acquisition system. Significant delays were observed in sensing time variation of the RI by weighing gauges. The delay is the result of the internal software intended to filter the noise. Only one instrument had a delay that met the WMO 1-minute rainfall intensity requirement. The two gauges using a conductivity measurement for determining water level showed good performances in terms of uncertainty under controlled laboratory conditions. Siphoning problems with one gauge limited its ability to measure a wide range of rainfall intensity; the other was limited by the emptying mechanism, in which case a 2-minute delay was observed. These gauges are potentially sensitive to water conductivity but demonstrated no problems during the laboratory tests. Laboratory tests were performed under controlled conditions and constant flow rates so as to determine the intrinsic counting errors. It must be assumed that RI is highly variable in time, thus catching errors may have a strong influence on the overall uncertainty of the measurement. The need to combine counting and catching errors for the instruments analyzed in the laboratory is paramount. Provided the instrument is properly installed, according to WMO specifications, the question to be answered is what kind of instrument (measuring principle, manufacturer, model) is the most suited to the specific requirements of the user. This question cannot be answered based on the laboratory Intercomparisons alone, although the results do provide preliminary information to manufacturers and are the first-step in the selection criteria for the user. Therefore, it is necessary to proceed with the quality assessment procedure initiated in the laboratory by organizing a follow-up intercomparison in the field where instruments tested in the laboratory have a priority. This allows continuity in the performance assessment procedure and results in the estimation of the overall operational error to be expected in the measurement of RI in the field. Other instruments would be included in the field intercomparison, if not tested in the laboratory phase, with a priority given to the non-catching type instruments. Finally, the improvement in uncertainty of RI gauges introduces the risk of affecting the homogeneity of rainfall time series. The improvement of RI measurement may produce a discontinuity in historical rainfall intensities records, which could influence studies of extreme events. The bias introduced by non-corrected records propagates through any rainfall-runoff model
Recommended publications
  • Lesson 6 Weather: Collecting Data GRADE 3-5 BACKGROUND Meteorologists Collect Weather Data Daily to Make Forecasts
    Lesson 6 Weather: Collecting Data GRADE 3-5 BACKGROUND Meteorologists collect weather data daily to make forecasts. With the aid of high altitude weather balloons, weather equipment and gauges, satellites, and computers, accurate daily forecasts can be made. Collecting weather data in just one location and making a forecast requires a great deal of skill. Since air travels from one location to another, it is helpful to know what the approaching weather will be. In this investigation, the students will collect data for two weeks. At this time they will start seeing patterns in each of the areas. They can predict what the weather will be like the next day and for the next few days. They will also write if their predictions were correct from the previous day. Collecting the data for this lesson can be done instead of collecting the data separately in lesson 1-4. BASIC LESSON Objective(s) Students will be able to… Collect data for two weeks and use the information to detect patterns and predict weather around their location. State Science Content Standard(s) Standard 4. Students through the inquiry process, demonstrate knowledge of the composition, structures, processes and interactions of Earth's systems and other objects in space. A. 4.4 Observe and describe the water cycle and the local weather and demonstrate how weather conditions are measured. A. Record temperature B. Display data on a graph C. Interpret trends and patterns of data D. Identify and explain the use of a barometer, weather vane, and anemometer E. Collect, record and chart data from each weather instrument F.
    [Show full text]
  • Radar Derived Rainfall and Rain Gauge Measurements at SRS
    Radar Derived Rainfall and Rain Gauge Measurements at SRS A. M. Rivera-Giboyeaux February 2020 SRNL-STI-2019-00644, Revision 0 SRNL-STI-2019-00644 Revision 0 DISCLAIMER This work was prepared under an agreement with and funded by the U.S. Government. Neither the U.S. Government or its employees, nor any of its contractors, subcontractors or their employees, makes any express or implied: 1. warranty or assumes any legal liability for the accuracy, completeness, or for the use or results of such use of any information, product, or process disclosed; or 2. representation that such use or results of such use would not infringe privately owned rights; or 3. endorsement or recommendation of any specifically identified commercial product, process, or service. Any views and opinions of authors expressed in this work do not necessarily state or reflect those of the United States Government, or its contractors, or subcontractors. Printed in the United States of America Prepared for U.S. Department of Energy ii SRNL-STI-2019-00644 Revision 0 Keywords: Rainfall, Radar, Rain Gauge, Measurements Retention: Permanent Radar Derived Rainfall and Rain Gauge Measurements at SRS A. M. Rivera-Giboyeaux February 2020 Prepared for the U.S. Department of Energy under contract number DE-AC09-08SR22470. iii SRNL-STI-2019-00644 Revision 0 REVIEWS AND APPROVALS AUTHORS: ______________________________________________________________________________ A. M. Rivera-Giboyeaux, Atmospheric Technologies Group, SRNL Date TECHNICAL REVIEW: ______________________________________________________________________________ S. Weinbeck, Atmospheric Technologies Group, SRNL. Reviewed per E7 2.60 Date APPROVAL: ______________________________________________________________________________ C.H. Hunter, Manager Date Atmospheric Technologies Group iv SRNL-STI-2019-00644 Revision 0 EXECUTIVE SUMMARY Over the years rainfall data for the Savannah River Site has been obtained from ground level measurements made by rain gauges.
    [Show full text]
  • COOP Observer Manual (1).Pdf
    National Weather Service WFO Mount Holly, NJ Cooperative Observation Program Observer Manual Updated: October 3, 2020 Table of Contents 1. Taking Observations a. Rainfall/Liquid Equivalent Precipitation i. Rainfall 1. Standard 8” Rain Gauge 2. Plastic 4” Rain Gauge ii. Snowfall/Frozen Precipitation Liquid Equivalent 1. Standard 8” Rain Gauge 2. Plastic 4” Rain Gauge b. Snowfall c. Snow Depth d. Maximum and Minimum Temperatures (if equipped) i. Digital Maximum/Minimum Sensor with Nimbus Display ii. Cotton Region Shelter with Liquid-in-Glass Thermometers 2. Reporting Observations a. WxCoder b. Things to Remember 1 1. Taking Observations Measuring precipitation is one of the most basic and useful forms of weather observations. It is important to note that observations will vary based on the type of precipitation that is expected to occur. If any frozen precipitation is forecast, it is important to remove the ​ funnel top and inner tube from your gauge before precipitation begins. This will prevent ​ ​ ​ damage to the equipment and ensure the most accurate measurements possible. Note that the inner tube of the rain gauge only holds a certain amount of precipitation until it begins to overflow into the outer can. If rain falls, but is not measurable inside of the gauge, this should be reported as a Trace (T) of rainfall. This includes sprinkles/drizzle and occurrences where there is some liquid in the inner tube, but it is not measurable on the measuring stick. During the cold season (generally November through early April), we recommend that observers leave their snowboards outside at all times, if possible.
    [Show full text]
  • METAR/SPECI Reporting Changes for Snow Pellets (GS) and Hail (GR)
    U.S. DEPARTMENT OF TRANSPORTATION N JO 7900.11 NOTICE FEDERAL AVIATION ADMINISTRATION Effective Date: Air Traffic Organization Policy September 1, 2018 Cancellation Date: September 1, 2019 SUBJ: METAR/SPECI Reporting Changes for Snow Pellets (GS) and Hail (GR) 1. Purpose of this Notice. This Notice coincides with a revision to the Federal Meteorological Handbook (FMH-1) that was effective on November 30, 2017. The Office of the Federal Coordinator for Meteorological Services and Supporting Research (OFCM) approved the changes to the reporting requirements of small hail and snow pellets in weather observations (METAR/SPECI) to assist commercial operators in deicing operations. 2. Audience. This order applies to all FAA and FAA-contract weather observers, Limited Aviation Weather Reporting Stations (LAWRS) personnel, and Non-Federal Observation (NF- OBS) Program personnel. 3. Where can I Find This Notice? This order is available on the FAA Web site at http://faa.gov/air_traffic/publications and http://employees.faa.gov/tools_resources/orders_notices/. 4. Cancellation. This notice will be cancelled with the publication of the next available change to FAA Order 7900.5D. 5. Procedures/Responsibilities/Action. This Notice amends the following paragraphs and tables in FAA Order 7900.5. Table 3-2: Remarks Section of Observation Remarks Section of Observation Element Paragraph Brief Description METAR SPECI Volcanic eruptions must be reported whenever first noted. Pre-eruption activity must not be reported. (Use Volcanic Eruptions 14.20 X X PIREPs to report pre-eruption activity.) Encode volcanic eruptions as described in Chapter 14. Distribution: Electronic 1 Initiated By: AJT-2 09/01/2018 N JO 7900.11 Remarks Section of Observation Element Paragraph Brief Description METAR SPECI Whenever tornadoes, funnel clouds, or waterspouts begin, are in progress, end, or disappear from sight, the event should be described directly after the "RMK" element.
    [Show full text]
  • ESSENTIALS of METEOROLOGY (7Th Ed.) GLOSSARY
    ESSENTIALS OF METEOROLOGY (7th ed.) GLOSSARY Chapter 1 Aerosols Tiny suspended solid particles (dust, smoke, etc.) or liquid droplets that enter the atmosphere from either natural or human (anthropogenic) sources, such as the burning of fossil fuels. Sulfur-containing fossil fuels, such as coal, produce sulfate aerosols. Air density The ratio of the mass of a substance to the volume occupied by it. Air density is usually expressed as g/cm3 or kg/m3. Also See Density. Air pressure The pressure exerted by the mass of air above a given point, usually expressed in millibars (mb), inches of (atmospheric mercury (Hg) or in hectopascals (hPa). pressure) Atmosphere The envelope of gases that surround a planet and are held to it by the planet's gravitational attraction. The earth's atmosphere is mainly nitrogen and oxygen. Carbon dioxide (CO2) A colorless, odorless gas whose concentration is about 0.039 percent (390 ppm) in a volume of air near sea level. It is a selective absorber of infrared radiation and, consequently, it is important in the earth's atmospheric greenhouse effect. Solid CO2 is called dry ice. Climate The accumulation of daily and seasonal weather events over a long period of time. Front The transition zone between two distinct air masses. Hurricane A tropical cyclone having winds in excess of 64 knots (74 mi/hr). Ionosphere An electrified region of the upper atmosphere where fairly large concentrations of ions and free electrons exist. Lapse rate The rate at which an atmospheric variable (usually temperature) decreases with height. (See Environmental lapse rate.) Mesosphere The atmospheric layer between the stratosphere and the thermosphere.
    [Show full text]
  • Response to Comments the Authors Thank the Reviewers for Their
    Response to comments The authors thank the reviewers for their constructive comments, which provide the basis to improve the quality of the manuscript and dataset. We address all points in detail and reply to all comments here below. We also updated SCDNA from V1 to V1.1 on Zenodo based on the reviewer’s comments. The modifications include adding station source flag, adding original files for location merged stations, and adding a quality control procedure based on the final SCDNA. SCDNA estimates are generally consistent between the two versions, with the total number of stations reduced from 27280 to 27276. Reviewer 1 General comment The manuscript presents and advertises a very interesting dataset of temperature and precipitation observation collected over several years in North America. The work is certainly well suited for the readership of ESSD and it is overall very important for the meteorological and climatological community. Furthermore, creation of quality controlled databases is an important contribution to the scientific community in the age of data science. I have a few points to consider before publication, which I recommend, listed below. 1. Measurement instruments: from my background, I am much closer to the instruments themselves (and their peculiarities and issues), as hardware tools. What I missed here was a description of the stations and their instruments. Questions like: which are the instruments deployed in the stations? How is precipitation measured (tipping buckets? buckets? Weighing gauges? Note for example that some instruments may have biases when measuring snowfall while others may not)? How is it temperature measured? How is this different from station to station in your database? Response: We have added the descriptions of measurement instruments in both the manuscript and dataset documentation.
    [Show full text]
  • Accuracy of NWS 8 Standard Nonrecording Precipitation Gauge
    54 JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY VOLUME 15 Accuracy of NWS 80 Standard Nonrecording Precipitation Gauge: Results and Application of WMO Intercomparison DAQING YANG,* BARRY E. GOODISON, AND JOHN R. METCALFE Atmospheric Environment Service, Downsview, Ontario, Canada VALENTIN S. GOLUBEV State Hydrological Institute, St. Petersburg, Russia ROY BATES AND TIMOTHY PANGBURN U.S. Army CRREL, Hanover, New Hampshire CLAYTON L. HANSON U.S. Department of Agriculture, Agricultural Research Service, Northwest Watershed Research Center, Boise, Idaho (Manuscript received 21 December 1995, in ®nal form 1 August 1996) ABSTRACT The standard 80 nonrecording precipitation gauge has been used historically by the National Weather Service (NWS) as the of®cial precipitation measurement instrument of the U.S. climate station network. From 1986 to 1992, the accuracy and performance of this gauge (unshielded or with an Alter shield) were evaluated during the WMO Solid Precipitation Measurement Intercomparison at three stations in the United States and Russia, representing a variety of climate, terrain, and exposure. The double-fence intercomparison reference (DFIR) was the reference standard used at all the intercomparison stations in the Intercomparison project. The Intercomparison data collected at different sites are compatible with respect to the catch ratio (gauge measured/DFIR) for the same gauges, when compared using wind speed at the height of gauge ori®ce during the observation period. The effects of environmental factors, such as wind speed and temperature, on the gauge catch were investigated. Wind speed was found to be the most important factor determining gauge catch when precipitation was classi®ed into snow, mixed, and rain. The regression functions of the catch ratio versus wind speed at the gauge height on a daily time step were derived for various types of precipitation.
    [Show full text]
  • Observer Bias in Daily Precipitation Measurements at United States Cooperative Network Stations
    Observer Bias in Daily Precipitation Measurements at United States Cooperative Network Stations BY CHRISTOPHER DALY, WAYNE P. G IBSON, GEORGE H. TAYLOR, MATTHEW K. DOGGETT, AND JOSEPH I. SMITH The vast majority of United States cooperative observers introduce subjective biases into their measurements of daily precipitation. he Cooperative Observer Program (COOP) was the U.S. Historical Climate Network (USHCN). The established in the 1890s to make daily meteo- USHCN provides much of the country’s official data T rological observations across the United States, on climate trends and variability over the past century primarily for agricultural purposes. The COOP (Karl et al. 1990; Easterling et al. 1999; Williams et al. network has since become the backbone of tempera- 2004). ture and precipitation data that characterize means, Precipitation data (rain and melted snow) are trends, and extremes in U.S. climate. COOP data recorded manually every day by over 12,000 COOP are routinely used in a wide variety of applications, observers across the United States. The measuring such as agricultural planning, environmental impact equipment is very simple, and has not changed statements, road and dam safety regulations, building appreciably since the network was established. codes, forensic meteorology, water supply forecasting, Precipitation data from most COOP sites are read weather forecast model initialization, climate map- from a calibrated stick placed into a narrow tube ping, flood hazard assessment, and many others. A within an 8-in.-diameter rain gauge, much like subset of COOP stations with relatively complete, the oil level is measured in an automobile (Fig. 1). long periods of record, and few station moves forms The National Weather Service COOP Observing Handbook (NOAA–NWS 1989) describes the procedure for measuring precipitation from 8-in.
    [Show full text]
  • Rainfall Estimation from X-Band Polarimetric Radar And
    Meteorology Senior Theses Undergraduate Theses and Capstone Projects 12-2016 Rainfall Estimation from X-band Polarimetric Radar and Disdrometer Observation Measurements Compared to NEXRAD Measurements: An Application of Rainfall Estimates Brady E. Newkirk Iowa State University, [email protected] Follow this and additional works at: https://lib.dr.iastate.edu/mteor_stheses Part of the Meteorology Commons Recommended Citation Newkirk, Brady E., "Rainfall Estimation from X-band Polarimetric Radar and Disdrometer Observation Measurements Compared to NEXRAD Measurements: An Application of Rainfall Estimates" (2016). Meteorology Senior Theses. 6. https://lib.dr.iastate.edu/mteor_stheses/6 This Dissertation/Thesis is brought to you for free and open access by the Undergraduate Theses and Capstone Projects at Iowa State University Digital Repository. It has been accepted for inclusion in Meteorology Senior Theses by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Rainfall Estimation from X-band Polarimetric Radar and Disdrometer Observation Measurements Compared to NEXRAD Measurements: An Application of Rainfall Estimates Brady E. Newkirk Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa James Aanstoos – Mentor Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa ABSTRACT This paper presents the comparison of rainfall estimation from X-band dual-polarization radar observations and NEXRAD observations to that of rain gauge observations. Data collected from three separate studies are used for X-band and rain gauge observations. NEXRAD observations were collected through the NCEI archived data base. Focus on the Kdp parameter for X-band radars was important for higher accuracy of rainfall estimations.
    [Show full text]
  • The Role of Weather Radar in Rainfall Estimation and Its Application in Meteorological and Hydrological Modelling—A Review
    remote sensing Review The Role of Weather Radar in Rainfall Estimation and Its Application in Meteorological and Hydrological Modelling—A Review ZbynˇekSokol 1 , Jan Szturc 2,* , Johanna Orellana-Alvear 3,4 , Jana Popová 1,5 , Anna Jurczyk 2 and Rolando Célleri 3 1 Institute of Atmospheric Physics of the Czech Academy of Sciences, Bocni II, 141 00 Praha 4, Czech Republic; [email protected] (Z.S.); [email protected] (J.P.) 2 Institute of Meteorology and Water Management—National Research Institute, PL 01-673 Warsaw, Poland; [email protected] 3 Departamento de Recursos Hídricos y Ciencias Ambientales and Facultad de Ingeniería, Universidad de Cuenca, Cuenca EC10207, Ecuador; [email protected] (J.O.-A.); [email protected] (R.C.) 4 Laboratory for Climatology and Remote Sensing (LCRS), Faculty of Geography, University of Marburg, D-035032 Marburg, Germany 5 Faculty of Science, Charles University, Albertov 6, 128 00 Praha 2, Czech Republic * Correspondence: [email protected] Abstract: Radar-based rainfall information has been widely used in hydrological and meteorological applications, as it provides data with a high spatial and temporal resolution that improve rainfall representation. However, the broad diversity of studies makes it difficult to gather a condensed overview of the usefulness and limitations of radar technology and its application in particular situations. In this paper, a comprehensive review through a categorization of radar-related topics Citation: Sokol, Z.; Szturc, J.; aims to provide a general picture of the current state of radar research. First, the importance and Orellana-Alvear, J.; Popová, J.; Jurczyk, A.; Célleri, R.
    [Show full text]
  • Oklahoma Mesonet / ARS Quality Assurance Report July 2020
    Oklahoma Mesonet / ARS Quality Assurance Report July 2020 Prepared by Trey Bell and Ethan Becker [email protected] • Mesonet technicians completed scheduled rotations of 1 rain gauge (RAIN, TIP2), 1 relative humidity sensor (RELH/TSLO), and 1 current excitation module. • Wiring problem at F111 that prevented soil parameters from being measured properly has been resolved. Sensors rewired on July 7. • Suspected power problem at the Centrahoma site (CENT) resulted in several missing observations. • Following lightning strike at Broken Bow (BROK) in June, the aspirator battery was no longer charging. Voltage regulator replaced on July 7. Battery now charges as expected. • Lightning affected the Oilton site (OILT) on July 12, resulting in a failed aspirator battery, aspirator fans, and multiple soil variables. • Power problems at the Fittstown site (FITT) resulted in missing observations. Power cables were adjusted on August 4. Mesonet QA Report for Standard Variables Variable Status Site Ticket Remarks Temperature sensor at 1.5 meters sometimes reports TAIR Resolved BRIS 42995 errantly high values. Sensor rewired. Temperature sensor at 1.5 meters reporting higher Current MANG 43056 than expected. Please inspect aspirated shelter for issue. RELH WSPD WDIR PRES SRAD Resolved MAYR 42977 Sometimes reports -99999. Values during day sometimes lower than expected or negative. Replaced. Solar radiation sometimes reports values less than Resolved WOOD 42300 expected during sunny conditions. Sensor replaced. Solar radiation sometimes reports values less than Current GRA2 43062 expected during sunny conditions. Please replace sensor. SRAD sensor sometimes reports missing or negative Current SALL 43089 values during overnight and early morning hours. Please replace sensor.
    [Show full text]
  • The Rain Gauge: Humans Have Been Measuring Precipitation for Thousands of Years
    DIY Weather Station Part 1- The Rain Gauge: Humans have been measuring precipitation for thousands of years. Water is our most critical resource and keeping track of rainfall from year to year helps us plan everything from managing Nantucket’s Sole Source Aquifer to managing our food crops and flower gardens. In this week’s bACKyard Biologist, we build our own tool for measuring Nantucket’s rainfall. Nantucket receives around 40 inches of precipitation each year, and it is evenly distributed throughout the year. This is vastly different from other places in the world, such as the red rock deserts of the Colorado Plateau, for instance, which receive under ten inches of rain each year. Not only do deserts receive much less rain, but they often get most of it during a brief period in spring or fall. Plants and animals both rely on a supply of water to survive year to year, so it is useful and interesting to measure how much rain we get- The project below is based on millennia of human experimentation, and we’re still improving the design of our rain gauges to this day! The Nantucket Land Council has a state-of-the-art rain gauge located off Eel Point Road which measures daily precipitation throughout the year. Not only that, but this solar powered marvel also collects precipitation to examine its chemistry, helping us better understand Nantucket’s climate. Materials: • Empty two-liter bottle, transparent • Utility knife • Sharpie • Masking tape or duct tape • Stones or gravel for ballast Instructions: 1. Empty your two-liter bottle and peel any label-stickers off of it.
    [Show full text]