Identity and Regulation of Stored and Secreted Progastrin-Derived Peptides in Sheep

Total Page:16

File Type:pdf, Size:1020Kb

Identity and Regulation of Stored and Secreted Progastrin-Derived Peptides in Sheep 0013-7227/04/$15.00/0 Endocrinology 145(11):5129–5140 Printed in U.S.A. Copyright © 2004 by The Endocrine Society doi: 10.1210/en.2004-0912 Identity and Regulation of Stored and Secreted Progastrin-Derived Peptides in Sheep ADRIENNE C. PATERSON, SHARON M. LOCKHART, JOSEPHINE BAKER, GREG NEUMANN, GRAHAM S. BALDWIN, AND ARTHUR SHULKES Department of Surgery, University of Melbourne, Austin Health, Melbourne, Victoria 3084, Australia Downloaded from https://academic.oup.com/endo/article/145/11/5129/2500504 by guest on 25 September 2021 (Amidated and nonamidated progastrin-derived peptides have antral (CTFP, 710 ؎ 62 pmol/liter; Gamide, 211 ؎ 35 pmol/liter distinct biological activities that are mediated by a range of and jugular (CTFP, 308 ؎ 16 pmol/liter; gastrin amide, 32 ؎ 3 receptor subtypes. The objective was to determine the nature pmol/liter) veins. Alteration of gastric acidity in sheep by iv of the stored and secreted progastrin-derived peptides and to infusion of a H/K-adenosine triphosphatase inhibitor or so- investigate whether progastrin release is regulated by gastric matostatin or by intragastric infusion of HCl demonstrated acidity. Using an antiserum directed to the C terminus of that the CTFP concentrations changed, although to a lesser progastrin for identification and to monitor purification, C- extent than the changes in circulating gastrin amide. We con- terminal flanking peptides (CTFP) of progastrin (prog76–83, clude that the CTFP of progastrin is the major stored and prog77–83, and prog78–83 in approximately equivalent amounts) circulating species of the gastrin gene, and that it is secreted were isolated and identified from extracts of sheep antrum in a regulated fashion rather than constitutively. Because using ion exchange, HPLC, and mass spectrometry. Only trace full-length progastrin is bioactive, but is only a minor antral amounts of full-length progastrin were present. Progastrin and secreted form, determination of the biological activity of CTFP was the predominant progastrin-derived peptide in the the C-terminal flanking peptides will be important for a com- Sim- plete understanding of gastrin endocrinology. (Endocrinology .[3 ؍ (antrum [progastrin CTFP/gastrin amide (Gamide ilarly, progastrin CTFP was the major circulating form in the 145: 5129–5140, 2004) ASTRIN, A CLASSICAL gastrointestinal hormone pro- and colorectal cancers in vitro and in vivo (15–18). The re- G duced by antral G cells, is the principal stimulant of ceptors mediating the effects of Ggly and progastrin have not gastric acid secretion (1, 2). Like many other peptide hor- yet been characterized, but, based on responses to specific mones, gastrin is synthesized as a large precursor molecule receptor antagonists, are distinct from the CCK-2 and CCK-1 (101 amino acids in man and 104 amino acids in most other receptors that interact with amidated gastrin and CCK (6). species) that is converted to progastrin (80 and 83 amino Depending on the extent of posttranslational processing acids in man and sheep, respectively) by cleavage of the and the source (antrum, duodenum, or tumor), the tissues NH2-terminal signal peptide. Subsequent processing results can contain variable amounts of progastrin, progastrin- in the generation of glycine-extended gastrins (Ggly) (G34gly processing intermediates, Ggly, and Gamide (19). Colorectal and G17gly), with the final step being amidation to gastrin carcinomas express progastrin, but processing is attenuated, amide (Gamide; G34amide and G17amide; Fig. 1) (3, 4). so that much of the synthesized progastrin is apparently not Until recently, amidated gastrin was thought to be the only fully processed to the amidated end product (20–22). biologically active form of gastrin. A major reassessment of In humans and other species, Gamide is generally ac- our understanding of gastrin biology occurred with the rec- cepted to be the predominant gastrin form found in the ognition that the precursor forms and the amidated end antrum, whereas full-length progastrin and Ggly are less product have distinct biological activities mediated by dif- than 5% as abundant as Gamide (13, 23–25). However, an- ferent receptors (5, 6). Gamide, acting through the cholecys- tisera to the carboxyl-terminal sequence of progastrin have tokinin-2 (CCK-2) receptor (previously known as the gas- shown high concentrations of C-terminal flanking peptides trin/CCK-B receptor) is the major hormonal regulator of (CTFP) in approximately equal concentration to Gamide (26, gastric acid secretion (1) and is a mitogen for normal gastric 27). This is true for the human and a number of species, epithelium and some gastric cancers in vitro and in vivo (5–8). including the antrum of pig, dog, ferret, and rat (13, 28). In In contrast, the precursor forms and intermediates, such as the human, the predominant form was progastrin75–80;in Ggly, have little direct effect on gastric function, but may other species, it was progastrin75–83 (13, 27). Serine 75 was potentiate the effects of Gamide (9–14). Ggly and progastrin phosphorylated to varying extents in the different species independently stimulate proliferation of the colonic mucosa (13, 27, 28). Fragments lacking serine 75 are present in the antrum of pig and dog, but at much lower concentrations than the nonapeptide progastrin75–83 (13). Abbreviations: CCK, Cholecystokinin; CTFP, C-terminal flanking There are few studies of the regulation of secretion of peptide; CTI, C-terminal immunoreactivity; Gamide, gastrin amide; Ggly, glycine-extended gastrin; TFA, trifluoroacetic acid. Gamide precursors. The release of Ggly from the antrum Endocrinology is published monthly by The Endocrine Society (http:// appears to be controlled in a similar fashion to Gamide (29, www.endo-society.org), the foremost professional society serving the 30). However, the ratio of Ggly to Gamide in the circulation endocrine community. is higher than that in the antrum, suggesting a differential 5129 5130 Endocrinology, November 2004, 145(11):5129–5140 Paterson et al. • Identity and Regulation of Progastrin-Derived Peptides Downloaded from https://academic.oup.com/endo/article/145/11/5129/2500504 by guest on 25 September 2021 FIG. 1. Structure of sheep progastrin and progastrin-derived peptides and specificity of antibodies. Preprogastrin (104 amino acids) is converted to progastrin (83 amino acids) by removal of the signal peptide. The sequential action of prohormone convertases (endopeptidases and carboxypeptidase B-like enzymes) converts progastrin to glycine-extended forms and CTFP by cleavage at paired basic residues. The C terminus of Ggly is then amidated by peptidyl ␣-amidating monooxygenase. For simplicity, only the 17-amino acid forms of Ggly and Gamide are depicted. The epitopes for the different antisera are shown. secretion (24, 31, 32). This may relate to the heterogeneity of a purse string suture into the antral region of the abomasum. Gastric the secretory granules, which contain different proportions juice was collected by first clearing the cannula of any contents, then of progastrin and its processing products (6, 33). The pro- aspirating approximately 5 ml gastric secretion. Cannulas were also inserted into the jugular veins, as described for the conscious sheep cessing of progastrin occurs within the secretory granules studies. Basal samples were not collected until 30 min after the surgery and involves cleavage, phosphorylation, sulfation, and ami- was completed. dation. The extent of processing is dependent on residence times and the strength and duration of the stimulation (34). Studies in conscious sheep However, the regulated secretion of progastrin has not been examined in vivo. The studies were performed in Merino-Corriedale-cross sheep, weighing 35–45 kg. After a local anesthetic (2 ml 1% lignocaine) had been Progastrin has recently been demonstrated to have administered, a hypodermic needle was inserted into the jugular vein, growth-promoting effects on normal colonic mucosa and directed toward the head (up). A polyvinyl cannula (inside diameter, colorectal cancers (15, 17, 18). These studies were performed 0.76 mm; outside diameter, 1.65 mm) was then passed through the using full-length progastrin, either as a recombinant peptide needle into the vein. The same procedure was followed for the con- tralateral jugular vein, except that the cannula was directed toward the or overexpressed as a transgene in the liver and secreted heart (down). Agonists and antagonists were infused through the can- constitutively. Although recombinant progastrin is relatively nula directed downward, and blood was collected from the cannula stable in the circulation (35), a comparison of the antral and directed upward. A 24-h recovery period was allowed, and animals were secreted forms of progastrin has not been reported. We, housed in metabolism cages for the duration of the experiments. therefore, determined the structure of the stored and secreted forms of ovine progastrin and compared the regulation of Studies in anesthetized sheep antral secretion of progastrin to that of Gamide. Protocol 1: effect of iv omeprazole and intragastric HCl infusions. After a 30-min basal period, omeprazole was administered via the jugular can- Materials and Methods nula pointing toward the heart as a bolus (0.65 mg/kg), followed im- Animal preparation mediately by an infusion of 0.90 mg/kg⅐h at 20 ml/h for 180 min. During the last hour of omeprazole infusion, 0.1 m HCl was administered via All experiments conformed with the National Health and Medical the gastric cannula to return the pH to between 1.5 and 2.5. This required Research Council of Australia code of practice for the care and use of an average of 120 ml over 30 min. Blood samples were obtained from animals for scientific purposes and were approved by the Austin health the jugular, antral, and fundic cannulas at regular intervals before, animal ethics committee. during, and after the infusion. Gastric pH was also measured at these times. Studies in anesthetized sheep The model for collecting antral and fundic blood has been reported Studies in conscious sheep previously (36).
Recommended publications
  • Expression and Localization of Gastrin Messenger RNA and Peptide in Spermatogenic Cells
    Expression and localization of gastrin messenger RNA and peptide in spermatogenic cells. M Schalling, … , T Hökfelt, J F Rehfeld J Clin Invest. 1990;86(2):660-669. https://doi.org/10.1172/JCI114758. Research Article In previous studies we have shown that the gene encoding cholecystokinin (CCK) is expressed in spermatogenic cells of several mammalian species. In the present study we show that a gene homologous to the CCK-related hormone, gastrin, is expressed in the human testis. The mRNA hybridizing to a human gastrin cDNA probe in the human testis was of the same size (0.7 kb) as gastrin mRNA in the human antrum. By in situ hybridization the gastrinlike mRNA was localized to seminiferous tubules. Immunocytochemical staining of human testis revealed gastrinlike peptides in the seminiferous tubules primarily at a position corresponding to spermatids and spermatozoa. In ejaculated spermatozoa gastrinlike immunoreactivity was localized to the acrosome. Acrosomal localization could also be shown in spermatids with electron microscopy. Extracts of the human testis contained significant amounts of progastrin, but no bioactive amidated gastrins. In contrast, ejaculated sperm contained mature carboxyamidated gastrin 34 and gastrin 17. The concentration of gastrin in ejaculated human spermatozoa varied considerably between individuals. We suggest that amidated gastrin (in humans) and CCK (in other mammals) are released during the acrosome reaction and that they may be important for fertilization. Find the latest version: https://jci.me/114758/pdf Expression and Localization of Gastrin Messenger RNA and Peptide in Spermatogenic Cells Martin Schalling,* Hhkan Persson,t Markku Pelto-Huikko,*9 Lars Odum,1I Peter Ekman,I Christer Gottlieb,** Tomas Hokfelt,* and Jens F.
    [Show full text]
  • Progastrin Production Transitions from Bmi1+/Prox1+ to Lgr5high Cells During Early Intestinal Tumorigenesis Julie Giraud, M
    Progastrin production transitions from Bmi1+/Prox1+ to Lgr5high cells during early intestinal tumorigenesis Julie Giraud, M. Foroutan, Jihane Boubaker-Vitre, Fanny Grillet, Z. Homayed, U. Jadhav, Philippe Crespy, Cyril Breuker, J-F. Bourgaux, J. Hazerbroucq, et al. To cite this version: Julie Giraud, M. Foroutan, Jihane Boubaker-Vitre, Fanny Grillet, Z. Homayed, et al.. Progastrin production transitions from Bmi1+/Prox1+ to Lgr5high cells during early intestinal tumorigene- sis. Translational Oncology, Elsevier, 2020, 14 (2), pp.101001. 10.1016/j.tranon.2020.101001. hal- 03090781 HAL Id: hal-03090781 https://hal.archives-ouvertes.fr/hal-03090781 Submitted on 12 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License Translational Oncology 14 (2021) 101001 Contents lists available at ScienceDirect Translational Oncology journal homepage: www.elsevier.com/locate/tranon Original Research + + high Progastrin production transitions from Bmi1 /Prox1 to Lgr5 cells during early intestinal tumorigenesis J. Giraud a, M. Foroutan b,c,1, J. Boubaker-Vitre a,1, F. Grillet a, Z. Homayed a, U. Jadhav d, P. Crespy a, C. Breuker a, J-F.
    [Show full text]
  • SCLC) and in Therapeutic Monitoring
    J Circ Biomark 2021; 10: 9-13 ISSN 1849-4544 | DOI: 10.33393/jcb.2021.2212 JCB ORIGINAL RESEARCH ARTICLE Circulating progastrin-releasing peptide in the diagnosis of Small Cell Lung Cancer (SCLC) and in therapeutic monitoring Vittoria Barchiesi1, Vittorio Simeon2, Claudia Sandomenico3, Monica Cantile4, Dionigio Cerasuolo5, Paolo Chiodini2, Alessandro Morabito3, Ernesta Cavalcanti5 1Department “Campania Centro”, A.O.R.N. “Antonio Cardarelli”, Napoli - Italy 2Medical Statistics Unit, University of Campania “Luigi Vanvitelli”, Napoli - Italy 3Thoracic Medical Oncology Unit, Istituto Nazionale Tumori IRCCS, “Fondazione G.Pascale”, Napoli - Italy 4Pathology Unit, Istituto Nazionale Tumori IRCCS, “Fondazione G.Pascale”, Napoli - Italy 5Laboratory Medicine Unit, Istituto Nazionale Tumori IRCCS, “Fondazione G.Pascale”, Napoli - Italy ABSTRACT Introduction: Progastrin-releasing peptide (proGRP), a precursor of GRP, has been recently reported as a putative circulating biomarker for differential diagnosis between non–small cell lung cancer (NSCLC) and SCLC. We evalu- ated the diagnostic effectiveness of proGRP to differentiate patients with NSCLC and SCLC and the usefulness of combined measurement of proGRP and neuron-specific enolase (NSE) for diagnosing SCLC. Methods: Serum proGRP, NSE, cytokeratin 19 fragment 21-1 (CYFRA 21.1), squamous cell carcinoma antigen (SCC Ag) and carcinoembryonic antigen (CEA) were prospectively collected and measured in patients with a new diag- nosis of lung cancer. Serum proGRP was also measured in healthy subjects. The serum proGRP, NSE, CYFRA 21.1 and CEA concentrations were determined by an electrochemiluminescence immunoassay and the serum SCC Ag concentration was determined by an automated immunofluorescence assay. Differences between proGRP and NSE in patients with SCLC and NSCLC were evaluated and compared using Mann-Whitney test.
    [Show full text]
  • Progastrin Expression in Mammalian Pancreas (Biosynthesis/Gastrinoma/Peptide Hormone/Radioimmunoassay) LINDA BARDRAM*, LINDA Hilstedt, and JENS F
    Proc. Nadl. Acad. Sci. USA Vol. 87, pp. 298-302, January 1990 Biochemistry Progastrin expression in mammalian pancreas (biosynthesis/gastrinoma/peptide hormone/radioimmunoassay) LINDA BARDRAM*, LINDA HILSTEDt, AND JENS F. REHFELDtt University Departments of *Surgical Gastroenterology and tClinical Chemistry, Rigshospitalet, DK-2100 Copenhagen, Denmark Communicated by Diter von Wettstein, August 31, 1989 (receivedfor review May 11, 1989) ABSTRACT Expression and processing ofprogastrin were a spacer sequence, the sequence containing the major bio- examined in fetal, neonatal, and adult pancreatic tissue from active forms of gastrin (i.e., gastrin-34 and gastrin-17), and five mammalian species (cat, dog, man, pig, and rat). A library finally a C-terminal flanking peptide. The decisive amino acid of sensitive, sequence-specific immunoassays for progastrin sequence during the biosynthetic maturation is shown in Fig. and its products was used to monitor extractions and chroma- 1. In the present study we have distinguished three major tography before and after cleavage with processing-like en- categories of preprogastrin products: (i) progastrins, which zymes. The results showed that progastrin and its products are are defined as products extended beyond glycine at the C expressed in the pancreas of all species in total concentrations terminus; (ii) glycine-extended intermediates, which are fur- varying from 0.3 to 58.9 pmol/g of tissue (medians). The ther processed progastrins that constitute the immediate degree of processing was age- and species-dependent. In com- precursors of the mature, bioactive gastrins; (iii) amidated parison with adult pancreatic tissue the fetal or neonatal gastrins (the bioactive gastrins), in which the C-terminal pancreas processed a higher fraction to bioactive, C-terminally phenylalanine residue is amidated using glycine as the amide amidated gastrin.
    [Show full text]
  • An Early Event in the Adenoma-Carcinoma Sequence Gut: First Published As 10.1136/Gut.47.6.820 on 1 December 2000
    820 Gut 2000;47:820–824 Gastrin and gastrin receptor activation: an early event in the adenoma-carcinoma sequence Gut: first published as 10.1136/gut.47.6.820 on 1 December 2000. Downloaded from A M Smith, S A Watson Abstract naemia on in vitro colonic cancer cell lines3–6 Background and aims—Gastrin and the and in tumours in vivo.7–9 The action of gastrin cholecystokinin type B/gastrin receptor in colorectal cancer is potentially mediated by (CCKBR) have been shown to be ex- several receptor subtypes. The presence of a pressed in colorectal adenocarcinoma. high aYnity binding site has been seen in 57% Both exogenous and autocrine gastrin of samples,10 although gastrin/cholecystokinin have been demonstrated to stimulate type B receptor (CCKBR) mRNA has only growth of colorectal cancer but it is not been demonstrated in less than 20% of known if gastrin aVects the growth of samples.11 12 However, other receptor isoforms colonic polyps. The purpose of this study may be responsible for the proliferative action was to determine if gastrin and CCKBR of gastrins, including the cholecystokinin type are expressed in human colonic polyps C receptor,11 the glycine extended gastrin 17 and to determine at which stage of (Gly-G17) receptor,13 or potentially truncated progression this occurs. isoforms of CCKBR.14 15 Methods—A range of human colonic Following malignant transformation of the polyps was assessed for gastrin and colonic epithelial cell, there is activation of the CCKBR gene and protein expression. gastrin gene16 and the cell associated gastrin Results—Normal colonic mucosa did not can act in an autocrine/paracrine manner.17 express gastrin or CCKBR.
    [Show full text]
  • Review Gastrin, Gastrin Receptors and Colorectal Carcinoma
    Gut 1998;42:581–584 581 Review Gastrin, gastrin receptors and colorectal carcinoma The possibility that gastrin may play a role in the develop- for the proliferative eVects of progastrin is completely ment of colorectal carcinoma has aroused considerable unknown. interest over the past decade. In early reports some colo- Hypergastrinaemia in patients with colorectal carcinoma rectal carcinomas and colorectal carcinoma cell lines were has also been controversial. Early studies were not control- shown to produce gastrin,1 to express gastrin receptors,2 led for Helicobacter pylori status (a known cause of and to respond mitogenically to exogenous gastrin.2 The hypergastrinaemia), had small sample sizes with the results most favoured explanation for these observations was an skewed by apparent outliers, and measured only amidated autocrine or paracrine loop in which gastrin was produced gastrin.14 15 After controlling for these factors, we have con- by the tumour, bound to tumour receptors, and stimulated firmed that circulating amidated gastrin is not raised in tumour growth. However, gastrin may also have acted as an patients with colorectal carcinoma, but have made the endocrine agent as hypergastrinaemia has been reported in intriguing finding that circulating non-amidated gastrin is a number of patients with colorectal carcinoma, although raised both in H pylori positive (5.2-fold) and negative the source of the gastrin has not been defined.3–5 Further (2.3-fold) patients with colorectal carcinoma.15 The initial studies of the expression of gastrin6–8 and gastrin reports of a decrease in plasma gastrin following surgical receptors910in colorectal carcinomas and colorectal carci- resection of the colorectal carcinoma45have not been con- noma cell lines, and of hypergastrinaemia in patients with firmed however.13 14 The low gastrin concentration in colorectal carcinoma,11–15 indicated that the early positive colorectal carcinomas, together with the increase in circu- reports were not universally correct.
    [Show full text]
  • Antiapoptotic Effects of Progastrin on Pancreatic Cancer Cells Are Mediated by Sustained Activation of Nuclear Factor-KB
    Research Article Antiapoptotic Effects of Progastrin on Pancreatic Cancer Cells Are Mediated by Sustained Activation of Nuclear Factor-KB William Rengifo-Cam,1 Shahid Umar,2 Shubhashish Sarkar,1 and Pomila Singh1 Departments of 1Neuroscience and Cell Biology and 2Internal Medicine-Gastroenterology, University of Texas Medical Branch, Galveston, Texas Abstract pancreatic cancer (6), lung cancer (7), and ovarian cancer (8) also Progastrin (PG) exerts proliferative and antiapoptotic effects express the gastrin gene and PGs. It is possible that PG-like on intestinal epithelial and colon cancer cells via Annexin II peptides play an equally important role in the growth and survival (ANX-II). In here, we show that ANX-II similarly mediates of many of these PG-expressing cancers as reported for PG- proliferative and antiapoptotic effects of PG on a pancreatic dependent CRCs (2, 9). Therefore, understanding the mechanisms cancer cell line, AR42J. The role of several signaling molecules by which PG-like peptides mediate growth and survival effects on was examined in delineating the biological activity of PG. PG cancer cells will be extremely useful in developing a targeted (0.1–1.0 nmol/L) caused a significant increase (2- to 5-fold) in approach for treating PG-dependent cancer as previously discussed the phosphorylation of phosphatidylinositol 3-kinase (PI3K), (2, 9, 10). The high-affinity PG/gastrin-binding sites are distinct Akt (Thr308), p38 mitogen-activated protein kinase (MAPK; from CCK1R and CCK2R and bind PG-like peptides in the order of Thr180/Tyr182), extracellular signal-regulated kinases (ERK; PG>Gly gastrin>G17>CCK8 (3). Annexin II (ANX-II) was recently Thr202/Tyr204), IKB kinase A/B (IKKA/B; Ser176/180), IKBA discovered as one such molecule and is required for mediating (Ser32), and p65 nuclear factor-KB (NF-KB; Ser536).
    [Show full text]
  • The G-Protein Coupled Receptor 56, Expressed in Colonic Stem and Cancer Cells, Binds Progastrin to Promote Proliferation and Carcinogenesis
    Oncotarget, 2017, Vol. 8, (No. 25), pp: 40606-40619 Research Paper The G-protein coupled receptor 56, expressed in colonic stem and cancer cells, binds progastrin to promote proliferation and carcinogenesis Guangchun Jin1,2, Kosuke Sakitani1, Hongshan Wang1,3, Ying Jin1, Alexander Dubeykovskiy1, Daniel L. Worthley4, Yagnesh Tailor1 and Timothy C. Wang1 1Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY, USA 2The Research Institute, Yanbian University Hospital, Jilin, China 3Department of General surgery, Zhongshan Hospital, Fudan University, Shanghai, China 4South Australian Health and Medical Research Institute, University of Adelaide, Adelaide, South Australia, Australia Correspondence to: Timothy C. Wang, email: [email protected] Keywords: GPR56, progastrin, proliferation, stem cell, colorectal cancer Abbreviations: Human progastrin (hGAS), G-protein coupled receptor 56 (GPR56), 5-bromo-2’-deoxyuridine (BrdU), Bone morphogenetic protein (BMP). Received: November 02, 2016 Accepted: February 22, 2017 Published: March 23, 2017 Copyright: Jin et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Overexpression of human progastrin increases colonic mucosal proliferation and colorectal cancer progression in mice. The G-protein coupled receptor 56 (GPR56) is known to regulate cell adhesion, migration, proliferation and stem cell biology, but its expression in the gut has not been studied. We hypothesized that the promotion of colorectal cancer by progastrin may be mediated in part through GPR56. Here, we found that GPR56 expresses in rare colonic crypt cells that lineage trace colonic glands consistent with GPR56 marking long-lived colonic stem-progenitor cells.
    [Show full text]
  • Z-360 Suppresses Tumor Growth in MIA Paca-2-Bearing Mice Via Inhibition of Gastrin-Induced Anti-Apoptotic Effects
    ANTICANCER RESEARCH 37 : 4127-4137 (2017) doi:10.21873/anticanres.11800 Z-360 Suppresses Tumor Growth in MIA PaCa-2-bearing Mice via Inhibition of Gastrin-induced Anti-Apoptotic Effects YOSHIHIRO SHIOMI*, MAKOTO YOSHIMURA*, KAZUMASA KUKI*, YUKO HORI and TAKAO TANAKA Central Research Laboratories, ZERIA Pharmaceutical Co., Ltd., Kumagaya, Japan Abstract. Background/Aim: The aim of the study was to Nevertheless, the median survival time is still less than 1 evaluate the anti-tumor mechanism of Z-360, a year, which is far from satisfactory. Accordingly, new gastrin/cholecystokinin-2 receptor (CCK2R) antagonist, in approaches to chemotherapy are needed. To solve these MIA PaCa-2 cells and in a subcutaneous xenograft mice problems, novel strategies involving less toxic agents that model. Materials and Methods: The anti-tumor effects of Z- can sensitize pancreatic cancer cells to chemotherapy are 360 and/or gemcitabine were monitored using a MIA PaCa- necessary. 2 xenograft model. The effect of Z-360 on apoptosis in the Tumor development and progression, as well as resistance model was examined by TUNEL staining and real-time PCR to most oncologic therapies, result mainly from analysis and the effect in MIA PaCa-2 cells stably expressing unresponsiveness of apoptosis pathways (6). The poor human CCK2R was also evaluated by caspase-3/7 activity. prognosis of pancreatic cancer is partly due to intrinsic Results: In this xenograft model, Z-360 significantly reduced resistance to the apoptosis-inducing effects of chemotherapy. the tumor weight, increased TUNEL-positive cells and Therefore, it is important to discover a new drug that suppressed the expression of anti-apoptosis factors such as attenuates the apoptotic resistance of pancreatic cancer cells.
    [Show full text]
  • Autocrine Secretion of Progastrin Promotes the Survival and Self-Renewal of Colon Cancer Stem–Like Cells Julie Giraud1,2,3, Laura M
    Published OnlineFirst May 4, 2016; DOI: 10.1158/0008-5472.CAN-15-1497 Cancer Tumor and Stem Cell Biology Research Autocrine Secretion of Progastrin Promotes the Survival and Self-Renewal of Colon Cancer Stem–like Cells Julie Giraud1,2,3, Laura M. Failla4, Jean-Marc Pascussi1,2,3, Ebba L. Lagerqvist1,2,3, Jer emy Ollier1,2,3, Pascal Finetti5,Francois¸ Bertucci5, Chu Ya1,2,3,Imene Gasmi1,2,3, Jean-Francois¸ Bourgaux6, Michel Prudhomme6, Thibault Mazard7, Imade Ait-Arsa7, Leila Houhou8, Daniel Birnbaum5, AndreP elegrin 7, Charles Vincent7, James G. Ryall9, Dominique Joubert1,2,3, Julie Pannequin1,2,3,andFred eric Hollande1,2,3,4 Abstract Subpopulations of cancer stem–like cells (CSC) are thought Progastrin expression promoted CSC self-renewal and survival, to drive tumor progression and posttreatment recurrence in whereas its depletion by RNA interference–mediated or anti- multiple solid tumors. However, the mechanisms that maintain body-mediated strategies altered the homeostatic proportions stable proportions of self-renewing CSC within heterogeneous of CSC cells within heterogeneous colorectal cancer tumors. tumors under homeostatic conditions remain poorly under- Progastrin downregulation also decreased the frequency of stood. Progastrin is a secreted peptide that exhibits tumor- ALDHhigh cells, impairing their tumor-initiating potential, and forming potential in colorectal cancer, where it regulates inhibited the high glycolytic activity of ALDHhigh CSC to limit pathways known to modulate colon CSC behaviors. In this their self-renewal capability. Taken together, our results show study, we investigated the role of progastrin in regulating CSC how colorectal CSC maintain their tumor-initiating and self- phenotype in advanced colorectal cancer.
    [Show full text]
  • Annexin II Binds Progastrin and Gastrin-Like Peptides, and Mediates Growth
    Oncogene (2007) 26, 425–440 & 2007 Nature Publishing Group All rights reserved 0950-9232/07 $30.00 www.nature.com/onc ORIGINAL ARTICLE Annexin II binds progastrin and gastrin-like peptides, and mediates growth factor effects of autocrine and exogenous gastrins on colon cancer and intestinal epithelial cells P Singh1,HWu1, C Clark2 and A Owlia1 1Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA and 2Ciphergen Biosystems, Inc., Fremont, CA, USA We and others have reported the presence of novel Introduction progastrin (PG)/gastrin receptors on normal and cancer- ous intestinal cells. We had earlier reported the presence Progastrin and gastrin peptides are expressed in of 33–36 kDa gastrin-binding proteins on cellular mem- neuroendocrine cells in the brain and antral part of branes of colon cancer cells. The goal of the current study the stomachs and processed into the precursor peptide was to identify the protein(s) in the 33–36 kDa band, and (PG) and glycine extended form of gastrins (GG); analyse its functional significance. A carbodiimide cross- subsequent amidation at the C-terminal end generates linker was used for crosslinking radio-labeled gastrins amidated forms of gastrins (G17, G34) (Dockray et al., to membrane proteins from gastrin/PG responsive cell 1996). Under physiological conditions, only processed lines. Native membrane proteins, crosslinked to the forms of gastrins (G17, G34) are present as the major ligand, were solubulized and enriched by >1000-fold, circulating forms of gastrins (Dockray et al., 1996). and analysed by surface-enhanced laser desorption/ PG, GG and G17 exert proliferative effects on normal ionization-time of flight-mass spectrometry.
    [Show full text]
  • Progastrin-Releasing Peptide As a Diagnostic and Therapeutic Biomarker of Small Cell Lung Cancer
    Original Article Progastrin-releasing peptide as a diagnostic and therapeutic biomarker of small cell lung cancer Hyung-Joo Oh1, Ha-Young Park1, Ki-Hyun Kim1,Cheol-Kyu Park1,2, Hong-Joon Shin1, Jung-Hwan Lim1,2, Yong-Soo Kwon1, In-Jae Oh1,2, Yu-Il Kim1, Sung-Chul Lim1, Young-Chul Kim1,2, Soo-Hyun Kim3, Myung-Geun Shin3 1Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea; 2Lung and Esophageal Cancer Clinic, Chonnam National University Hwasun Hospital, Jeonnam, Korea; 3Department of Laboratory Medicine, Chonnam National University Medical School, Gwangju, Korea Contributions: (I) Conception and design: HJ Oh, IJ Oh, MG Shin; (II) Administrative support: JH Lim, YS Kwon, IJ Oh, YI Kim, SC Lim, YC Kim, SH Kim, MG Shin; (III) Provision of study materials or patients: HJ Oh, HY Park, KH Kim, CK Park, HJ Shin, IJ Oh, YC Kim; (IV) Collection and assembly of data: HJ Oh, HY Park, IJ Oh; (V) Data analysis and interpretation: HJ Oh, HY Park, CK Park, IJ Oh, YC Kim; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: In-Jae Oh, MD, PhD. Lung and Esophageal Cancer Clinic, Chonnam National University Hwasun Hospital, 322Seoyang-ro, Hwasun, 519-763, Korea. Email: [email protected]. Background: Progastrin-releasing peptide (proGRP) is a recently identified biomarker of small cell lung cancer (SCLC). We evaluated the usefulness of plasma proGRP level as a tumor marker for diagnosis and treatment monitoring in patients with SCLC. Methods: Plasma samples were collected prospectively from 452 [212 non-small cell lung cancer (NSCLC), 105 SCLC, and 135 other diseases] patients who visited the hospital for tissue diagnosis.
    [Show full text]