Trichoptera) Xamap
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Trait-Based Approach to Assess the Vulnerability of European Aquatic Insects to Climate Change
Hydrobiologia (2014) 721:297–315 DOI 10.1007/s10750-013-1690-7 PRIMARY RESEARCH PAPER A trait-based approach to assess the vulnerability of European aquatic insects to climate change Lorenza Conti • Astrid Schmidt-Kloiber • Gae¨l Grenouillet • Wolfram Graf Received: 15 May 2013 / Revised: 9 August 2013 / Accepted: 14 September 2013 / Published online: 27 September 2013 Ó Springer Science+Business Media Dordrecht 2013 Abstract Aquatic insects are the dominant taxon ecoregions. By means of a fuzzy correspondence group in most freshwater ecosystems. As temperature analysis (FCA), two gradients emerged: (1) a longi- is the main driver of their life cycle development, tudinal gradient, describing successive upstream– metabolic activity, and geographic distribution, these downstream features, and (2) a biogeographical gra- macroinvertebrates are particularly suitable for large dient, separating endemic and micro-endemic species scale and comparative studies of freshwater commu- from widely distributed taxa. Moreover, aquatic nity responses to climate change. A dataset of bio- insects of southern European ecoregions emerged as ecological traits of 1,942 Ephemeroptera, Plecoptera, those most endangered in terms of potential vulner- and Trichoptera (EPT) taxa was used to analyze (1) the ability to climate change. Comparative multi-taxon relationships among traits, (2) the potential vulnera- studies provide important new insights into freshwater bility of EPT species to climate change, and (3) the ecosystem functioning and responses to climate geographical occurrence patterns of these potentially change, and could be the first step toward developing endangered species at the scale of European integrative monitoring or assessment tools (e.g., trait- based indicators at the species level) by means of non- arbitrary statistical methods. -
Lazare Botosaneanu ‘Naturalist’ 61 Doi: 10.3897/Subtbiol.10.4760
Subterranean Biology 10: 61-73, 2012 (2013) Lazare Botosaneanu ‘Naturalist’ 61 doi: 10.3897/subtbiol.10.4760 Lazare Botosaneanu ‘Naturalist’ 1927 – 2012 demic training shortly after the Second World War at the Faculty of Biology of the University of Bucharest, the same city where he was born and raised. At a young age he had already showed interest in Zoology. He wrote his first publication –about a new caddisfly species– at the age of 20. As Botosaneanu himself wanted to remark, the prominent Romanian zoologist and man of culture Constantin Motaş had great influence on him. A small portrait of Motaş was one of the few objects adorning his ascetic office in the Amsterdam Museum. Later on, the geneticist and evolutionary biologist Theodosius Dobzhansky and the evolutionary biologist Ernst Mayr greatly influenced his thinking. In 1956, he was appoint- ed as a senior researcher at the Institute of Speleology belonging to the Rumanian Academy of Sciences. Lazare Botosaneanu began his career as an entomologist, and in particular he studied Trichoptera. Until the end of his life he would remain studying this group of insects and most of his publications are dedicated to the Trichoptera and their environment. His colleague and friend Prof. Mar- cos Gonzalez, of University of Santiago de Compostella (Spain) recently described his contribution to Entomolo- gy in an obituary published in the Trichoptera newsletter2 Lazare Botosaneanu’s first contribution to the study of Subterranean Biology took place in 1954, when he co-authored with the Romanian carcinologist Adriana Damian-Georgescu a paper on animals discovered in the drinking water conduits of the city of Bucharest. -
Research Article
Ecologica Montenegrina 44: 69-95 (2021) This journal is available online at: www.biotaxa.org/em http://dx.doi.org/10.37828/em.2021.44.10 Biodiversity, DNA barcoding data and ecological traits of caddisflies (Insecta, Trichoptera) in the catchment area of the Mediterranean karst River Cetina (Croatia) IVAN VUČKOVIĆ1*, MLADEN KUČINIĆ2**, ANĐELA ĆUKUŠIĆ3, MARIJANA VUKOVIĆ4, RENATA ĆUK5, SVJETLANA STANIĆ-KOŠTROMAN6, DARKO CERJANEC7 & MLADEN PLANTAK1 1Elektroprojekt d.d., Civil and Architectural Engineering Department, Section of Ecology, Alexandera von Humboldta 4, 10 000 Zagreb, Croatia. E-mails:[email protected]; [email protected] 2Department of Biology (Laboratory for Entomology), Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10 000 Zagreb, Croatia. E-mail: [email protected] 3Ministry of Economy and Sustainable Development, Radnička cesta 80/7, 10000 Zagreb, Croatia. E-mail: [email protected] 4Croatian Natural History Museum, Demetrova 1, 10 000 Zagreb, Croatia. E-mail: [email protected] 5Hrvatske vode, Central Water Management Laboratory, Ulica grada Vukovara 220, 10 000 Zagreb, Croatia. E-mail:[email protected] 6Faculty of Science and Education, University of Mostar, Matice hrvatske bb, 88000 Mostar, Bosnia and Herzegovina. E-mail: [email protected] 7Primary School Barilović, Barilović 96, 47252 Barilović and Primary School Netretić, Netretić 1, 47271 E-mail: [email protected] *Corresponding author: [email protected] **Equally contributing author Received 2 June 2021 │ Accepted by V. Pešić: 19 July 2021 │ Published online 2 August 2021. Abstract The environmental and faunistic research conducted included defining the composition and distribution of caddisflies collected using ultraviolet (UV) light trap at 11 stations along the Cetina River, from the spring to the mouth, and also along its tributaries the Ruda River and the Grab River with two sampling stations each, and the Rumin River with one station. -
About the Book the Format Acknowledgments
About the Book For more than ten years I have been working on a book on bryophyte ecology and was joined by Heinjo During, who has been very helpful in critiquing multiple versions of the chapters. But as the book progressed, the field of bryophyte ecology progressed faster. No chapter ever seemed to stay finished, hence the decision to publish online. Furthermore, rather than being a textbook, it is evolving into an encyclopedia that would be at least three volumes. Having reached the age when I could retire whenever I wanted to, I no longer needed be so concerned with the publish or perish paradigm. In keeping with the sharing nature of bryologists, and the need to educate the non-bryologists about the nature and role of bryophytes in the ecosystem, it seemed my personal goals could best be accomplished by publishing online. This has several advantages for me. I can choose the format I want, I can include lots of color images, and I can post chapters or parts of chapters as I complete them and update later if I find it important. Throughout the book I have posed questions. I have even attempt to offer hypotheses for many of these. It is my hope that these questions and hypotheses will inspire students of all ages to attempt to answer these. Some are simple and could even be done by elementary school children. Others are suitable for undergraduate projects. And some will take lifelong work or a large team of researchers around the world. Have fun with them! The Format The decision to publish Bryophyte Ecology as an ebook occurred after I had a publisher, and I am sure I have not thought of all the complexities of publishing as I complete things, rather than in the order of the planned organization. -
Diversity and Ecosystem Services of Trichoptera
Review Diversity and Ecosystem Services of Trichoptera John C. Morse 1,*, Paul B. Frandsen 2,3, Wolfram Graf 4 and Jessica A. Thomas 5 1 Department of Plant & Environmental Sciences, Clemson University, E-143 Poole Agricultural Center, Clemson, SC 29634-0310, USA; [email protected] 2 Department of Plant & Wildlife Sciences, Brigham Young University, 701 E University Parkway Drive, Provo, UT 84602, USA; [email protected] 3 Data Science Lab, Smithsonian Institution, 600 Maryland Ave SW, Washington, D.C. 20024, USA 4 BOKU, Institute of Hydrobiology and Aquatic Ecology Management, University of Natural Resources and Life Sciences, Gregor Mendelstr. 33, A-1180 Vienna, Austria; [email protected] 5 Department of Biology, University of York, Wentworth Way, York Y010 5DD, UK; [email protected] * Correspondence: [email protected]; Tel.: +1-864-656-5049 Received: 2 February 2019; Accepted: 12 April 2019; Published: 1 May 2019 Abstract: The holometabolous insect order Trichoptera (caddisflies) includes more known species than all of the other primarily aquatic orders of insects combined. They are distributed unevenly; with the greatest number and density occurring in the Oriental Biogeographic Region and the smallest in the East Palearctic. Ecosystem services provided by Trichoptera are also very diverse and include their essential roles in food webs, in biological monitoring of water quality, as food for fish and other predators (many of which are of human concern), and as engineers that stabilize gravel bed sediment. They are especially important in capturing and using a wide variety of nutrients in many forms, transforming them for use by other organisms in freshwaters and surrounding riparian areas. -
A Phylogenetic Review of the Species Groups of Phylocentropus Banks (Trichoptera: Dipseudopsidae)
Zoosymposia 18: 143–152 (2020) ISSN 1178-9905 (print edition) https://www.mapress.com/j/zs ZOOSYMPOSIA Copyright © 2020 · Magnolia Press ISSN 1178-9913 (online edition) https://doi.org/10.11646/zoosymposia.18.1.18 http://zoobank.org/urn:lsid:zoobank.org:pub:964C864A-89AC-4ECC-B4D2-F5ACD9F2C05C A phylogenetic review of the species groups of Phylocentropus Banks (Trichoptera: Dipseudopsidae) JOHN S. WEAVER USDA, 230-59 International Airport Cen. Blvd., Bldg. C, Suite 100, Rm 109, Jamaica, New York, 11431, USA. [email protected]; https://orcid.org/0000-0002-5684-0899 ABSTRACT A phylogenetic review of the three species groups of the caddisfly genus Phylocentropus Banks, proposed by Ross (1965), is provided. The Phylocentropus auriceps Species Group contains 9 species: †P. antiquus, P. auriceps, †P. cretaceous, †P. gelhausi, †P. ligulatus, †P. simplex, †P. spiniger, †P. succinolebanensis, and †P. swolenskyi,; the P. placidus Species Group, 4 species: P. carolinus, P. harrisi, P. lucidus, and P. placidus; and the P. orientalis Species Group, 7 species: P. anas, P. narumonae, P. ngoclinh, P. orientalis, P. shigae, P. tohoku, and P. vietnamellus. A hypothetical phylogenetic tree of the genus is presented along with its historic biogeography. Keywords: Trichoptera, Dipseudopsidae, Phylocentropus, amber, systematics, phylogeny, biogeography, Cretaceous, Eocene Ross (1965) proposed three species groups for the genus Phylocentropus which at the time contained 10 spe- cies: 6 extant species (4 from eastern North America and 2 from eastern Asia) and 4 extinct species from Baltic amber. Since then 10 additional species of Phylocentropus have been discovered: 6 extant species (1 from southeastern North America and 5 from Southeast Asia) and 4 fossil species from New Jersey and Lebanese amber. -
Bibliographia Trichopterorum
Entry numbers checked/adjusted: 23/10/12 Bibliographia Trichopterorum Volume 4 1991-2000 (Preliminary) ©Andrew P.Nimmo 106-29 Ave NW, EDMONTON, Alberta, Canada T6J 4H6 e-mail: [email protected] [As at 25/3/14] 2 LITERATURE CITATIONS [*indicates that I have a copy of the paper in question] 0001 Anon. 1993. Studies on the structure and function of river ecosystems of the Far East, 2. Rep. on work supported by Japan Soc. Promot. Sci. 1992. 82 pp. TN. 0002 * . 1994. Gunter Brückerman. 19.12.1960 12.2.1994. Braueria 21:7. [Photo only]. 0003 . 1994. New kind of fly discovered in Man.[itoba]. Eco Briefs, Edmonton Journal. Sept. 4. 0004 . 1997. Caddis biodiversity. Weta 20:40-41. ZRan 134-03000625 & 00002404. 0005 . 1997. Rote Liste gefahrdeter Tiere und Pflanzen des Burgenlandes. BFB-Ber. 87: 1-33. ZRan 135-02001470. 0006 1998. Floods have their benefits. Current Sci., Weekly Reader Corp. 84(1):12. 0007 . 1999. Short reports. Taxa new to Finland, new provincial records and deletions from the fauna of Finland. Ent. Fenn. 10:1-5. ZRan 136-02000496. 0008 . 2000. Entomology report. Sandnats 22(3):10-12, 20. ZRan 137-09000211. 0009 . 2000. Short reports. Ent. Fenn. 11:1-4. ZRan 136-03000823. 0010 * . 2000. Nattsländor - Trichoptera. pp 285-296. In: Rödlistade arter i Sverige 2000. The 2000 Red List of Swedish species. ed. U.Gärdenfors. ArtDatabanken, SLU, Uppsala. ISBN 91 88506 23 1 0011 Aagaard, K., J.O.Solem, T.Nost, & O.Hanssen. 1997. The macrobenthos of the pristine stre- am, Skiftesaa, Haeylandet, Norway. Hydrobiologia 348:81-94. -
Functional Feeding Groups of Aquatic Insect Families in Latin America: a Critical Analysis and Review of Existing Literature
Functional feeding groups of aquatic insect families in Latin America: a critical analysis and review of existing literature Alonso Ramírez1 & Pablo E. Gutiérrez-Fonseca2 1. Department of Environmental Sciences, University of Puerto Rico, P.O. Box 190341, San Juan, Puerto Rico 00919; [email protected] 2. Department of Biology, University of Puerto Rico Rio Piedras, San Juan, Puerto Rico 00919; [email protected] Received 12-XII-2013. Corrected 20-I-2014. Accepted 13-II-2014. Abstract: Aquatic macroinvertebrates are involved in numerous processes within aquatic ecosystems. They often have important effects on ecosystem processes such as primary production (via grazing), detritus break- down, and nutrient mineralization and downstream spiraling. The functional feeding groups (FFG) classification was developed as a tool to facilitate the incorporation of macroinvertebrates in studies of aquatic ecosystems. This classification has the advantage of combining morphological characteristics (e.g., mouth part specializa- tion) and behavioral mechanisms (e.g., way of feeding) used by macroinvertebrates when consuming resources. Although recent efforts have greatly advanced our ability to identify aquatic macroinvertebrates, there is limited information on FFG assignment. Furthermore, there has been some variation in the use of the FFG classification, in part due to an emphasis on using gut content analysis to assign FFG, which is more appropriate for assigning trophic guilds. Thus, the main goals of this study are to (1) provide an overview of the value of using the FFG classification, (2) make an initial attempt to summarize available information on FFG for aquatic insects in Latin America, and (3) provide general guidelines on how to assign organisms to their FFGs. -
ACTA BIANCO 1 2014.Qxp
ACTA ENTOMO LOGICA SL OVENICA LJUBLJANA, JUNIJ 2018 Vol. 26, øt. 1: 83 –88 FIRST RECORD OF BERAEA PULLATA (CURTIS, 1834) (INSECTA, TRICHOPTERA) FOR ALBANIA Halil IBRAHIMI 1* and Mladen KUČINIĆ 2 1Department of Biology, Faculty of Mathematical and Natural Sciences, University of Prishtina “Hasan Prishtina”, “Mother Teresa” p.n., 10 000 Prishtina, Republic of Kosovo 2 Department of Biology (Laboratory of Entomology), Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia * Corresponding author [email protected] Abstract - Beraea pullata, a species of the family Beraeidae, is present all over Eu - ropean continent but with only few records from the Balkan Peninsula. We report this species for the first time from Albania, more precisely from Bjeshkët e Nemuna Mountains. Other sympatric species with Beraea pullata in investigated locality are: Rhyacophila fasciata, Philopotamus montanus and Hydropsyche spp. Beraea pullata is the fifth species of the family Beraeidae currently known for Albania. KEY WORDS : Beraeidae ; rare species; aquatic insects; Balkan Peninsula Izvleček – PRVA NAJDBA VRSTE BERAEA PULLATA (CURTIS, 1834) (IN - SECTA, TRICHOPTERA) V ALBANIJI Beraea pullata, vrsta iz družine Beraeidae, je prisotna vsepovsod po evropski celini, a le z malo podatki z balkanskega polotoka. Prvič poročamo o tej vrsti v Albaniji, natančneje v gorovju Bjeshkët e Nemuna. Druge z vrsto Beraea pullata simpatrične vrste na preiskanem najdišču so Rhyacophila fasciata, Philopotamus montanus in Hydropsyche spp. Beraea pullata je peta vrsta družine Beraeidae, znana za Albanijo doslej. KLJUČNE BESEDE : Beraeidae ; redke vrste; vodne žuželke; Balkanski polotok 83 Acta entomologica slovenica, 26 (1), 2018 Introduction The family Beraeidae is a small family composed of 7 genera and more than 50 species. -
First Record of Beraea Dira Mclachlan 1875 (INSECTA, TRICHOPTERA, BERAEIDAE) in Croatia
Nat. Croat. Vol. 24(2), 2015 311 NAT. CROAT. VOL. 24 No 2 311–316 ZAGREB December 31, 2015 original scientific paper / izvorni znanstveni rad DOI: 10.302/NC.2015.24.20 FIrst recorD of BERAEA DIRA MCLaChLaN 1875 (INSECTA, TRIChOPTERA, BERAEIDAE) in CrOatIa Renata Ćuk1, Ivan Vučković2, Mladen Kučinić3, Damir Valić4 & Johann Waringer5 1hrvatske vode, Central Water Management Laboratory, Ulica grada Vukovara 220, 10000 Zagreb, Croatia ([email protected]) 2elektroprojekt d.d., Civil and architectural engineering Department, alexandera von humboldta 4, 10000 Zagreb, Croatia 3Department of Biology (Laboratory for entomology), Faculty of science, University of Zagreb, rooseveltov trg 5, 10000 Zagreb, Croatia 4Institute ruđer Bošković, Laboratory for aquaculture and Pathology of aquatic Organisms, Bijenička cesta 54, 10000 Zagreb, Croatia 5University of Vienna, Department of Limnology and Oceanography, Vienna, austria Ćuk, R., Vučković, I., Kučinić, M., Valić, D. & Waringer, J.: First record of Beraea dira McLach- lan 1875 (Insecta, Trichoptera, Beraeidae) in Croatia. Nat. Croat., Vol. 24, No. 2, 311–316, 2015, Zagreb. the caddisfly species Beraea dira McLachlan 1875 was recorded for the first time in Croatia in the upper course of the Bistrac river in October 2014. Key words: caddisfly, new record for Croatia, Bistracr iver Ćuk, R., Vučković, I., Kučinić, M., Valić, D. & Waringer, J.: Prvi nalaz vrste Beraea dira McLach- lan 1875 (Insecta, Trichoptera, Beraeidae) u Hrvatskoj. Nat. Croat., Vol. 24, No. 2, 311–316, 2015, Zagreb. tular Beraea dira McLachlan 1875 je po prvi put utvrđen na području hrvatske u gornjem toku rijeke Bistrac u listopadu 2014. godine. Ključne riječi: tulari, nova vrsta za hrvatsku, rijeka Bistrac INTRODUCtION the order trichoptera, or caddisflies, includes 14,548 extant species Morse( , 2015), more than 1,400 of which occur in europe (Malicky, 2004). -
The Trichoptera of North Carolina
Families and genera within Trichoptera in North Carolina Spicipalpia (closed-cocoon makers) Integripalpia (portable-case makers) RHYACOPHILIDAE .................................................60 PHRYGANEIDAE .....................................................78 Rhyacophila (Agrypnia) HYDROPTILIDAE ...................................................62 (Banksiola) Oligostomis (Agraylea) (Phryganea) Dibusa Ptilostomis Hydroptila Leucotrichia BRACHYCENTRIDAE .............................................79 Mayatrichia Brachycentrus Neotrichia Micrasema Ochrotrichia LEPIDOSTOMATIDAE ............................................81 Orthotrichia Lepidostoma Oxyethira (Theliopsyche) Palaeagapetus LIMNEPHILIDAE .....................................................81 Stactobiella (Anabolia) GLOSSOSOMATIDAE ..............................................65 (Frenesia) Agapetus Hydatophylax Culoptila Ironoquia Glossosoma (Limnephilus) Matrioptila Platycentropus Protoptila Pseudostenophylax Pycnopsyche APATANIIDAE ..........................................................85 (fixed-retreat makers) Apatania Annulipalpia (Manophylax) PHILOPOTAMIDAE .................................................67 UENOIDAE .................................................................86 Chimarra Neophylax Dolophilodes GOERIDAE .................................................................87 (Fumanta) Goera (Sisko) (Goerita) Wormaldia LEPTOCERIDAE .......................................................88 PSYCHOMYIIDAE ....................................................68 -
Füsun Slpahiler Lobes, Which Are Acute at the Tips
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Braueria Jahr/Year: 2001 Band/Volume: 28 Autor(en)/Author(s): Sipahiler Füsun Artikel/Article: Three new species and new records of Trichoptera from Turkey and Spain (Philopotamidae, Beraeidae, Leptoceridae) 21-23 © Hans Malicky/Austria; download unter www.biologiezentrum.at 21 BRAUERIA (Lunz am See, Austria) 28:21-23 (2001) Ernodes malickyi sp.n. (Beraeidae) The length of the anterior wing of males and females is 5-5.5 mm. Male genitalia (Figs. 6-10): Segment 9 is rounded on the anterior Three new species and new records of Trichoptera margin. The preanal appendages are rather long and broad. Segment from Turkey and Spain (Philopotamidae, Beraeidae, 10 is long; in dorsal view, it is broad at the base and narrowed Leptoceridae) subdistally. On the subdistal part, it is bordered with sclerotized bands connecting in the middle of the apical margin; the apical margin is sharply V-shaped excised medially, so the sides are seen as distinct Füsun SlPAHILER lobes, which are acute at the tips. Intermediate appendages are shorter than segment 10 and gradually curved dorsally. In ventral Abstract: In this study, the following new species are described and view, the inferior appendages are broad on the apical parts, having a illustrated: Wormaldia dizkiran sp.n. from Turkey (Philopotamidae), large and short lobe subdistally; the other two lobes located on the Ernodes malickyi sp.n. from Spain and France (Beraeidae) and inner surface are thin and long. The aedeagus has a curved spine. Leptocerus savur sp.n.