Chapter 5* - the Use of Biological Material

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 5* - the Use of Biological Material Water Quality Assessments - A Guide to Use of Biota, Sediments and Water in Environmental Monitoring - Second Edition Edited by Deborah Chapman © 1992, 1996 UNESCO/WHO/UNEP ISBN 0 419 21590 5 (HB) 0 419 21600 6 (PB) Chapter 5* - The use of biological material *This chapter was prepared by G. Friedrich, D. Chapman and A. Beim 5.1. Introduction Natural events and anthropogenic influences can affect the aquatic environment in many ways (see Chapter 2): synthetic substances may be added to the water, the hydrological regime may be altered or the physical or chemical nature of the water may be changed. Most organisms living in a water body are sensitive to any changes in their environment, whether natural (such as increased turbidity during floods) or unnatural (such as chemical contamination or decreased dissolved oxygen arising from sewage inputs). Different organisms respond in different ways. The most extreme responses include death or migration to another habitat. Less obvious responses include reduced reproductive capacity and inhibition of certain enzyme systems necessary for normal metabolism. Once the responses of particular aquatic organisms to any given changes have been identified, they may be used to determine the quality of water with respect to its suitability for aquatic life. Organisms studied in situ can show the integrated effects of all impacts on the water body, and can be used to compare relative changes in water quality from site to site, or over a period of time. Alternatively, aquatic organisms can be studied in the laboratory (or occasionally in the field) using standardised systems and methods, together with samples of water taken from a water body or effluent. These tests, sometimes known as biotests, can be used to provide information on the intensity of adverse effects resulting from specific anthropogenic influences, or to aid in the evaluation of the potential environmental impact of substances or effluents discharged into surface or groundwater systems. Most kinds of biological analysis can be used alone or as part of an integrated assessment system where data from biological methods are considered together with data from chemical analyses and sediment studies. A full appreciation of natural changes and anthropogenic influences in a water body can only be achieved by means of a combination of ecological methods and biotests. Sometimes these studies need to be carried out over a period of many years in order to determine the normal variation in biological variables as well as whether any changes (natural or unnatural) have occurred or are occurring. An example of a continuous programme of biological assessment using a variety of methods is that carried out in Lake Baikal, Russia (Kozhova and Beim, 1993). It is not possible to describe in this chapter, in detail, all the methods and variations that exist for biological analysis of water quality. There are several comprehensive texts and reviews which cover this subject (e.g. Ravera, 1978; OECD, 1987; Newman, 1988; Abel, 1989) and the details of many of the methods are published in appropriate reports and journals. Since many biological methods have been developed for local use and are based on specific species, an attempt has been made in this chapter to give only the basic principles behind the methods. With the help of such information it should be possible to decide whether such methods are applicable to the water quality assessment objectives in question. In many cases, when such methods are chosen, it will be necessary to adapt the basic principle to the local hydrobiological conditions, including the flora and fauna. 5.2. Factors affecting biological systems in the aquatic environment 5.2.1 Natural features of aquatic environments The flora and fauna present in specific aquatic systems are a function of the combined effects of various hydrological, physical and chemical factors. Two of these factors specific to water bodies are: • The density of the water, which allows organisms to live in suspension. Organisms which exploit this are called plankton, and consist of photosynthetic algae (phytoplankton), small animals (zooplankton) which feed on other planktonic organisms and some fish species which feed on other plankton and/or fish. The development of a rich planktonic community depends on the residence time (or retention time) of the water in the water body (see sections 6.4.2 and 7.2.5). Fast flowing water tends to carry away organisms before they have time to breed and to establish populations and, therefore, planktonic communities are more usually associated with standing waters such as lakes and reservoirs. As many fish are strong swimmers they are able to live in rivers, provided there are suitable breeding grounds present (see sections 6.4.1 and 6.4.2). Organisms living permanently in fast flowing waters, require specific adaptations to their body shape and behaviour (see section 6.4.1). • The abundance of dissolved and particulate nutrients in the water. The constant supply of these often allows diverse and rich communities of planktonic and benthic (those living in or on the bottom) organisms to develop. An abundance of dissolved nutrients in shallow, slow flowing or standing waters allows the growth of larger aquatic plants (macrophytes), which in turn provide food, shelter and breeding grounds for other organisms. The photosynthetic organisms which depend on the dissolved nutrients and sunlight for their own carbon production are termed the primary producers. These organisms are the food source of the zooplankton and small fish (secondary producers), which in turn are the food source of other fish (tertiary producers). This simplified system is known as the food chain and, together with the processes of decay and decomposition, is responsible for carbon transfer within the aquatic environment. In practice, the interactions between different groups are more complex and may be referred to as the food web. For more detailed information on the fundamentals of biological systems in water bodies see Hutchinson (1967), Hynes (1970), Wetzel (1975), Whitton (1975) and Moss (1980). 5.2.2 Anthropogenic influences on water bodies In addition to natural features, biological communities are often affected directly by human activities (such as inputs of toxins, increased suspended solids, habitat modification or oxygen depletion) or indirectly by processes influenced by anthropogenic activities (e.g. chelating capacity). The variety of effects that can be observed on different aquatic organisms as a result of anthropogenic influences can be demonstrated by the example of domestic sewage. Purely domestic sewage, without the input of modern, synthetic, harmful substances, such as chlorinated hydrocarbons, detergents etc., is characterised by high concentrations of easily biodegradable organic matter. It also contains high concentrations of bacteria, viruses and other pathogens from which water-borne diseases may arise. During the process of biodegradation of sewage in a river there is an initial rapid decline in oxygen concentration in the water resulting from microbial respiration during self-purification. However, microbial activity also leads to an increase in nutrient content and sometimes other harmful substances are formed such as hydrogen sulphide or ionised ammonia (Figure 5.1). Hydrogen sulphide is very toxic, but ionised ammonia is a nutrient which is more easily assimilated than nitrate. However, if the pH value exceeds 8.5, a rapid increase in unionised ammonia occurs (see Figure 3.2) which is very toxic to fish. Phosphate also becomes available following the biological decomposition of domestic sewage. These changes in the chemical composition of the water are followed by significant changes in the structure of the biota, some of which exploit the increased nutrients and others which can tolerate reduced oxygen concentrations (Figure 5.1). Such changes form the basis of water quality assessments using biota as indicators of the intensity of pollution. Figure 5.1 Typical effects on water quality and the associated biota which may be observed downstream of a sewage outlet. A and B. Physical and chemical changes; C. Changes in micro-organism populations; D. Changes in invertebrate populations (After Hynes, 1960) 5.2.3 Physical alterations in the aquatic environment The presence or absence of specific aquatic organisms depends on the physical environment and its associated habitats, such as fast flowing water with large stones or boulders or still waters with fine deposited sediments. Although these environments can easily be modified by human activities, including river damming, canalisation and drainage schemes, natural changes can occur in the physical environment due to local climatological and geographical conditions. Events such as torrential rain storms or prolonged droughts can lead to sudden or gradual modifications of a natural habitat, e.g. by increased siltation or scouring of river beds, which in turn lead to changes in the flora and fauna of the water body. These changes can be quite dramatic, including short term or permanent loss of species. It is important to understand the hydrological regime of water bodies when designing biological assessment programmes so that effects due to natural changes in the environment can be separated from those that may be caused by human activities. 5.2.4 Dissolved oxygen Oxygen is an important factor for aquatic life and the chemical characteristics of the environment. Concentrations less than 100 per cent saturation can occur normally under certain circumstances, e.g. at the bottom of nutrient rich lakes (see Figure 7.8), or at night in slow flowing rivers (see Figures 6.19 and 6.20). In such locations, species may be found which are adapted to low concentrations of oxygen. Under normal conditions these species would be rare, but they can become widespread in association with pollution or nutrient enrichment. However, many species are able to survive a potentially harmful lack of oxygen for a short time, but rarely for days or many hours.
Recommended publications
  • Lazare Botosaneanu ‘Naturalist’ 61 Doi: 10.3897/Subtbiol.10.4760
    Subterranean Biology 10: 61-73, 2012 (2013) Lazare Botosaneanu ‘Naturalist’ 61 doi: 10.3897/subtbiol.10.4760 Lazare Botosaneanu ‘Naturalist’ 1927 – 2012 demic training shortly after the Second World War at the Faculty of Biology of the University of Bucharest, the same city where he was born and raised. At a young age he had already showed interest in Zoology. He wrote his first publication –about a new caddisfly species– at the age of 20. As Botosaneanu himself wanted to remark, the prominent Romanian zoologist and man of culture Constantin Motaş had great influence on him. A small portrait of Motaş was one of the few objects adorning his ascetic office in the Amsterdam Museum. Later on, the geneticist and evolutionary biologist Theodosius Dobzhansky and the evolutionary biologist Ernst Mayr greatly influenced his thinking. In 1956, he was appoint- ed as a senior researcher at the Institute of Speleology belonging to the Rumanian Academy of Sciences. Lazare Botosaneanu began his career as an entomologist, and in particular he studied Trichoptera. Until the end of his life he would remain studying this group of insects and most of his publications are dedicated to the Trichoptera and their environment. His colleague and friend Prof. Mar- cos Gonzalez, of University of Santiago de Compostella (Spain) recently described his contribution to Entomolo- gy in an obituary published in the Trichoptera newsletter2 Lazare Botosaneanu’s first contribution to the study of Subterranean Biology took place in 1954, when he co-authored with the Romanian carcinologist Adriana Damian-Georgescu a paper on animals discovered in the drinking water conduits of the city of Bucharest.
    [Show full text]
  • About the Book the Format Acknowledgments
    About the Book For more than ten years I have been working on a book on bryophyte ecology and was joined by Heinjo During, who has been very helpful in critiquing multiple versions of the chapters. But as the book progressed, the field of bryophyte ecology progressed faster. No chapter ever seemed to stay finished, hence the decision to publish online. Furthermore, rather than being a textbook, it is evolving into an encyclopedia that would be at least three volumes. Having reached the age when I could retire whenever I wanted to, I no longer needed be so concerned with the publish or perish paradigm. In keeping with the sharing nature of bryologists, and the need to educate the non-bryologists about the nature and role of bryophytes in the ecosystem, it seemed my personal goals could best be accomplished by publishing online. This has several advantages for me. I can choose the format I want, I can include lots of color images, and I can post chapters or parts of chapters as I complete them and update later if I find it important. Throughout the book I have posed questions. I have even attempt to offer hypotheses for many of these. It is my hope that these questions and hypotheses will inspire students of all ages to attempt to answer these. Some are simple and could even be done by elementary school children. Others are suitable for undergraduate projects. And some will take lifelong work or a large team of researchers around the world. Have fun with them! The Format The decision to publish Bryophyte Ecology as an ebook occurred after I had a publisher, and I am sure I have not thought of all the complexities of publishing as I complete things, rather than in the order of the planned organization.
    [Show full text]
  • Diversity and Ecosystem Services of Trichoptera
    Review Diversity and Ecosystem Services of Trichoptera John C. Morse 1,*, Paul B. Frandsen 2,3, Wolfram Graf 4 and Jessica A. Thomas 5 1 Department of Plant & Environmental Sciences, Clemson University, E-143 Poole Agricultural Center, Clemson, SC 29634-0310, USA; [email protected] 2 Department of Plant & Wildlife Sciences, Brigham Young University, 701 E University Parkway Drive, Provo, UT 84602, USA; [email protected] 3 Data Science Lab, Smithsonian Institution, 600 Maryland Ave SW, Washington, D.C. 20024, USA 4 BOKU, Institute of Hydrobiology and Aquatic Ecology Management, University of Natural Resources and Life Sciences, Gregor Mendelstr. 33, A-1180 Vienna, Austria; [email protected] 5 Department of Biology, University of York, Wentworth Way, York Y010 5DD, UK; [email protected] * Correspondence: [email protected]; Tel.: +1-864-656-5049 Received: 2 February 2019; Accepted: 12 April 2019; Published: 1 May 2019 Abstract: The holometabolous insect order Trichoptera (caddisflies) includes more known species than all of the other primarily aquatic orders of insects combined. They are distributed unevenly; with the greatest number and density occurring in the Oriental Biogeographic Region and the smallest in the East Palearctic. Ecosystem services provided by Trichoptera are also very diverse and include their essential roles in food webs, in biological monitoring of water quality, as food for fish and other predators (many of which are of human concern), and as engineers that stabilize gravel bed sediment. They are especially important in capturing and using a wide variety of nutrients in many forms, transforming them for use by other organisms in freshwaters and surrounding riparian areas.
    [Show full text]
  • A Phylogenetic Review of the Species Groups of Phylocentropus Banks (Trichoptera: Dipseudopsidae)
    Zoosymposia 18: 143–152 (2020) ISSN 1178-9905 (print edition) https://www.mapress.com/j/zs ZOOSYMPOSIA Copyright © 2020 · Magnolia Press ISSN 1178-9913 (online edition) https://doi.org/10.11646/zoosymposia.18.1.18 http://zoobank.org/urn:lsid:zoobank.org:pub:964C864A-89AC-4ECC-B4D2-F5ACD9F2C05C A phylogenetic review of the species groups of Phylocentropus Banks (Trichoptera: Dipseudopsidae) JOHN S. WEAVER USDA, 230-59 International Airport Cen. Blvd., Bldg. C, Suite 100, Rm 109, Jamaica, New York, 11431, USA. [email protected]; https://orcid.org/0000-0002-5684-0899 ABSTRACT A phylogenetic review of the three species groups of the caddisfly genus Phylocentropus Banks, proposed by Ross (1965), is provided. The Phylocentropus auriceps Species Group contains 9 species: †P. antiquus, P. auriceps, †P. cretaceous, †P. gelhausi, †P. ligulatus, †P. simplex, †P. spiniger, †P. succinolebanensis, and †P. swolenskyi,; the P. placidus Species Group, 4 species: P. carolinus, P. harrisi, P. lucidus, and P. placidus; and the P. orientalis Species Group, 7 species: P. anas, P. narumonae, P. ngoclinh, P. orientalis, P. shigae, P. tohoku, and P. vietnamellus. A hypothetical phylogenetic tree of the genus is presented along with its historic biogeography. Keywords: Trichoptera, Dipseudopsidae, Phylocentropus, amber, systematics, phylogeny, biogeography, Cretaceous, Eocene Ross (1965) proposed three species groups for the genus Phylocentropus which at the time contained 10 spe- cies: 6 extant species (4 from eastern North America and 2 from eastern Asia) and 4 extinct species from Baltic amber. Since then 10 additional species of Phylocentropus have been discovered: 6 extant species (1 from southeastern North America and 5 from Southeast Asia) and 4 fossil species from New Jersey and Lebanese amber.
    [Show full text]
  • Bibliographia Trichopterorum
    Entry numbers checked/adjusted: 23/10/12 Bibliographia Trichopterorum Volume 4 1991-2000 (Preliminary) ©Andrew P.Nimmo 106-29 Ave NW, EDMONTON, Alberta, Canada T6J 4H6 e-mail: [email protected] [As at 25/3/14] 2 LITERATURE CITATIONS [*indicates that I have a copy of the paper in question] 0001 Anon. 1993. Studies on the structure and function of river ecosystems of the Far East, 2. Rep. on work supported by Japan Soc. Promot. Sci. 1992. 82 pp. TN. 0002 * . 1994. Gunter Brückerman. 19.12.1960 12.2.1994. Braueria 21:7. [Photo only]. 0003 . 1994. New kind of fly discovered in Man.[itoba]. Eco Briefs, Edmonton Journal. Sept. 4. 0004 . 1997. Caddis biodiversity. Weta 20:40-41. ZRan 134-03000625 & 00002404. 0005 . 1997. Rote Liste gefahrdeter Tiere und Pflanzen des Burgenlandes. BFB-Ber. 87: 1-33. ZRan 135-02001470. 0006 1998. Floods have their benefits. Current Sci., Weekly Reader Corp. 84(1):12. 0007 . 1999. Short reports. Taxa new to Finland, new provincial records and deletions from the fauna of Finland. Ent. Fenn. 10:1-5. ZRan 136-02000496. 0008 . 2000. Entomology report. Sandnats 22(3):10-12, 20. ZRan 137-09000211. 0009 . 2000. Short reports. Ent. Fenn. 11:1-4. ZRan 136-03000823. 0010 * . 2000. Nattsländor - Trichoptera. pp 285-296. In: Rödlistade arter i Sverige 2000. The 2000 Red List of Swedish species. ed. U.Gärdenfors. ArtDatabanken, SLU, Uppsala. ISBN 91 88506 23 1 0011 Aagaard, K., J.O.Solem, T.Nost, & O.Hanssen. 1997. The macrobenthos of the pristine stre- am, Skiftesaa, Haeylandet, Norway. Hydrobiologia 348:81-94.
    [Show full text]
  • Functional Feeding Groups of Aquatic Insect Families in Latin America: a Critical Analysis and Review of Existing Literature
    Functional feeding groups of aquatic insect families in Latin America: a critical analysis and review of existing literature Alonso Ramírez1 & Pablo E. Gutiérrez-Fonseca2 1. Department of Environmental Sciences, University of Puerto Rico, P.O. Box 190341, San Juan, Puerto Rico 00919; [email protected] 2. Department of Biology, University of Puerto Rico Rio Piedras, San Juan, Puerto Rico 00919; [email protected] Received 12-XII-2013. Corrected 20-I-2014. Accepted 13-II-2014. Abstract: Aquatic macroinvertebrates are involved in numerous processes within aquatic ecosystems. They often have important effects on ecosystem processes such as primary production (via grazing), detritus break- down, and nutrient mineralization and downstream spiraling. The functional feeding groups (FFG) classification was developed as a tool to facilitate the incorporation of macroinvertebrates in studies of aquatic ecosystems. This classification has the advantage of combining morphological characteristics (e.g., mouth part specializa- tion) and behavioral mechanisms (e.g., way of feeding) used by macroinvertebrates when consuming resources. Although recent efforts have greatly advanced our ability to identify aquatic macroinvertebrates, there is limited information on FFG assignment. Furthermore, there has been some variation in the use of the FFG classification, in part due to an emphasis on using gut content analysis to assign FFG, which is more appropriate for assigning trophic guilds. Thus, the main goals of this study are to (1) provide an overview of the value of using the FFG classification, (2) make an initial attempt to summarize available information on FFG for aquatic insects in Latin America, and (3) provide general guidelines on how to assign organisms to their FFGs.
    [Show full text]
  • ACTA BIANCO 1 2014.Qxp
    ACTA ENTOMO LOGICA SL OVENICA LJUBLJANA, JUNIJ 2018 Vol. 26, øt. 1: 83 –88 FIRST RECORD OF BERAEA PULLATA (CURTIS, 1834) (INSECTA, TRICHOPTERA) FOR ALBANIA Halil IBRAHIMI 1* and Mladen KUČINIĆ 2 1Department of Biology, Faculty of Mathematical and Natural Sciences, University of Prishtina “Hasan Prishtina”, “Mother Teresa” p.n., 10 000 Prishtina, Republic of Kosovo 2 Department of Biology (Laboratory of Entomology), Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia * Corresponding author [email protected] Abstract - Beraea pullata, a species of the family Beraeidae, is present all over Eu - ropean continent but with only few records from the Balkan Peninsula. We report this species for the first time from Albania, more precisely from Bjeshkët e Nemuna Mountains. Other sympatric species with Beraea pullata in investigated locality are: Rhyacophila fasciata, Philopotamus montanus and Hydropsyche spp. Beraea pullata is the fifth species of the family Beraeidae currently known for Albania. KEY WORDS : Beraeidae ; rare species; aquatic insects; Balkan Peninsula Izvleček – PRVA NAJDBA VRSTE BERAEA PULLATA (CURTIS, 1834) (IN - SECTA, TRICHOPTERA) V ALBANIJI Beraea pullata, vrsta iz družine Beraeidae, je prisotna vsepovsod po evropski celini, a le z malo podatki z balkanskega polotoka. Prvič poročamo o tej vrsti v Albaniji, natančneje v gorovju Bjeshkët e Nemuna. Druge z vrsto Beraea pullata simpatrične vrste na preiskanem najdišču so Rhyacophila fasciata, Philopotamus montanus in Hydropsyche spp. Beraea pullata je peta vrsta družine Beraeidae, znana za Albanijo doslej. KLJUČNE BESEDE : Beraeidae ; redke vrste; vodne žuželke; Balkanski polotok 83 Acta entomologica slovenica, 26 (1), 2018 Introduction The family Beraeidae is a small family composed of 7 genera and more than 50 species.
    [Show full text]
  • First Record of Beraea Dira Mclachlan 1875 (INSECTA, TRICHOPTERA, BERAEIDAE) in Croatia
    Nat. Croat. Vol. 24(2), 2015 311 NAT. CROAT. VOL. 24 No 2 311–316 ZAGREB December 31, 2015 original scientific paper / izvorni znanstveni rad DOI: 10.302/NC.2015.24.20 FIrst recorD of BERAEA DIRA MCLaChLaN 1875 (INSECTA, TRIChOPTERA, BERAEIDAE) in CrOatIa Renata Ćuk1, Ivan Vučković2, Mladen Kučinić3, Damir Valić4 & Johann Waringer5 1hrvatske vode, Central Water Management Laboratory, Ulica grada Vukovara 220, 10000 Zagreb, Croatia ([email protected]) 2elektroprojekt d.d., Civil and architectural engineering Department, alexandera von humboldta 4, 10000 Zagreb, Croatia 3Department of Biology (Laboratory for entomology), Faculty of science, University of Zagreb, rooseveltov trg 5, 10000 Zagreb, Croatia 4Institute ruđer Bošković, Laboratory for aquaculture and Pathology of aquatic Organisms, Bijenička cesta 54, 10000 Zagreb, Croatia 5University of Vienna, Department of Limnology and Oceanography, Vienna, austria Ćuk, R., Vučković, I., Kučinić, M., Valić, D. & Waringer, J.: First record of Beraea dira McLach- lan 1875 (Insecta, Trichoptera, Beraeidae) in Croatia. Nat. Croat., Vol. 24, No. 2, 311–316, 2015, Zagreb. the caddisfly species Beraea dira McLachlan 1875 was recorded for the first time in Croatia in the upper course of the Bistrac river in October 2014. Key words: caddisfly, new record for Croatia, Bistracr iver Ćuk, R., Vučković, I., Kučinić, M., Valić, D. & Waringer, J.: Prvi nalaz vrste Beraea dira McLach- lan 1875 (Insecta, Trichoptera, Beraeidae) u Hrvatskoj. Nat. Croat., Vol. 24, No. 2, 311–316, 2015, Zagreb. tular Beraea dira McLachlan 1875 je po prvi put utvrđen na području hrvatske u gornjem toku rijeke Bistrac u listopadu 2014. godine. Ključne riječi: tulari, nova vrsta za hrvatsku, rijeka Bistrac INTRODUCtION the order trichoptera, or caddisflies, includes 14,548 extant species Morse( , 2015), more than 1,400 of which occur in europe (Malicky, 2004).
    [Show full text]
  • The Trichoptera of North Carolina
    Families and genera within Trichoptera in North Carolina Spicipalpia (closed-cocoon makers) Integripalpia (portable-case makers) RHYACOPHILIDAE .................................................60 PHRYGANEIDAE .....................................................78 Rhyacophila (Agrypnia) HYDROPTILIDAE ...................................................62 (Banksiola) Oligostomis (Agraylea) (Phryganea) Dibusa Ptilostomis Hydroptila Leucotrichia BRACHYCENTRIDAE .............................................79 Mayatrichia Brachycentrus Neotrichia Micrasema Ochrotrichia LEPIDOSTOMATIDAE ............................................81 Orthotrichia Lepidostoma Oxyethira (Theliopsyche) Palaeagapetus LIMNEPHILIDAE .....................................................81 Stactobiella (Anabolia) GLOSSOSOMATIDAE ..............................................65 (Frenesia) Agapetus Hydatophylax Culoptila Ironoquia Glossosoma (Limnephilus) Matrioptila Platycentropus Protoptila Pseudostenophylax Pycnopsyche APATANIIDAE ..........................................................85 (fixed-retreat makers) Apatania Annulipalpia (Manophylax) PHILOPOTAMIDAE .................................................67 UENOIDAE .................................................................86 Chimarra Neophylax Dolophilodes GOERIDAE .................................................................87 (Fumanta) Goera (Sisko) (Goerita) Wormaldia LEPTOCERIDAE .......................................................88 PSYCHOMYIIDAE ....................................................68
    [Show full text]
  • Füsun Slpahiler Lobes, Which Are Acute at the Tips
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Braueria Jahr/Year: 2001 Band/Volume: 28 Autor(en)/Author(s): Sipahiler Füsun Artikel/Article: Three new species and new records of Trichoptera from Turkey and Spain (Philopotamidae, Beraeidae, Leptoceridae) 21-23 © Hans Malicky/Austria; download unter www.biologiezentrum.at 21 BRAUERIA (Lunz am See, Austria) 28:21-23 (2001) Ernodes malickyi sp.n. (Beraeidae) The length of the anterior wing of males and females is 5-5.5 mm. Male genitalia (Figs. 6-10): Segment 9 is rounded on the anterior Three new species and new records of Trichoptera margin. The preanal appendages are rather long and broad. Segment from Turkey and Spain (Philopotamidae, Beraeidae, 10 is long; in dorsal view, it is broad at the base and narrowed Leptoceridae) subdistally. On the subdistal part, it is bordered with sclerotized bands connecting in the middle of the apical margin; the apical margin is sharply V-shaped excised medially, so the sides are seen as distinct Füsun SlPAHILER lobes, which are acute at the tips. Intermediate appendages are shorter than segment 10 and gradually curved dorsally. In ventral Abstract: In this study, the following new species are described and view, the inferior appendages are broad on the apical parts, having a illustrated: Wormaldia dizkiran sp.n. from Turkey (Philopotamidae), large and short lobe subdistally; the other two lobes located on the Ernodes malickyi sp.n. from Spain and France (Beraeidae) and inner surface are thin and long. The aedeagus has a curved spine. Leptocerus savur sp.n.
    [Show full text]
  • A STUDY INTO the MACROINVERTEBRATEFAUNA & WATER Quaqty of LUNDY ISLAND's LOTIC ENVIRONMENT
    Rep. Lundy Field Soc. 44 A STUDY INTO THE MACROINVERTEBRATEFAUNA & WATER QUAqTY OF LUNDY ISLAND'S LOTIC ENVIRONMENT. By PeterS. Long Dept. ofPure & Applied Biology, University of Wales, College Cardiff, Cardiff, South Glamorgan. INTRODUCTION In addition to its geographical isolation, Lundy island also has specific characteristics related to its geology, terrestrial habitats and its climate. The factors influencing the island's aquatic habitats make them very different to those located on the mainland. It would follow that the biocoenosis of streams should be influenced by this difference and this, in tum, should be displayed in the aquatic community structure. Very little work has been done on island !otic habitats. Lundy itself hasn't been extensively surveyed to date, although two streams were investigated by George and Sheridan ( 1986), so a detailed survey covering the entire island would offer the opportunity of breaking new ground and would also create a foundation for future studies. Although the island's streams are subjected to gross fluctuations in conditions, especially in flow and temperature, it was considered that a richer community than thai previously found could exist on the island. It was also the aim of this survey to assess the water quality of the island's streams and relate this to the macro invertebrate fauna. As a result, a thorough biological, physical and chemical survey of the island's less temporary streams was conducted in the summer of 1993. METHODS Before the main survey was undertaken a feasibility study was carried out; this consisted of a systematic appraisal of each of the island's major watercourses and the invertebrate communities found therein.
    [Show full text]
  • Morse, JE 1993. a Checklist of the Trichoptera of North
    751 NOMINA INSECTA NEARCTICA The Trichoptera list is taken from the very important Phryganeidae paper: Morse, J.E. 1993. A checklist of the Trichoptera (Phryganopsychidae not NA) of North America, including Greenland and Mexico. (Plectrotarsidae not NA) Transactions of the American Entomological Society, Polycentropodidae 119:47-93. The list was modified by the addition of Psychomyiidae generic synonomies, the reversion to original orthography Rhyacophilidae for the valid species group names, and the elimination of Sericostomatidae the purely Mexican species. (Stenopsychidae not NA) (Tasmiidae not NA) ALTERNATIVE FAMILY NAMES Uenoidae Xiphocentronidae The purpose of this section is to list some family names the user might encounter in the Trichoptera. This list is not an exhaustive compilation of family group names, but STATISTICS is included for the convenience of the users of the check list. The abbreviation (not NA) stands for not North The following statistics are offered without comment. America, ie. the family is not found north of the US- Mexican border. Family # Names # Valid Arctopsychidae 17 11 Beraeidae 3 3 Agrypniidae (see Phryganeidae) Brachycentridae 47 35 (Anomalopsychidae not NA) Calamoceratidae 8 5 (Antipodoeciidae not NA) Glossosomatidae 83 78 Goeridae 12 12 Arctopsychidae Helicopsychidae 12 9 (Atriplectididae not NA) Hydrobiosidae 3 3 (Barbarochthonidae not NA) Hydropsychidae 175 146 Beraeidae Hydroptilidae 268 245 Lepidostomatidae 89 68 Brachycentridae Leptoceridae 173 113 Calamoceratidae Limnephilidae 406 292 (Calocidae
    [Show full text]