The Flashpix™ Image File Format
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Digital Still Camera Image File Format Standard
Digital Still Camera Image File Format Standard (Exchangeable image file format for Digital Still Cameras: Exif) Version 2.1 June 12, 1998 Japan Electronic Industry Development Association (JEIDA) This standard makes no warranty, express or implied, with respect to the use of any intellectual property, such as patents, copyrights and trademarks, belonging to any corporation or individual. Nor does this standard make any warranty regarding system reliability or product liability. Windows™ is a registered trademark of Microsoft Corporation in the United States and elsewhere. FlashPix™ is a registered trademark of Eastman Kodak Company. Revision History This "Digital Still Camera Image File Format Standard" is issued as a standard for the image file format (Exif: Exchangeable image file format) used in digital still cameras and related systems. It was first published in October 1996 as Version 1.0i. Then in May 1997, Version 1.1ii was issued, adding specifications for optional attribute information as well as stipulations relating to format implementation, in addition to the mandatory specifications of Version 1.0. The desire for a uniform file format standard for the image data stored by digital still cameras has increased as these cameras have grown in popularity. At the same time, with the broadening application of this technology, a similar desire has arisen for uniformity of the attribute information that can be recorded in a file. The Version 2.0iii makes improvements to the Exif format for greater ease of use, while allowing for backward compatibility with products of manufacturers currently implementing Exif Version 1.x or considering its future implementation. -
Introduction
Introduction: Multimedia Data refers to data such as text, numeric, images, video, audio, graphical, temporal, relational and categorical data. Multimedia data mining refers to pattern discovery, rule extraction and knowledge acquisition from multimedia database [9]. Multimedia database systems are increasingly common owing to the popular use of audio video equipment, digital cameras, CD-ROMs, and the Internet [12]. These are typically the elements or the building blocks of generalized multimedia environments, platforms, or integrating tools [1]. The main objective of multimedia data mining is the idea of mining data in different kinds of information. Current data mining tools operate on structured data, the kind of data that resides in large relational databases whereas data in the multimedia databases are semi- structured or unstructured. Often compared with data mining, multimedia mining reaches much higher complexity resulting from: (i) The huge volume of data, (ii) The variability and heterogeneity of the multimedia data (e.g. diversity of sensors, time or conditions of acquisition etc.) and (iii) The multimedia content’s meaning is subjective [9]. Multimedia generally gives a lot of data on each entity, but not the same data for each entity [18]. The multimedia is classified in to two categories: (i) Static media such as text, graphics, and images and (ii) Dynamic media such as animation, music, audio, speech, and video. Figure 4 illustrates multimedia data mining, in particular, various aspects of multimedia data mining [10]. Text Mining: Text Mining also referred as text data mining and it is used to find meaningful information from the unstructured texts that are from various sources. -
File Format Guidelines for Management and Long-Term Retention of Electronic Records
FILE FORMAT GUIDELINES FOR MANAGEMENT AND LONG-TERM RETENTION OF ELECTRONIC RECORDS 9/10/2012 State Archives of North Carolina File Format Guidelines for Management and Long-Term Retention of Electronic records Table of Contents 1. GUIDELINES AND RECOMMENDATIONS .................................................................................. 3 2. DESCRIPTION OF FORMATS RECOMMENDED FOR LONG-TERM RETENTION ......................... 7 2.1 Word Processing Documents ...................................................................................................................... 7 2.1.1 PDF/A-1a (.pdf) (ISO 19005-1 compliant PDF/A) ........................................................................ 7 2.1.2 OpenDocument Text (.odt) ................................................................................................................... 3 2.1.3 Special Note on Google Docs™ .......................................................................................................... 4 2.2 Plain Text Documents ................................................................................................................................... 5 2.2.1 Plain Text (.txt) US-ASCII or UTF-8 encoding ................................................................................... 6 2.2.2 Comma-separated file (.csv) US-ASCII or UTF-8 encoding ........................................................... 7 2.2.3 Tab-delimited file (.txt) US-ASCII or UTF-8 encoding .................................................................... 8 2.3 -
HP Scanjet 200 Flatbed Photo Scanner
HP Scanjet 200 Flatbed Photo Scanner The HP Scanjet 200 Flatbed Photo Scanner is ideal for home and business users who want a compact, easy-to-use scanner to scan photos and documents at high resolution and capture, store and share images quickly. Experience high-quality photo and Save space: this compact scanner fits document scanning. almost anywhere you need it. ● Scan important photos and get precise results. ● Set up and work where you want—this compact, Capture crisp image detail at up to 2400 x 4800 dpi landscape-oriented scanner can fit almost anywhere in resolution, 48-bit colour1. your home or office. ● Enjoy fast, convenient scanning of photos and images ● Scan books, magazines, and bound materials with ease, to Internet sharing sites using the scanner's floating-hinged lid for high clearance. ● Scan important paperwork, photos, and everyday documents into easy-to-access digital files. ● Eliminate the need for a power cable – this USB-powered scanner saves energy by plugging directly ● Finish jobs faster – scan a 10 x 15 cm (4 x 6-inch) into your PC2. photo in as fast as 21 seconds at 200-dpi resolution1 . Start working fast with easy-to-use functions and quick setup. ● Create the prints you need: use the ArcSoft PhotoStudio 6 photo-editing software included to easily edit, search, and organise images for printing in multiple sizes. ● Save time with convenient one-touch scanning capabilities. Capture and send images directly to email or PDF – and print or copy images with just a touch. ● Get to work quickly with an intuitive interface with easy-to-use controls. -
Neevia Document Converter Pro User Manual
Title NEEVIA Document Converter Professional Edition user’s guide version 7.2 Neevia Document Converter Pro v7.2 user’s guide © Copyright © 2000-2021, Neevia Technology. Page 1 of 76 Table of Contents Title ................................................................................................................................................................. 1 Table of Contents ........................................................................................................................................... 2 License ............................................................................................................................................................ 4 Introduction .................................................................................................................................................... 8 System Requirements ................................................................................................................................. 8 Installing and Uninstalling Document Converter Pro ................................................................................... 9 Unattended installation .............................................................................................................................. 9 Unattended uninstall ................................................................................................................................. 10 Registering Neevia Document Converter Pro .......................................................................................... -
TIFF Vs PSD Andrew Rodney, the Digital Dog One Area of Discussion
TIFF vs PSD Andrew Rodney, The Digital Dog One area of discussion and debate on-line is that by Photoshop users who wonder if they should save their documents as TIFF or PSD. Lets take a look at these two document formats in detail to see if one is more ideal than the other and what options they provide. TIFF (Tagged Image Document Format) is a very old and widely supported document format for storing photographic (Raster) image data. It was originally owned and controlled by Aldus but Adobe purchased that company many years ago so like PSD, Adobe controls this format. There are a number of different flavors of TIFF and it has many interesting capabilities and options. One advantage of TIFF over PSD is that it is an open specification. Other software products do not need to necessarily pay any licensing fees to Adobe to use it, unlike PSD, the native Photoshop document format. TIFF has undergone a number of revisions over the years although the latest incarnation, TIFF-6 hasn’t been updated since 1992. Enhancements were made in 2002 by Adobe to specify a few compression options, notably ZIP and JPEG along with LZW. Adobe references these options as “Advance TIFF” TIFF can store very simple or complex types of images. For example, you will see in Figure 1 that I can save a layered image created in Photoshop as a TIFF and have options for compression. However, like a PSD document, we don’t know for certain if other 3rd party products will have access to the layers. -
R-Photo User's Manual
User's Manual © R-Tools Technology Inc 2020. All rights reserved. www.r-tt.com © R-tools Technology Inc 2020. All rights reserved. No part of this User's Manual may be copied, altered, or transferred to, any other media without written, explicit consent from R-tools Technology Inc.. All brand or product names appearing herein are trademarks or registered trademarks of their respective holders. R-tools Technology Inc. has developed this User's Manual to the best of its knowledge, but does not guarantee that the program will fulfill all the desires of the user. No warranty is made in regard to specifications or features. R-tools Technology Inc. retains the right to make alterations to the content of this Manual without the obligation to inform third parties. Contents I Table of Contents I Start 1 II Quick Start Guide in 3 Steps 1 1 Step 1. Di.s..k.. .S..e..l.e..c..t.i.o..n.. .............................................................................................................. 1 2 Step 2. Fi.l.e..s.. .M..a..r..k.i.n..g.. ................................................................................................................ 4 3 Step 3. Re..c..o..v..e..r.y.. ...................................................................................................................... 6 III Features 9 1 File Sorti.n..g.. .............................................................................................................................. 9 2 File Sea.r.c..h.. ............................................................................................................................ -
CS8092-Computer Graphics and Multimedia Notes
UNIT I ILLUMINATION AND COLOUR MODELS Light sources – basic illumination models – halftone patterns and dithering techniques; Properties of light – Standard primaries and chromaticity diagram; Intuitive colour concepts – RGB colour model – YIQ colour model – CMY colour model – HSV colour model – HLS colour model; Colour selection. Color Models Color Model is a method for explaining the properties or behavior of color within some particular context. No single color model can explain all aspects of color, so we make use of different models to help describe the different perceived characteristics of color. Properties of Light Light is a narrow frequency band within the electromagnetic system. Other frequency bands within this spectrum are called radio waves, micro waves, infrared waves and x-rays. The below fig shows the frequency ranges for some of the electromagnetic bands. Each frequency value within the visible band corresponds to a distinct color. 4 At the low frequency end is a red color (4.3*10 Hz) and the highest frequency is a violet color 14 (7.5 *10 Hz) Spectral colors range from the reds through orange and yellow at the low frequency end to greens, blues and violet at the high end. Since light is an electro magnetic wave, the various colors are described in terms of either the frequency for the wave length λ of the wave. The wave length ad frequency of the monochromatic wave are inversely proportional to each other, with the proportionality constants as the speed of light C where C = λ f A light source such as the sun or a light bulb emits all frequencies within the visible range to produce white light. -
Scape D10.1 Keeps V1.0
Identification and selection of large‐scale migration tools and services Authors Rui Castro, Luís Faria (KEEP Solutions), Christoph Becker, Markus Hamm (Vienna University of Technology) June 2011 This work was partially supported by the SCAPE Project. The SCAPE project is co-funded by the European Union under FP7 ICT-2009.4.1 (Grant Agreement number 270137). This work is licensed under a CC-BY-SA International License Table of Contents 1 Introduction 1 1.1 Scope of this document 1 2 Related work 2 2.1 Preservation action tools 3 2.1.1 PLANETS 3 2.1.2 RODA 5 2.1.3 CRiB 6 2.2 Software quality models 6 2.2.1 ISO standard 25010 7 2.2.2 Decision criteria in digital preservation 7 3 Criteria for evaluating action tools 9 3.1 Functional suitability 10 3.2 Performance efficiency 11 3.3 Compatibility 11 3.4 Usability 11 3.5 Reliability 12 3.6 Security 12 3.7 Maintainability 13 3.8 Portability 13 4 Methodology 14 4.1 Analysis of requirements 14 4.2 Definition of the evaluation framework 14 4.3 Identification, evaluation and selection of action tools 14 5 Analysis of requirements 15 5.1 Requirements for the SCAPE platform 16 5.2 Requirements of the testbed scenarios 16 5.2.1 Scenario 1: Normalize document formats contained in the web archive 16 5.2.2 Scenario 2: Deep characterisation of huge media files 17 v 5.2.3 Scenario 3: Migrate digitised TIFFs to JPEG2000 17 5.2.4 Scenario 4: Migrate archive to new archiving system? 17 5.2.5 Scenario 5: RAW to NEXUS migration 18 6 Evaluation framework 18 6.1 Suitability for testbeds 19 6.2 Suitability for platform 19 6.3 Technical instalability 20 6.4 Legal constrains 20 6.5 Summary 20 7 Results 21 7.1 Identification of candidate tools 21 7.2 Evaluation and selection of tools 22 8 Conclusions 24 9 References 25 10 Appendix 28 10.1 List of identified action tools 28 vi 1 Introduction A preservation action is a concrete action, usually implemented by a software tool, that is performed on digital content in order to achieve some preservation goal. -
Zajy\CZKOWSKI Grzegorz, JAROSZ Bartosz
OVERVIEW OF IMAGE FORMATS SUITABLE FOR PRESENTATION OF ART ON THE WWW ZAJy\CZKOWSKI Grzegorz, JAROSZ Bartosz, WOJCIECHOWSKI Konrad, SMOtKA Bogdan, Silesian Technical University of Gliwice Department of Computer Science Akademicka 16, 44-101 Gliwice Email: bsmolka(a).peach.ia.oolsl. qliwice.pl NAtECKAAnna, MAtECKA Agnieszka SYNOWIEC Pawet, KROL Bogdan School of Arts Katowice An important aspect of image processing is the enormous amount of data which has to be handled when transmitting digital images. The efficient transmission of images is extremally important as the image data transfer takes up over 90 percent of the volume on the Internet. In this aspect computer data compression is a powerfull technology which is playing a vital role in the Information Age. The compression of information can be devided into lossles and lossy techniques. In some cases such as text or financial data transfer only the losless algoritms can be applied. However when transmitting or storing digital images or music data, the application of losssy techniques is aimost invisible to the user, but enables a drastic reduction of the data volume. In this article we present some of the compression techniques which can be used when transmitting or storing digital images. All the formats we were able to gather are accompanied by a short description and an Internet link, which can be used when detailed information is needed. Our intention is to find the optimal compression format for presenting artistic images over the Internet. The first step of our project is the cataloging of the existing formats and evaluating their efficiency when transmitting data containing artistic features. -
73 Review on Managing and Mining Web
[Goudannavar, 4(10): October, 2015] ISSN: 2277-9655 (I2OR), Publication Impact Factor: 3.785 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY REVIEW ON MANAGING AND MINING WEB MULTIMEDIA DATABASE Siddu P. Algur, Basavaraj A. Goudannavar* Department of Computer Science, Rani Channamma University, Belagavi-591156, Karnataka, India Department of Computer Science, Rani Channamma University, Belagavi-591156, Karnataka, India ABSTRACT The huge amount of unstructured data available on the web and the multimedia manages and storage technologies have led to incredible growth in very large and detailed multimedia database. Multimedia mining has proved to be a successful approach for extracting hidden knowledge from huge collections of structured digital data stored in databases. Also it is an inter disciplinary endeavor that draws upon expertise in multimedia retrieval, classification and data mining. Managing and mining web multimedia database is a framework that manages different types of data potentially represented in a wide diversity of formats on a wide array of media sources. It provides support for multimedia data types, and facilitate for creation, storage, access, managing and control of a multimedia database. The purpose of this paper is to provide overview of multimedia mining, categorizing the web multimedia database with various data mining techniques. This article also represents the important concepts of the multimedia databases on the web and how these databases have to managed and mined to extract patterns and trends. KEYWORDS: Web Mining, Multimedia database, text, image, audio, video mining. INTRODUCTION A multimedia database system includes a managing web multimedia database system, which manages and also provides support for storing, manipulating, and retrieving multimedia data from the multimedia database, a large collection of multimedia objects, such as image, video, audio, and text data. -
Snowbound Supported File Formats
Snowbound Supported File Formats This document describes the file type number, descriptions, and read/write capabilities of all supported file formats. We have provided two tables of information, one sorted by file format name, and the other by the file type number. RasterMaster and VirtualViewer® HTML5 are powerful conversion tools that can transform your documents and images into many different formats. Some format types are limited in the amount of color (bit-depth) they support in an image. Some file formats read and write only black and white (1-bit deep) and other file formats support only color images (8+ bits deep). For many of these cases, the product automatically converts the pixel depth to the appropriate value, based on the output format specified. The chart below will help you determine whether your black and white or color document will be able to convert straight to the desired output format with no additional processing. When saving to a format, if the error returned is PIXEL_DEPTH_UNSUPPORTED (-21), the output format does not support the current bits per pixel of the image you are trying to save. The chart below will help you identify formats with compatible bit depths. 1 FILE FORMAT KEY File Format Description 1-bit Black and white or monochrome images. 4-bit, 8-bit, 16-bit Grayscale images, that may appear to be black and white, but contain much more information and are much larger than 1-bit. 8-bit, 16-bit, 24-bit, 32-bit Full color images. Please note that the higher the bit depth (bits per pixel), then the larger the size of the image on the disk or in memory.