Carotenoids Overproduction in Dunaliella Sp.: Transcriptional Changes and New Insights Through Lycopene Β Cyclase Regulation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Identification of Early Salinity Stress-Responsive Proteins In
International Journal of Molecular Sciences Article Identification of Early Salinity Stress-Responsive Proteins in Dunaliella salina by isobaric tags for relative and absolute quantitation (iTRAQ)-Based Quantitative Proteomic Analysis Yuan Wang 1,2,†, Yuting Cong 2,†, Yonghua Wang 3, Zihu Guo 4, Jinrong Yue 2, Zhenyu Xing 2, Xiangnan Gao 2 and Xiaojie Chai 2,* 1 Key Laboratory of Hydrobiology in Liaoning Province’s Universities, Dalian Ocean University, Dalian 116021, China; [email protected] 2 College of fisheries and life science, Dalian Ocean University, Dalian 116021, China; [email protected] (Y.C.); [email protected] (J.Y.); [email protected] (Z.X.); [email protected] (X.G.) 3 Bioinformatics Center, College of Life Sciences, Northwest A&F University, Yangling 712100, China; [email protected] 4 College of Life Sciences, Northwest University, Xi’an, Shaanxi 710069, China; [email protected] * Correspondence: [email protected] † These authors contribute equally to the work. Received: 22 November 2018; Accepted: 16 January 2019; Published: 30 January 2019 Abstract: Salt stress is one of the most serious abiotic factors that inhibit plant growth. Dunaliella salina has been recognized as a model organism for stress response research due to its high capacity to tolerate extreme salt stress. A proteomic approach based on isobaric tags for relative and absolute quantitation (iTRAQ) was used to analyze the proteome of D. salina during early response to salt stress and identify the differentially abundant proteins (DAPs). A total of 141 DAPs were identified in salt-treated samples, including 75 upregulated and 66 downregulated DAPs after 3 and 24 h of salt stress. -
Phylogenetic Study of Some Strains of Dunaliella
American Journal of Environmental Science 9 (4): 317-321, 2013 ISSN: 1553-345X ©2013 Science Publication doi:10.3844/ajessp.2013.317.321 Published Online 9 (4) 2013 (http://www.thescipub.com/ajes.toc) Phylogenetic Study of Some Strains of Dunaliella 1Duc Tran, 1Trung Vo, 3Sixto Portilla, 2Clifford Louime, 1Nguyen Doan, 1Truc Mai, 1Dat Tran and 1Trang Ho 1School of Biotechnology, International University, Thu Duc Dist., VNU, Vietnam 2Florida A and M University, College of Engineering Sciences, Technology and Agriculture, FAMU Bio Energy Group, Tallahassee, FL 32307, USA 3Center for Estuarine, Environmental and Coastal Oceans Monitoring, Dowling College, 150 Idle Hour Blvd, Oakdale, New York 11769, USA Received 2013-07-13, Revised 2013-08-02; Accepted 2013-08-03 ABSTRACT Dunaliella strains were isolated from a key site for salt production in Vietnam (Vinh Hao, Binh Thuan province). The strains were identified based on Internal Transcribed Spacer (ITS) markers. The phylogenetic tree revealed these strains belong to the clades of Dunaliella salina and Dunaliella viridis . Results of this study confirm the ubiquitous nature of Dunaliella and suggest that strains of Dunaliella salina might be acquired locally worldwide for the production of beta-carotene. The identification of these species infers the presence of other Dunaliella species ( Dunaliella tertiolecta , Dunaliella primolecta , Dunaliella parva ), but further investigation would be required to confirm their presence in Vietnam. We anticipate the physiological and biochemical characteristics of these local species will be compared with imported strains in a future effort. This will facilitate selection of strains with the best potential for exploitation in the food, aquaculture and biofuel industries. -
A Mini Review-Effect of Dunaliella Salina on Growth and Health of Shrimps
International Journal of Fisheries and Aquatic Studies 2020; 8(5): 317-319 E-ISSN: 2347-5129 P-ISSN: 2394-0506 (ICV-Poland) Impact Value: 5.62 A mini review-effect of Dunaliella salina on growth and (GIF) Impact Factor: 0.549 IJFAS 2020; 8(5): 317-319 health of shrimps © 2020 IJFAS www.fisheriesjournal.com Received: 08-07-2020 Dian Yuni Pratiwi Accepted: 14-08-2020 Dian Yuni Pratiwi Abstract Lecturer of Faculty, Department Dunaliella salina is a unicellular green algae that can be used as a natural food for shrimp. This of Fisheries and Marine Science, microalgae provides various nutrients such as protein, carbohydrates, lipids, pigments and others. Several Universitas Padjadjaran, studies have shown that Dunaliella salina can increase the growth performance of shrimps. Not only that, Indonesia Dunaliella salina also grant various health effects. High β-carotene and phenol in Dunaliella salina can increase immune system. This review was examined the optimum growth condition for Dunaliellla salina, nutrition contained in Dunaliella salina, and effect of Dunaliella salina for growth and health of shrimps such as Fenneropenaeus indicus, Penaeus monodon, and Litopenaeus vannamei. This review recommendation for Dunaliella salina as a potential feed for other. Keywords: Dunaliella salina, Fenneropenaeus indicus, Penaeus monodon, Litopenaeus vannamei, growth, health 1. Introduction Shrimp is one of popular seafood in the world community. The United States, China, Europe, and Japan are the major consuming regions, while Indonesia, China, India, Vietnam are major producing regions. In 2019, the global shrimp market size reached a volume of 5.10 Million [1] Tons . Popular types of shrimp for consumption are Litopenaeus vannamei, Penaeus monodon [1] and Fenneropenaeus indicus [2]. -
Plant Life MagillS Encyclopedia of Science
MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE Volume 4 Sustainable Forestry–Zygomycetes Indexes Editor Bryan D. Ness, Ph.D. Pacific Union College, Department of Biology Project Editor Christina J. Moose Salem Press, Inc. Pasadena, California Hackensack, New Jersey Editor in Chief: Dawn P. Dawson Managing Editor: Christina J. Moose Photograph Editor: Philip Bader Manuscript Editor: Elizabeth Ferry Slocum Production Editor: Joyce I. Buchea Assistant Editor: Andrea E. Miller Page Design and Graphics: James Hutson Research Supervisor: Jeffry Jensen Layout: William Zimmerman Acquisitions Editor: Mark Rehn Illustrator: Kimberly L. Dawson Kurnizki Copyright © 2003, by Salem Press, Inc. All rights in this book are reserved. No part of this work may be used or reproduced in any manner what- soever or transmitted in any form or by any means, electronic or mechanical, including photocopy,recording, or any information storage and retrieval system, without written permission from the copyright owner except in the case of brief quotations embodied in critical articles and reviews. For information address the publisher, Salem Press, Inc., P.O. Box 50062, Pasadena, California 91115. Some of the updated and revised essays in this work originally appeared in Magill’s Survey of Science: Life Science (1991), Magill’s Survey of Science: Life Science, Supplement (1998), Natural Resources (1998), Encyclopedia of Genetics (1999), Encyclopedia of Environmental Issues (2000), World Geography (2001), and Earth Science (2001). ∞ The paper used in these volumes conforms to the American National Standard for Permanence of Paper for Printed Library Materials, Z39.48-1992 (R1997). Library of Congress Cataloging-in-Publication Data Magill’s encyclopedia of science : plant life / edited by Bryan D. -
Molecular and Phylogenetic Analysis Reveals New Diversity of Dunaliella
Journal of the Marine Molecular and phylogenetic analysis reveals Biological Association of the United Kingdom new diversity of Dunaliella salina from hypersaline environments cambridge.org/mbi Andrea Highfield1 , Angela Ward1, Richard Pipe1 and Declan C. Schroeder1,2,3 1The Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK; Original Article 2School of Biological Sciences, University of Reading, Reading RG6 6LA, UK and 3Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St Paul, MN 55108, USA Cite this article: Highfield A, Ward A, Pipe R, Schroeder DC (2021). Molecular and Abstract phylogenetic analysis reveals new diversity of Dunaliella salina from hypersaline Twelve hyper-β carotene-producing strains of algae assigned to the genus Dunaliella salina environments. Journal of the Marine Biological have been isolated from various hypersaline environments in Israel, South Africa, Namibia Association of the United Kingdom 101,27–37. and Spain. Intron-sizing of the SSU rDNA and phylogenetic analysis of these isolates were https://doi.org/10.1017/S0025315420001319 undertaken using four commonly employed markers for genotyping, LSU rDNA, ITS, rbcL Received: 9 June 2020 and tufA and their application to the study of Dunaliella evaluated. Novel isolates have Revised: 21 December 2020 been identified and phylogenetic analyses have shown the need for clarification on the tax- Accepted: 21 December 2020 onomy of Dunaliella salina. We propose the division of D. salina into four sub-clades as First published online: 22 January 2021 defined by a robust phylogeny based on the concatenation of four genes. This study further Key words: demonstrates the considerable genetic diversity within D. -
33 34 35 Lipid Synthesis Laptop
BI/CH 422/622 Liver cytosol ANABOLISM OUTLINE: Photosynthesis Carbohydrate Biosynthesis in Animals Biosynthesis of Fatty Acids and Lipids Fatty Acids Triacylglycerides contrasts Membrane lipids location & transport Glycerophospholipids Synthesis Sphingolipids acetyl-CoA carboxylase Isoprene lipids: fatty acid synthase Ketone Bodies ACP priming 4 steps Cholesterol Control of fatty acid metabolism isoprene synth. ACC Joining Reciprocal control of b-ox Cholesterol Synth. Diversification of fatty acids Fates Eicosanoids Cholesterol esters Bile acids Prostaglandins,Thromboxanes, Steroid Hormones and Leukotrienes Metabolism & transport Control ANABOLISM II: Biosynthesis of Fatty Acids & Lipids Lipid Fat Biosynthesis Catabolism Fatty Acid Fatty Acid Synthesis Degradation Ketone body Utilization Isoprene Biosynthesis 1 Cholesterol and Steroid Biosynthesis mevalonate kinase Mevalonate to Activated Isoprenes • Two phosphates are transferred stepwise from ATP to mevalonate. • A third phosphate from ATP is added at the hydroxyl, followed by decarboxylation and elimination catalyzed by pyrophospho- mevalonate decarboxylase creates a pyrophosphorylated 5-C product: D3-isopentyl pyrophosphate (IPP) (isoprene). • Isomerization to a second isoprene dimethylallylpyrophosphate (DMAPP) gives two activated isoprene IPP compounds that act as precursors for D3-isopentyl pyrophosphate Isopentyl-D-pyrophosphate all of the other lipids in this class isomerase DMAPP Cholesterol and Steroid Biosynthesis mevalonate kinase Mevalonate to Activated Isoprenes • Two phosphates -
The Ecology of Dunaliella in High-Salt Environments Aharon Oren
Oren Journal of Biological Research-Thessaloniki (2014) 21:23 DOI 10.1186/s40709-014-0023-y REVIEW Open Access The ecology of Dunaliella in high-salt environments Aharon Oren Abstract Halophilic representatives of the genus Dunaliella, notably D. salina and D. viridis, are found worldwide in salt lakes and saltern evaporation and crystallizer ponds at salt concentrations up to NaCl saturation. Thanks to the biotechnological exploitation of D. salina for β-carotene production we have a profound knowledge of the physiology and biochemistry of the alga. However, relatively little is known about the ecology of the members of the genus Dunaliella in hypersaline environments, in spite of the fact that Dunaliella is often the main or even the sole primary producer present, so that the entire ecosystem depends on carbon fixed by this alga. This review paper summarizes our knowledge about the occurrence and the activities of different Dunaliella species in natural salt lakes (Great Salt Lake, the Dead Sea and others), in saltern ponds and in other salty habitats where members of the genus have been found. Keywords: Dunaliella, Hypersaline, Halophilic, Great Salt Lake, Dead Sea, Salterns Introduction salt adaptation. A number of books and review papers When the Romanian botanist Emanoil C. Teodoresco have therefore been devoted to the genus [5-7]. How- (Teodorescu) (1866–1949) described the habitat of the ever, the ecological aspects of the biology of Dunaliella new genus of halophilic unicellular algae Dunaliella,it are generally neglected. A recent monograph did not was known from salterns and salt lakes around the devote a single chapter to ecological aspects, and con- Mediterranean and the Black Sea [1-3]. -
WO 2009/005519 Al
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date PCT (10) International Publication Number 8 January 2009 (08.01.2009) WO 2009/005519 Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 31/19 (2006.01) A61K 31/185 (2006.01) kind of national protection available): AE, AG, AL, AM, A61K 31/20 (2006.01) A61K 31/225 (2006.01) AT,AU, AZ, BA, BB, BG, BH, BR, BW, BY,BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, (21) International Application Number: ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, PCT/US2007/072499 IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY,MA, MD, ME, MG, MK, MN, MW, (22) International Filing Date: 29 June 2007 (29.06.2007) MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, (25) Filing Language: English TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW (26) Publication Language: English (71) Applicant (for all designated States except US): AC- (84) Designated States (unless otherwise indicated, for every CERA, INC. [US/US]; 380 Interlocken Crescent, Suite kind of regional protection available): ARIPO (BW, GH, 780, Broomfield, CO 80021 (US). GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), (72) Inventor; and European (AT,BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, (75) Inventor/Applicant (for US only): HENDERSON, FR, GB, GR, HU, IE, IS, IT, LT,LU, LV,MC, MT, NL, PL, Samuel, T. -
Glycerol Is an Osmoprotectant in Two Antarctic Chlamydomonas Species from an Ice-Covered Saline Lake and Is Synthesized by an Unusual Bidomain Enzyme
ORIGINAL RESEARCH published: 20 August 2020 doi: 10.3389/fpls.2020.01259 Glycerol Is an Osmoprotectant in Two Antarctic Chlamydomonas Species From an Ice-Covered Saline Lake and Is Synthesized by an Unusual Bidomain Enzyme † James A. Raymond 1*, Rachael Morgan-Kiss 2 and Sarah Stahl-Rommel 2 1 School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, United States, 2 Department of Microbiology, Miami University, Oxford, OH, United States Glycerol, a compatible solute, has previously been found to act as an osmoprotectant in Edited by: some marine Chlamydomonas species and several species of Dunaliella from hypersaline Linda Nedbalova´ , Charles University, Czechia ponds. Recently, Chlamydomonas reinhardtii and Dunaliella salina were shown to make Reviewed by: glycerol with an unusual bidomain enzyme, which appears to be unique to algae, that Aharon Oren, contains a phosphoserine phosphatase and glycerol-3-phosphate dehydrogenase. Here Hebrew University of Jerusalem, Israel David Dewez, we report that two psychrophilic species of Chlamydomonas (C. spp. UWO241 and ICE- Universite´ du Que´ bec à Montre´ al, MDV) from Lake Bonney, Antarctica also produce high levels of glycerol to survive in the Canada lake’s saline waters. Glycerol concentration increased linearly with salinity and at 1.3 M *Correspondence: NaCl, exceeded 400 mM in C. sp. UWO241, the more salt-tolerant strain. We also show James A. Raymond [email protected] that both species expressed several isoforms of the bidomain enzyme. An analysis of one †Present address: of the isoforms of C. sp. UWO241 showed that it was strongly upregulated by NaCl and is Sarah Stahl-Rommel thus the likely source of glycerol. -
Squalene, Olive Oil, and Cancer Risk: a Review and Hypothesis
Vol. 6, 1101-1103, December 1997 Cancer Epidemiology,Blornarkers & Prevention 1101 Review Squalene, Olive Oil, and Cancer Risk: A Review and Hypothesis Harold L. Newmark’ of unsaturated fatty acids. In Italy, about 80% of edible oil is Strang Cancer Research Laboratory, The Rockefeller University, New York, olive oil,2 suggesting a protective effect of olive oil intake. In New York 10021, and Laboratory for Cancer Research, College of Pharmacy, another Italian case-control study of diet and pancreatic cancer Rutgers University, Piscataway, New Jersey 08855-0789 (8), increased frequency of edible oil consumption was associ- ated with a trend toward decreased risk. Edible oil in Italy consists of about 80% olive oil, thus suggesting a protective Abstract effect of olive oil in pancreatic cancer.2 Epidemioiogical studies of breast and pancreatic cancer Animal studies on fat and cancer have generally shown in several Mediterranean populations have demonstrated that olive oil either has no effect or a protective effect on the that increased dietary intake of olive oil is associated with prevention of a variety of chemically induced tumors. Olive oil a small decreased risk or no increased risk of cancer, did not increase tumor incidence or growth, in contrast to corn despite a higjier proportion of overall lipid intake. and sunflower oil, in some mammary cancer models (9 -1 1) and Experimental animal model studies of high dietary fat also in colon cancer models (12, 13), although in an earlier and cancer also indicate that olive oil has either no effect report, olive oil exhibited mammary tumor-promoting proper- or a protective effect on the prevention of a variety of ties similar to that ofcorn oil (14), in contrast to the later studies chemically induced tumors. -
The Symbiotic Green Algae, Oophila (Chlamydomonadales
University of Connecticut OpenCommons@UConn Master's Theses University of Connecticut Graduate School 12-16-2016 The yS mbiotic Green Algae, Oophila (Chlamydomonadales, Chlorophyceae): A Heterotrophic Growth Study and Taxonomic History Nikolaus Schultz University of Connecticut - Storrs, [email protected] Recommended Citation Schultz, Nikolaus, "The yS mbiotic Green Algae, Oophila (Chlamydomonadales, Chlorophyceae): A Heterotrophic Growth Study and Taxonomic History" (2016). Master's Theses. 1035. https://opencommons.uconn.edu/gs_theses/1035 This work is brought to you for free and open access by the University of Connecticut Graduate School at OpenCommons@UConn. It has been accepted for inclusion in Master's Theses by an authorized administrator of OpenCommons@UConn. For more information, please contact [email protected]. The Symbiotic Green Algae, Oophila (Chlamydomonadales, Chlorophyceae): A Heterotrophic Growth Study and Taxonomic History Nikolaus Eduard Schultz B.A., Trinity College, 2014 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science at the University of Connecticut 2016 Copyright by Nikolaus Eduard Schultz 2016 ii ACKNOWLEDGEMENTS This thesis was made possible through the guidance, teachings and support of numerous individuals in my life. First and foremost, Louise Lewis deserves recognition for her tremendous efforts in making this work possible. She has performed pioneering work on this algal system and is one of the preeminent phycologists of our time. She has spent hundreds of hours of her time mentoring and teaching me invaluable skills. For this and so much more, I am very appreciative and humbled to have worked with her. Thank you Louise! To my committee members, Kurt Schwenk and David Wagner, thank you for your mentorship and guidance. -
MICROBIOLOGICAL and ECOPHYSIOLOGICAL CHARACTERIZATION of GREEN ALGAE Dunaliella Sp
MICROBIOLOGICAL AND ECOPHYSIOLOGICAL CHARACTERIZATION OF GREEN ALGAE Dunaliella sp. FOR IMPROVEMENT OF CAROTENOID PRODUCTION Muhammad Zainuri 1) Hermin Pancasakti Kusumaningrum*2 ), and Endang Kusdiyantini 2), 1) Laboratory of Biological Oceanography, Department of marine Sciences, Faculty of Fisheries and Marine Sciences, Diponegoro University 2) Microbiogenetics Laboratory, Faculty of Mathematics and Natural Sciences, Diponegoro University, Jl. Prof. Soedarto, UNDIP, Tembalang, Semarang. 50275. e-mail : [email protected] Abstract An isolate of green algae Dunaliella sp. from BBAP Jepara is usually used as a source for carotenoid supplement for marine animal cultivation in the local area. In order to improve carotenoid production especially detection of biosynthetic pathway from the organisms investigated in this study, the main purpose of this study is characterizing Dunaliella sp. based on it’s microbiological and ecophysiological characters. The research was done by characterize the growth, the cell and colonies microbiologically, total pigment production, and also characterize all of the ecophysiological factors affecting the algal growth and survival. The results of this research showed that Dunaliella sp. posseses typical characteristic of green eucaryote alga, in their growth and ecological condition. The extreme characters which was toleration ability to high salinity environment of was used to conclude Dunaliella sp. as Dunaliella salina. Key words : algae, Dunaliella sp. , microbiological, ecophysiological, characterization Introduction serve as precursors of many hormones Green algae are simple (Vershinin, 1999 in Lee and Schmidt- photosynthetic eukaryotes which are Dannert, 2002). Carotenoids are used responsible for up to 50% of the planet's commercially as food colorants, animal atmospheric carbon fixation. The recent feed supplements and, more recently, as discoveries of health related beneficial nutraceuticals for cosmetic and properties attributed to algal carotenoids pharmaceutical purposes.