Neuroprotective Offerings by Agmatine
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The In¯Uence of Medication on Erectile Function
International Journal of Impotence Research (1997) 9, 17±26 ß 1997 Stockton Press All rights reserved 0955-9930/97 $12.00 The in¯uence of medication on erectile function W Meinhardt1, RF Kropman2, P Vermeij3, AAB Lycklama aÁ Nijeholt4 and J Zwartendijk4 1Department of Urology, Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; 2Department of Urology, Leyenburg Hospital, Leyweg 275, 2545 CH The Hague, The Netherlands; 3Pharmacy; and 4Department of Urology, Leiden University Hospital, P.O. Box 9600, 2300 RC Leiden, The Netherlands Keywords: impotence; side-effect; antipsychotic; antihypertensive; physiology; erectile function Introduction stopped their antihypertensive treatment over a ®ve year period, because of side-effects on sexual function.5 In the drug registration procedures sexual Several physiological mechanisms are involved in function is not a major issue. This means that erectile function. A negative in¯uence of prescrip- knowledge of the problem is mainly dependent on tion-drugs on these mechanisms will not always case reports and the lists from side effect registries.6±8 come to the attention of the clinician, whereas a Another way of looking at the problem is drug causing priapism will rarely escape the atten- combining available data on mechanisms of action tion. of drugs with the knowledge of the physiological When erectile function is in¯uenced in a negative mechanisms involved in erectile function. The way compensation may occur. For example, age- advantage of this approach is that remedies may related penile sensory disorders may be compen- evolve from it. sated for by extra stimulation.1 Diminished in¯ux of In this paper we will discuss the subject in the blood will lead to a slower onset of the erection, but following order: may be accepted. -
Mechanistic Insights on the Reduction of Glutathione Disulfide by Protein Disulfide Isomerase
Mechanistic insights on the reduction of glutathione disulfide by protein disulfide isomerase Rui P. P. Nevesa, Pedro Alexandrino Fernandesa, and Maria João Ramosa,1 aUnidade de Ciências Biomoleculares Aplicadas, Rede de Química e Tecnologia, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal Edited by Donald G. Truhlar, University of Minnesota, Minneapolis, MN, and approved May 9, 2017 (received for review November 22, 2016) We explore the enzymatic mechanism of the reduction of glutathione of enzymes, which are responsible for the reduction and isomer- disulfide (GSSG) by the reduced a domain of human protein disulfide ization of disulfide bonds, through thiol-disulfide exchange. isomerase (hPDI) with atomistic resolution. We use classical molecular dynamics and hybrid quantum mechanics/molecular mechanics cal- Structure and Function of PDI culations at the mPW1N/6–311+G(2d,2p):FF99SB//mPW1N/6–31G(d): Human protein disulfide isomerase (hPDI) is a U-shaped enzyme FF99SB level. The reaction proceeds in two stages: (i) a thiol-disulfide with 508 residues. Its tertiary structure is composed of four exchange through nucleophilic attack of the Cys53-thiolate to the thioredoxin-like domains (a, b, b′,anda′) and a fifth tail-shaped c GSSG-disulfide followed by the deprotonation of Cys56-thiol by domain (Fig. 1) (14, 15). The maximum activity of hPDI is observed Glu47-carboxylate and (ii) a second thiol-disulfide exchange between when all domains of PDI contribute synergistically to its function (16). the Cys56-thiolate and the mixed disulfide intermediate formed in Similar to thioredoxin, the a and a′ domains have a catalytic the first step. -
Degradation of Glutathione in Plant Cells
Degradation of Glutathione in Plant Cells: Evidence against the Participation of a y-Glutamyltranspeptidase Reinhard Steinkamp and Heinz Rennenberg Botanisches Institut der Universität zu Köln, Gyrhofstr. 15, D-5000 Köln 41, Bundesrepublik Deutschland Z. Naturforsch. 40c, 29 — 33 (1985); received August 31/October 4, 1984 Tobacco, Glutathione Catabolism, y-Glutamylcysteine, y-Glutamyltranspeptidase, y-Glutamyl- cyclotransferase When y-glutamyltranspeptidase activity in tobacco cells was measured using the artificial substrate y-glutamyl-/?-nitroanilide, liberation of p-nitroaniline was not reduced, but stimulated by addition of glutathione. Therefore, glutathione was not acting as a donator, but as an acceptor of y-glutamyl moieties in the assay mixture, suggesting that y-glutamyltranspeptidase is not participating in degradation of glutathione. Feeding experiments with [^S-cysJglutathione sup ported this conclusion. When tobacco cells were supplied with this peptide as sole sulfur source, glutathione and y-glutamylcysteine were the only labelled compounds found inside the cells. The low rate of uptake of glutathione apparently prevented the accumulation of measurable amounts of radioactivity in the cysteine pool. A y-glutamylcyclotransferase, responsible for the conversion of y-glutamylcysteine to 5-oxo-proline and cysteine was found in ammonium sulfate precipitates of tobacco cell homogenates. The enzyme showed high activities with y-glutamylmethionine and y-glutamylcysteine, but not with other y-glutamyldipeptides or glutathione. From these and previously published experiments [(Rennenberg et al., Z. Naturforsch. 3 5 c, 70 8 -7 1 1 (1980)], it is concluded that glutathione is degraded in tobacco cells via the following pathway: y-glu-cys- gly —> y-glu-cys ->• 5-oxo-proline -* glu. Introduction the cysteine conjugate by the action of a y-gluta myltranspeptidase (Fig. -
Targeting Glycine Reuptake in Alcohol Seeking and Relapse
JPET Fast Forward. Published on January 24, 2018 as DOI: 10.1124/jpet.117.244822 This article has not been copyedited and formatted. The final version may differ from this version. TITLE PAGE Targeting Glycine Reuptake in Alcohol Seeking and Relapse Valentina Vengeliene, Martin Roßmanith, Tatiane T. Takahashi, Daniela Alberati, Berthold Behl, Anton Bespalov, Rainer Spanagel Downloaded from The primary laboratory of origin: Institute of Psychopharmacology, Central Institute of jpet.aspetjournals.org Mental Health, Faculty of Medicine Mannheim, Heidelberg University, Germany; at ASPET Journals on September 30, 2021 VV, MR, TTT, RS: Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, Heidelberg University, Germany; DA: Roche Pharma Research and Early Development, Neuroscience, Ophthalmology and Rare Diseases, Roche Innovation Center Basel, CH-4070 Basel, Switzerland; BB, AB: Department of Neuroscience Research, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany; AB: Department of Psychopharmacology, Pavlov Medical University, St Petersburg, Russia JPET #244822 JPET Fast Forward. Published on January 24, 2018 as DOI: 10.1124/jpet.117.244822 This article has not been copyedited and formatted. The final version may differ from this version. RUNNING TITLE GlyT1 in Alcohol Seeking and Relapse Corresponding author with complete address: Valentina Vengeliene, Institute of Psychopharmacology, Central Institute of Mental Health (CIMH), J5, 68159 Mannheim, Germany Email: [email protected], phone: +49-621-17036261; fax: +49-621- Downloaded from 17036255 jpet.aspetjournals.org The number of text pages: 33 Number of tables: 0 Number of figures: 6 Number of references: 44 at ASPET Journals on September 30, 2021 Number of words in the Abstract: 153 Number of words in the Introduction: 729 Number of words in the Discussion: 999 A recommended section assignment to guide the listing in the table of content: Drug Discovery and Translational Medicine 2 JPET #244822 JPET Fast Forward. -
Molecule Based on Evans Blue Confers Superior Pharmacokinetics and Transforms Drugs to Theranostic Agents
Novel “Add-On” Molecule Based on Evans Blue Confers Superior Pharmacokinetics and Transforms Drugs to Theranostic Agents Haojun Chen*1,2, Orit Jacobson*2, Gang Niu2, Ido D. Weiss3, Dale O. Kiesewetter2, Yi Liu2, Ying Ma2, Hua Wu1, and Xiaoyuan Chen2 1Department of Nuclear Medicine, Xiamen Cancer Hospital of the First Affiliated Hospital of Xiamen University, Xiamen, China; 2Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland; and 3Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland One of the major design considerations for a drug is its The goal of drug development is to achieve high activity and pharmacokinetics in the blood. A drug with a short half-life in specificity for a desired biologic target. However, many potential the blood is less available at a target organ. Such a limitation pharmaceuticals that meet these criteria fail as therapeutics because dictates treatment with either high doses or more frequent doses, of unfavorable pharmacokinetics, in particular, rapid blood clearance, both of which may increase the likelihood of undesirable side effects. To address the need for additional methods to improve which prevents the achievement of therapeutic concentrations. For the blood half-life of drugs and molecular imaging agents, we some drugs, the administration of large or frequently repeated doses developed an “add-on” molecule that contains 3 groups: a trun- is required to achieve and maintain therapeutic levels (1) but can, in cated Evans blue dye molecule that binds to albumin with a low turn, increase the probability of undesired side effects. -
Systemic Administration of Mk-801 Protects Against ~=Met~Yl~~-Aspartate* and Quisqualate-Mediated Neurotoxicity in Perinatal Rats
Neatroscience Vol. 36, No. 3. pp. 589-599, 1990 0306-4522j90 $3.00 f 0.00 Printed in Great Britain Pergamon Press plc 0 1990 IBRO SYSTEMIC ADMINISTRATION OF MK-801 PROTECTS AGAINST ~=MET~YL~~-ASPARTATE* AND QUISQUALATE-MEDIATED NEUROTOXICITY IN PERINATAL RATS J. W. MCDONALD,* F. S. .%LvERS~IN,~$ II. Chmo~~,$ C. HmmN,$ R. CWEN~and M. V. JoHNsToN*~$$IIB *Neuroscience Training Program and Departments of TPediatrics and SNeurotogy, Medical SchooI, and &%nter for Human Growth and Development, University of Michigan, Ann Arbor, MI 48Io4, U.S.A. ~~~Fa~rnen~ of Neurology and Pediatrics, Johns Hopkins Un~~~~~ty Schoot of Medicine and the Kennedy Institute, Baltimore, MD 21205, U.S.A. Abstract-MK-801, a non-competitive antagonist of N-methy&aspartate-type glutamate receptors, was tested for its abiiity to antagonize excitotoxic actions of ~-methyl-~-as~~ate or quisqualic acid injected into the brains of seven-day-old rats, Stereotaxic injection of ~“me~yi-~aspa~ate (25 nmol/OS ai) or quisqualic acid (100 nmol/l.O ~1) into the corpus striatum under ether anesthesia consistently produced severe unilateral neuronal necrosis in the basal ganglia, dorsal hippocampus and overlying neocortex. The distribution of the damage corresponded to the topography of glutamate receptors in the vulnerable regions demonstrated by previous autoradiographic studies, ~-Methyl-~aspa~ate produced severe, mntluent neuronal destruction while quisquaiic acid typicatty caused more selective neuronaf necrosis. Intraperitoneal administration of MK-801 (0.1-1.0 mg/kg) 30 min before N-methyl-D-aspartate injection had a prominent dose-dependent neuroprotective effects as assessed morphometrically by comparison of bilateral striatal, hippocampal and cerebral hemisphere cross-sectional areas five days later. -
Sulfhydryl Reduction of Methylene Blue with Reference to Alterations in Malignant Neoplastic Disease
Sulfhydryl Reduction of Methylene Blue With Reference to Alterations in Malignant Neoplastic Disease Maurice M. Black, M. D. (From the Department of Biochemistry, New York Medical College, New York 29, N. t;., and the Brooklyn Cancer Institute, Brooklyn 9, N. Y.) (Received for publication May 8, 1947) A significant decrease in methylene blue re- reactivity is less than half that of the cysteine. It is ducing power of plasma from patients with malig- noteworthy also that the resultant leuco mixture nant neoplastic disease was previously reported did not revert back to colored methylene blue on (1). At that time it was suggested that change in a cooling, as was the case with methylene blue re- reducing group of the albumin molecule was a duction by plasma. likely source of this alteration. Similar conclusions Similar relationships were investigated between were reported also by Savignac and associates (7) cysteine and different concentrations of methylene as the result of analogous studies. blue. As seen in Fig. 2, similar curves are obtained, In an attempt to evaluate the effect of the sulf- but the position of the curve on the graph varies hydryl group on the reduction of methylene blue, a with the concentration of the methylene blue used. study was undertaken with various compounds of It should be noted that there is no appreciable known -SH and S-S structures. In addition, an difference in the reducing time of methylene blue attempt was made to establish a standard method on varying the concentrations between 0.10 per of calibration of various lots of methylene blue, so cent and 0.2 per cent, although 0.08 per cent shows that more uniform results would be possible in the a decided difference. -
Solutions to 7.012 Problem Set 1
MIT Biology Department 7.012: Introductory Biology - Fall 2004 Instructors: Professor Eric Lander, Professor Robert A. Weinberg, Dr. Claudette Gardel Solutions to 7.012 Problem Set 1 Question 1 Bob, a student taking 7.012, looks at a long-standing puddle outside his dorm window. Curious as to what was growing in the cloudy water, he takes a sample to his TA, Brad Student. He wanted to know whether the organisms in the sample were prokaryotic or eukaryotic. a) Give an example of a prokaryotic and a eukaryotic organism. Prokaryotic: Eukaryotic: All bacteria Yeast, fungi, any animial or plant b) Using a light microscope, how could he tell the difference between a prokaryotic organism and a eukaryotic one? The resolution of the light microscope would allow you to see if the cell had a true nucleus or organelles. A cell with a true nucleus and organelles would be eukaryotic. You could also determine size, but that may not be sufficient to establish whether a cell is prokaryotic or eukaryotic. c) What additional differences exist between prokaryotic and eukaryotic organisms? Any answer from above also fine here. In addition, prokaryotic and eukaryotic organisms differ at the DNA level. Eukaryotes have more complex genomes than prokaryotes do. Question 2 A new startup company hires you to help with their product development. Your task is to find a protein that interacts with a polysaccharide. a) You find a large protein that has a single binding site for the polysaccharide cellulose. Which amino acids might you expect to find in the binding pocket of the protein? What is the strongest type of interaction possible between these amino acids and the cellulose? Cellulose is a polymer of glucose and as such has many free hydroxyl groups. -
An Investigation of D-Cycloserine As a Memory Enhancer NCT00842309 Marchmay 23, 15, 2016 2019 Sabine Wilhelm, Ph.D
MayMarch 23, 2016 15, 2019 An investigation of D-cycloserine as a memory enhancer NCT00842309 MarchMay 23, 15, 2016 2019 Sabine Wilhelm, Ph.D. May 23, 2016 1. Background and Significance BDD is defined as a preoccupation with an imagined defect in appearance; if a slight physical anomaly is present, the concern is markedly excessive (American Psychiatric Association [APA], 1994). Preoccupations may focus on any body area but commonly involve the face or head, most often the skin, hair, or nose (Phillips et al., 1993). These preoccupations have an obsessional quality, in that they occur frequently and are usually difficult to resist or control (Phillips et al., 1998). Additionally, more than 90% of BDD patients perform repetitive, compulsive behaviors (Phillips et al., 1998), such as frequent mirror checking (Alliez & Robin, 1969), excessive grooming (Vallat et al., 1971), and skin picking (Phillips & Taub, 1995). Accordingly, a core component of Cognitive-Behavioral treatment for BDD is exposure and response prevention (ERP). Exposure and response prevention involves asking patients to gradually expose themselves to situations that make them anxious (e.g. talking to a stranger, going to a party) while refraining from engaging in any rituals (e.g. excessive grooming or camouflaging) or safety behaviors (e.g. avoiding eye contact). Rituals and safety behaviors are thought to maintain the fear response because they prevent the sufferer from staying in contact with the stimulus long enough for his or her anxiety to extinguish. By exposing the patient to the feared situation while preventing the rituals and safety behaviors, the patient’s anxiety is allowed to naturally extinguish and he is able to acquire a sense of safety in the presence of the feared stimulus. -
Therapeutic Effect of Agmatine on Neurological Disease: Focus on Ion Channels and Receptors
Neurochemical Research (2019) 44:735–750 https://doi.org/10.1007/s11064-018-02712-1 REVIEW PAPER Therapeutic Effect of Agmatine on Neurological Disease: Focus on Ion Channels and Receptors Sumit Barua1 · Jong Youl Kim1 · Jae Young Kim1 · Jae Hwan Kim4 · Jong Eun Lee1,2,3 Received: 15 October 2018 / Revised: 19 December 2018 / Accepted: 24 December 2018 / Published online: 4 January 2019 © Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract The central nervous system (CNS) is the most injury-prone part of the mammalian body. Any acute or chronic, central or peripheral neurological disorder is related to abnormal biochemical and electrical signals in the brain cells. As a result, ion channels and receptors that are abundant in the nervous system and control the electrical and biochemical environment of the CNS play a vital role in neurological disease. The N-methyl-D-aspartate receptor, 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl) propanoic acid receptor, kainate receptor, acetylcholine receptor, serotonin receptor, α2-adrenoreceptor, and acid-sensing ion channels are among the major channels and receptors known to be key components of pathophysiological events in the CNS. The primary amine agmatine, a neuromodulator synthesized in the brain by decarboxylation of L-arginine, can regu- late ion channel cascades and receptors that are related to the major CNS disorders. In our previous studies, we established that agmatine was related to the regulation of cell differentiation, nitric oxide synthesis, and murine brain endothelial cell migration, relief of chronic pain, cerebral edema, and apoptotic cell death in experimental CNS disorders. -
Agmatine and Agmatine Analogs in the Treatment of Epilepsy, Seizure, and Electroconvulsive Disorders Peter A
University of Kentucky UKnowledge Pharmaceutical Sciences Faculty Patents Pharmaceutical Sciences 10-19-2010 Agmatine and Agmatine Analogs in the Treatment of Epilepsy, Seizure, and Electroconvulsive Disorders Peter A. Crooks University of Kentucky, [email protected] Aimee K. Bence David R. Worthen Right click to open a feedback form in a new tab to let us know how this document benefits oy u. Follow this and additional works at: https://uknowledge.uky.edu/ps_patents Part of the Pharmacy and Pharmaceutical Sciences Commons Recommended Citation Crooks, Peter A.; Bence, Aimee K.; and Worthen, David R., "Agmatine and Agmatine Analogs in the Treatment of Epilepsy, Seizure, and Electroconvulsive Disorders" (2010). Pharmaceutical Sciences Faculty Patents. 47. https://uknowledge.uky.edu/ps_patents/47 This Patent is brought to you for free and open access by the Pharmaceutical Sciences at UKnowledge. It has been accepted for inclusion in Pharmaceutical Sciences Faculty Patents by an authorized administrator of UKnowledge. For more information, please contact [email protected]. US007816407B2 (12) United States Patent (10) Patent N0.: US 7,816,407 B2 Crooks et al. (45) Date of Patent: Oct. 19, 2010 (54) AGMATINE AND AGMATINE ANALOGS IN The Merck Index, Merck Research Laboratories Division of Merck & THE TREATMENT OF EPILEPSY, SEIZURE, Co., Inc. 1996, p. 35. AND ELECTROCONVULSIVE DISORDERS James O. McNamara, “Drugs Effective in Therapy of the Epilepsies”, Goodman & Gilman’s The Pharmacological Basis of Therapeutics, (75) Inventors: Peter A. Crooks, Lexington, KY (US); Ninth Edition, Chapter 20, pp. 461-486, 1996. Aimee K. Bence, Lexington, KY (US); I. Tayfun Uzbay et al., “Effects of agmatine on ethanol Withdrawal David R. -
The Pharmacology of Calcium and ATP-Dependent Potassium
THE PHARMACOLOGY OF CALCHJM AND ATP-DEPENDENT POTASSHJM CHANNELS IN ERYTHROCYTES AND IN SMOOTH AND SKELETAL MUSCLE D. C H. Benton A thesis submitted for the degree of Doctor of Philosophy Department of Pharmacology University College London Gower Street LONDON WCIE 6BT 1995 ProQuest Number: 10044587 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest 10044587 Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 Abstract Potassium channels are a diverse class of membrane proteins found in virtually all cells. The first part of this study concerns the pharmacology of the calcium activated potassium channel found in mammalian erythrocytes. This channel is blocked by cetiedil, an anti-sickling agent, and the initial section of the thesis explores the structure activity relationship (SAR) of compounds related to cetiedil, investigates their mechanism of action and compares them with other blocking agents. This was studied by measuring the effects of the test compounds on the K^a -mediated net K'*' loss which results from the application of A23187 to a suspension of rabbit erythrocytes.