Plasmopara Viticola

Total Page:16

File Type:pdf, Size:1020Kb

Plasmopara Viticola www.nature.com/scientificreports OPEN A multi-omics study of the grapevine-downy mildew (Plasmopara viticola) pathosystem Received: 8 June 2017 Accepted: 15 December 2017 unveils a complex protein coding- Published: xx xx xxxx and noncoding-based arms race during infection Matteo Brilli 1,2, Elisa Asquini1, Mirko Moser 1, Pier Luigi Bianchedi1, Michele Perazzolli 1 & Azeddine Si-Ammour 1 Fungicides are applied intensively to prevent downy mildew infections of grapevines (Vitis vinifera) with high impact on the environment. In order to develop alternative strategies we sequenced the genome of the oomycete pathogen Plasmopara viticola causing this disease. We show that it derives from a Phytophthora-like ancestor that switched to obligate biotrophy by losing genes involved in nitrogen metabolism and γ-Aminobutyric acid catabolism. By combining multiple omics approaches we characterized the pathosystem and identifed a RxLR efector that trigger an immune response in the wild species V. riparia. This efector is an ideal marker to screen novel grape resistant varieties. Our study reveals an unprecedented bidirectional noncoding RNA-based mechanism that, in one direction might be fundamental for P. viticola to profciently infect its host, and in the other might reduce the efects of the infection on the plant. Grapevine (Vitis vinifera L.) is an important commodity and comprises varieties for wine production and table grape for human consumption1. Wine production is a very lucrative activity and the world wine trade is worth almost US $30 billion. France, Italy and Spain are the largest European wine producing countries representing altogether half of the world production (http://www.oiv.int/). Grapevines can be infected by a myriad of plant pathogens at all growth stages and in order to secure harvest large quantities of agrochemicals are used to control their spread2. Te treatments against powdery and downy mildews, including the oomycete Plasmopara viticola, requires almost two thirds of all synthetic fungicides sprayed in the European Union with adverse efects on the environment3. Plasmopara viticola (Berk. and Curt.) Berl. and de Toni belongs to the group of oomycetes (Order: Peronosporales, Family: Peronosporaceae) that comprises the most devastating plant pathogens such as Phytophthora infestans responsible for the Irish potato famine in the 19th century4. Unlike the hemibiotroph Phytophthora species, P. viticola is an obligate biotroph and therefore relies entirely on grape as a host to complete its life cycle. P. viticola is endemic in North America where the Vitis species such as V. riparia are naturally resist- ant, likely as a consequence of a long co-evolutionary process5. Conversely, P. viticola was introduced uninten- tionally in Europe in the 1870s and immediately spread on V. vinifera cultures causing pandemics all over Europe in the following decades6. Soon afer, the extensive use of copper formulations known as the “Bordeaux mixture” restricted the disease spread and later on paved the path to excessive usage of synthetic agrochemicals. As a 1Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all’Adige (TN), Italy. 2Present address: Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Agripolis, V.le dell’Università, 16, 35020, Legnaro (PD), Italy. Correspondence and requests for materials should be addressed to A.S.-A. (email: azeddine. [email protected]) SCIENTIFIC REPORTS | (2018) 8:757 | DOI:10.1038/s41598-018-19158-8 1 www.nature.com/scientificreports/ PvitFEM01 INRA-PV221a JL-7–2b Natural Vitis host V. vinifera V. vinifera V. riparia Geographical origin Italy France China Genome assembly Sequencing platform Illumina Illumina Illumina + PacBio Number of scafolds 57,890 1,883 2,165 N50c (kb) 4.645 180.6 172.3 Assembly size (Mb) 83.54 74.74 101.3 Gene annotation Protein coding genes (predicted) 38,298 nd 17,014 Validated transcripts (RNA-Seq) 18,335 nd 11,670 Orthologous groups in Oomycetesd 6,552 nd nd Genome completeness Oomycete core genes presente 81% na na CEGMA/BUSCOf na/87.2% 95%/na 97%/90% Table 1. Characteristics of the three available P. viticola genomes. aData retrieved from Dussert et al.21. nd: not determined in the study. na: not applicable. bData retrieved from Yin et al.22. nd: not determined in the study. na: not applicable. cN50 is defned as the scafold size such that 50% of the assembled nucleotides resides on contigs at least this length. dNumber of orthologous groups found in oomycetes with sequenced genomes and containing at least one protein from P. viticola. eIn total, 1,299 genes shared by all oomycetes were found, of which 1,054 were present in P. viticola. fIndicated CEGMA and BUSCO numbers include the counting of partial matches. consequence P. viticola became recently resistant to many fungicides7. Terefore, research on grape resistance mechanisms and the development of alternative strategies to control P. viticola infections are urgently needed to control the environmental burden of grapevine cultures. Molecular mechanisms occurring during the compatible interaction between P. viticola and V. vinifera are largely unknown. Most of our knowledge about oomycete pathogenicity factors derives from studies focused on Phytophthora species8. During infection oomycetes secrete cytoplasmic and apoplastic efector proteins that usually suppress plant immunity by triggering susceptibility (efector-triggered susceptibility, ETS)9. Certain oomycete efectors with a special protein motif RxLR are recognized by the plant resistance genes and this inter- action triggers immunity (efector-triggered immunity, ETI) resulting in localized cell death or hypersensitive response (HR)10. RxLR efectors are found abundantly in all sequenced oomycete genomes and are rapidly evolv- ing11. Tey even acquired novel functions such as suppressing plant RNA silencing mechanisms12. Teir role during the grape downy mildew infection is unclear and their identifcation requires multi-omics approaches. To this end, we sequenced the DNA extracted from a P. viticola strain isolated in Northern Italy and present its assembled draf genome. By using comparative genomics we discovered the missing metabolic feature in the P. viticola genome that could explain its biotrophic mode of life. We complemented our genome sequencing eforts with genome-wide diferential gene expression analyses during the infection process and we identifed a protein efector of the RxLR type triggering ETI in the resistant grapevine V. riparia. Small RNA sequencing (sRNA-Seq) combined to a genome-wide degradome study13 revealed a comprehensive interaction network of small RNAs (sRNAs) that target genes during infection allowing us to uncover a potential bi-directional RNA silencing strat- egy between the pathogen and its host despite species barriers. Results Nuclear and mitochondrial genome assemblies, gene annotation and phylogenetic analysis. Assembling the draf genome for P. viticola was a prerequisite for gene and sRNA expression profling studies during the infection process of V. vinifera. We therefore sequenced the genome of a downy mildew strain, named ‘PvitFEM01’, isolated from a local vineyard in the Trentino region in Italy. DNA extracted from asexual sporan- gia from in vitro infected plants was used to construct Illumina paired-end libraries (2 × 100 bp) and further sequenced. Although P. viticola genetic material was extracted under sterile conditions, potential contamination with DNA originating from other sources such as the host (grapevine), potential grape endophytic or epiphytic bacteria were addressed. 83 million reads remained for assembly, afer fltering against V. vinifera and bacterial sequences (Supplementary Fig. S2 and Supplementary note). In total, 57,890 scafolds were obtained correspond- ing to a N50 of 4,645 bp (Table 1, Supplementary Figs S1–S6 and Supplementary note). Te total length of the assembly was 83.54 Mb corresponding to 74% of the genome size previously determined by Feulgen staining14. Contigs corresponding to the mitochondrial genome were also identifed and provided the frst P. viticola mito- chondrial reconstruction estimated to be ca. 39.2 kb (Supplementary Fig. S7). P. viticola mitochondrial proteins identity ranged from 80 to 97% with respect to their P. infestans counterparts. A a single amino acid change from Glycine to Alanine at position 143 (G143A) in the mitochondrial apocytochrome b protein suggests that ‘PvitFEM01’ is resistant to Quinone outside Inhibitors (QoI) fungicides (Supplementary Fig. S8). Several poly- morphic sites were identifed on the P. viticola mitochondrial genome suggesting that our draf assembly might condense several haplotypes (Supplementary Fig. S9). SCIENTIFIC REPORTS | (2018) 8:757 | DOI:10.1038/s41598-018-19158-8 2 www.nature.com/scientificreports/ Figure 1. Phylogenetic relationship between Plasmopara viticola and other oomycetes and abundance of their efectors. Te maximum-likelihood phylogenetic tree was built using 312 concatenated proteins selected from single copy genes belonging to the oomycete core genome. Te abundance of each class of cytoplasmic and apoplastic efectors efector in biotroph (B), hemibiotroph (H) or necrotroph (N) oomycete species is indicated by a number and a color code. Out of the 87 YxSLK efectors identifed in our study only 25 contained a signal peptide and reported in this fgure. Darker colors indicate higher
Recommended publications
  • Integrated Carrots
    Integrated management of Pythium diseases of carrots E Davison and A McKay Department of Agriculture, Western Australia Project Number: VG98011 VG98011 This report is published by Horticulture Australia Ltd to pass on information concerning horticultural research and development undertaken for the vegetable industry. The research contained in this report was funded by Horticulture Australia Ltd with the financial support of the vegetable industry. All expressions of opinion are not to be regarded as expressing the opinion of Horticulture Australia Ltd or any authority of the Australian Government. The Company and the Australian Government accept no responsibility for any of the opinions or the accuracy of the information contained in this report and readers should rely upon their own enquiries in making decisions concerning their own interests. ISBN 0 7341 0333 6 Published and distributed by: Horticultural Australia Ltd Level 1 50 Carrington Street Sydney NSW 2000 Telephone: (02) 8295 2300 Fax: (02) 8295 2399 E-Mail: [email protected] © Copyright 2001 Horticulture Australia FINAL REPORT HORTICULTURE AUSTRALIA PROJECT VG98011 INTEGRATED MANAGEMENT OF PYTHIUM DISEASES OF CARROTS E. M. Davison and A. G. McKay Department of Agriculture, Western Australia DEPARTMENT OF Agriculture Horticulture Australia September 2001 HORTICULTURE AUSTRALIA PROJECT VG 98011 Principal Investigator Elaine Davison Research Officer, Crop Improvement Institute, Department of Agriculture, Locked Bag 4, Bentley Deliver Centre, Western Australia 6983 Australia Email: edavisonfSjagric.wa.gov.au This is the final report of project VG 98011 Integrated management of Pythium diseases of carrots. It covers research into the cause(s) of cavity spot and related diseases in carrot production areas in Australia, together with information on integrated disease control.
    [Show full text]
  • Crystal Structure of the Primary Pirna Biogenesis Factor Zucchini Reveals Similarity to the Bacterial PLD Endonuclease Nuc
    Downloaded from rnajournal.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press LETTER TO THE EDITOR Crystal structure of the primary piRNA biogenesis factor Zucchini reveals similarity to the bacterial PLD endonuclease Nuc FRANKA VOIGT,1 MICHAEL REUTER,2,3 ANISA KASARUHO,2,3 EIKE C. SCHULZ,1 RAMESH S. PILLAI,2,3,4 and ORSOLYA BARABAS1,4 1European Molecular Biology Laboratory, 69117 Heidelberg, Germany 2European Molecular Biology Laboratory, 38042 Grenoble, France 3CNRS-UJF-EMBL International Unit (UMI 3265) for Virus Host Cell Interactions (UVHCI), 38042 Grenoble, France ABSTRACT Piwi-interacting RNAs (piRNAs) are a gonad-specific class of small RNAs that associate with the Piwi clade of Argonaute proteins and play a key role in transposon silencing in animals. Since biogenesis of piRNAs is independent of the double- stranded RNA-processing enzyme Dicer, an alternative nuclease that can process single-stranded RNA transcripts has been long sought. A Phospholipase D-like protein, Zucchini, that is essential for piRNA processing has been proposed to be a nuclease acting in piRNA biogenesis. Here we describe the crystal structure of Zucchini from Drosophila melanogaster and show that it is very similar to the bacterial endonuclease, Nuc. The structure also reveals that homodimerization induces major conforma- tional changes assembling the active site. The active site is situated on the dimer interface at the bottom of a narrow groove that can likely accommodate single-stranded nucleic acid substrates. Furthermore, biophysical analysis identifies protein segments essential for dimerization and provides insights into regulation of Zucchini’s activity. Keywords: Zucchini; piRNA; Piwi; nuclease; phospholipase; PLD6; MitoPLD INTRODUCTION stranded (ss) RNAs (Brennecke et al.
    [Show full text]
  • Rpv Mediated Defense Responses in Grapevine Offspring Resistant to Plasmopara Viticola
    plants Technical Note Rpv Mediated Defense Responses in Grapevine Offspring Resistant to Plasmopara viticola Tyrone Possamai 1 , Daniele Migliaro 2,* , Massimo Gardiman 2 , Riccardo Velasco 2 and Barbara De Nardi 2 1 Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze 206, 33100 Udine, Italy; [email protected] 2 CREA - Research Centre for Viticulture and Enology, viale XXVIII Aprile 26, 31015 Conegliano (TV), Italy; [email protected] (M.G.); [email protected] (R.V.); [email protected] (B.D.N.) * Correspondence: [email protected] Received: 30 May 2020; Accepted: 20 June 2020; Published: 22 June 2020 Abstract: Downy mildew, caused by the biotrophic oomycete Plasmopara viticola, is one of the most serious grapevine diseases. The development of new varieties, showing partial resistance to downy mildew, through traditional breeding provides a sustainable and effective solution for disease management. Marker-assisted-selection (MAS) provide fast and cost-effective genotyping methods, but phenotyping remains necessary to characterize the host–pathogen interaction and assess the effective resistance level of new varieties as well as to validate MAS selection. In this study, the Rpv mediated defense responses were investigated in 31 genotypes, encompassing susceptible and resistant varieties and 26 seedlings, following inoculation of leaf discs with P. viticola. The offspring differed in Rpv loci inherited (none, one or two): Rpv3-3 and Rpv10 from Solaris and Rpv3-1 and Rpv12 from Kozma 20-3. To improve the assessment of different resistance responses, pathogen reaction (sporulation) and host reaction (necrosis) were scored separately as independent features.
    [Show full text]
  • Regulatory Micrornas in Brown, Brite and White Adipose Tissue
    cells Review Regulatory microRNAs in Brown, Brite and White Adipose Tissue Seley Gharanei 1,2, Kiran Shabir 3 , James E. Brown 3,4, Martin O. Weickert 1,2,5 , 1,2 1,2,3, 1,2,3, , Thomas M. Barber , Ioannis Kyrou y and Harpal S. Randeva * y 1 Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK; [email protected] (S.G.); [email protected] (M.O.W.); [email protected] (T.M.B.); [email protected] (I.K.) 2 Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK 3 Aston Medical Research Institute, Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; [email protected] (K.S.); [email protected] (J.E.B.) 4 School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK 5 Centre of Applied Biological & Exercise Sciences, Faculty of Health & Life Sciences, Coventry University, Coventry CV1 5FB, UK * Correspondence: [email protected] Joint senior authors; contributed equally to the manuscript. y Received: 30 September 2020; Accepted: 13 November 2020; Published: 16 November 2020 Abstract: MicroRNAs (miRNAs) constitute a class of short noncoding RNAs which regulate gene expression by targeting messenger RNA, inducing translational repression and messenger RNA degradation. This regulation of gene expression by miRNAs in adipose tissue (AT) can impact on the regulation of metabolism and energy homeostasis, particularly considering the different types of adipocytes which exist in mammals, i.e., white adipocytes (white AT; WAT), brown adipocytes (brown AT; BAT), and inducible brown adipocytes in WAT (beige or brite or brown-in-white adipocytes).
    [Show full text]
  • A Novel Arabidopsis Pathosystem Reveals Cooperation of Multiple
    www.nature.com/scientificreports OPEN A novel Arabidopsis pathosystem reveals cooperation of multiple hormonal response-pathways in host resistance against the global crop destroyer Macrophomina phaseolina Mercedes M. Schroeder1, Yan Lai1,2, Miwa Shirai1, Natalie Alsalek1,3, Tokuji Tsuchiya 4, Philip Roberts5 & Thomas Eulgem 1* Dubbed as a “global destroyer of crops”, the soil-borne fungus Macrophomina phaseolina (Mp) infects more than 500 plant species including many economically important cash crops. Host defenses against infection by this pathogen are poorly understood. We established interactions between Mp and Arabidopsis thaliana (Arabidopsis) as a model system to quantitatively assess host factors afecting the outcome of Mp infections. Using agar plate-based infection assays with diferent Arabidopsis genotypes, we found signaling mechanisms dependent on the plant hormones ethylene, jasmonic acid and salicylic acid to control host defense against this pathogen. By profling host transcripts in Mp-infected roots of the wild-type Arabidopsis accession Col-0 and ein2/jar1, an ethylene/jasmonic acid-signaling defcient mutant that exhibits enhanced susceptibility to this pathogen, we identifed hundreds of genes potentially contributing to a diverse array of defense responses, which seem coordinated by complex interplay between multiple hormonal response-pathways. Our results establish Mp/Arabidopsis interactions as a useful model pathosystem, allowing for application of the vast genomics-related resources of this versatile model plant to the systematic investigation of previously understudied host defenses against a major crop plant pathogen. Te broad host-spectrum pathogen Macrophomina phaseolina (Mp) is a devastating soil-borne fungus that infects more than 500 plant species1–5. Many of these hosts are economically important crop plants including maize, soybean, canola, cotton, peanut, sunfower and sugar cane5–10.
    [Show full text]
  • Evidence of Resistance to the Downy Mildew Agent Plasmopara Viticola in the Georgian Vitis Vinifera Germplasm
    Vitis 55, 121–128 (2016) DOI: 10.5073/vitis.2016.55.121-128 Evidence of resistance to the downy mildew agent Plasmopara viticola in the Georgian Vitis vinifera germplasm S. L. TOFFOLATTI1), G. MADDALENA1), D. SALOMONI1), D. MAGHRADZE2), P. A. BIANCO1) and O. FAILLA1) 1) Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Milano, Italy 2) Scientific – Research Center of Agriculture, Tbilisi, Georgia Summary ability during late spring and summer usually prevent the spread of the disease (VERCESI et al. 2010). The control of Grapevine downy mildew, caused by Plasmopara downy mildew on grapevine varieties requires regular appli- viticola, is one of the most important diseases at the inter- cation of fungicides. However, the intensive use of chemicals national level. The mainly cultivated Vitis vinifera varie- becomes more and more restrictive due to human health ties are generally fully susceptible to P. viticola, but little risk and negative environmental impact (BLASI et al. 2011). information is available on the less common germplasm. Damages due to P. viticola could be reduced by using The V. vinifera germplasm of Georgia (Caucasus) is char- resistant grapevine varieties. The breeding programs are acterized by a high genetic diversity and it is different usually carried out by crossing V. vinifera with resistant from the main European cultivars. Aim of the study is species and in particular with American Vitaceae that co- finding possible sources of resistance in the Georgian evolved with the pathogen. The first generation hybrids, autochthonous varieties available in a field collection in obtained from the end of the XIXth to the beginning of the northern Italy.
    [Show full text]
  • The Effects of Pathogen Infection on Nitrogen Remobilization in Arabidopsis Thaliana
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 12-2006 The Effects of Pathogen Infection on Nitrogen Remobilization in Arabidopsis thaliana Michelle Ann Boercker University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Ecology and Evolutionary Biology Commons Recommended Citation Boercker, Michelle Ann, "The Effects of Pathogen Infection on Nitrogen Remobilization in Arabidopsis thaliana. " Master's Thesis, University of Tennessee, 2006. https://trace.tennessee.edu/utk_gradthes/1506 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Michelle Ann Boercker entitled "The Effects of Pathogen Infection on Nitrogen Remobilization in Arabidopsis thaliana." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Ecology and Evolutionary Biology. James Fordyce, Major Professor We have read this thesis and recommend its acceptance: Nathan Sanders, Joe Williams Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) To the Graduate Council: I am submitting herewith a thesis written by Michelle Ann Boercker entitled “The Effects of Pathogen Infection on Nitrogen Remobilization in Arabidopsis thaliana.” I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirement for the degree of Master of Science, with a major in Ecology and Evolutionary Biology.
    [Show full text]
  • Rice Hoja Blanca: a Complex Plant–Virus–Vector Pathosystem F.J
    CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 2010 5, No. 043 Review Rice hoja blanca: a complex plant–virus–vector pathosystem F.J. Morales* and P.R. Jennings Address: International Centre for Tropical Agriculture, AA 6713, Cali, Colombia. *Correspondence: F.J. Morales. E-mail: [email protected] Received: 30 April 2010 Accepted: 24 June 2010 doi: 10.1079/PAVSNNR20105043 The electronic version of this article is the definitive one. It is located here: http://www.cabi.org/cabreviews g CAB International 2009 (Online ISSN 1749-8848) Abstract Rice hoja blanca (RHB; white leaf) devastated rice (Oryza sativa) plantings in tropical America for half a century, before scientists could either identify its causal agent or understand the nature of its cyclical epidemics. The association of the planthopper Tagosodes orizicolus with RHB outbreaks, 20 years after its emergence in South America, suggested the existence of a viral pathogen. However, T. orizicolus could also cause severe direct feeding damage (hopperburn) to rice in the absence of hoja blanca, and breeders promptly realized that the genetic basis of resistance to these problems was different. Furthermore, it was observed that the causal agent of RHB could only be trans- mitted by a relatively low proportion of the individuals in any given population of T. orizicolus and that the pathogen was transovarially transmitted to the progeny of the planthopper vectors, affecting their normal biology. An international rice germplasm screening effort was initiated in the late 1950s to identify sources of resistance against RHB and the direct feeding damage caused by T.
    [Show full text]
  • Elicitation of Grapevine Defense Responses Against Plasmopara Viticola , the Causal Agent of Downy Mildew
    Elicitation of grapevine defense responses against Plasmopara viticola , the causal agent of downy mildew Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Naturwissenschaftlichen Fachbereiche der Justus-Liebig-Universität Gießen Durchgeführt am Institut für Phytopathologie und Angewandte Zoologie Vorgelegt von M.Sc. Moustafa Selim aus Kairo, Ägypten Dekan: Prof. Dr. Peter Kämpfer 1. Gutachter: Prof. Dr. Karl-Heinz Kogel 2. Gutachterin: Prof. Dr. Tina Trenczek Dedication / Widmung I. DEDICATION / WIDMUNG: Für alle, die nach Wissen streben Und ihren Horizont erweitern möchten bereit sind, alles zu geben Und das Unbekannte nicht fürchten Für alle, die bereit sind, sich zu schlagen In der Wissenschaftsschlacht keine Angst haben Wissen ist Macht **************** For all who seek knowledge And want to expand their horizon Who are ready to give everything And do not fear the unknown For all who are willing to fight In the science battle Who have no fear Because Knowledge is power I Declaration / Erklärung II. DECLARATION I hereby declare that the submitted work was made by myself. I also declare that I did not use any other auxiliary material than that indicated in this work and that work of others has been always cited. This work was not either as such or similarly submitted to any other academic authority. ERKLÄRUNG Hiermit erklare ich, dass ich die vorliegende Arbeit selbststandig angefertigt und nur die angegebenen Quellen and Hilfsmittel verwendet habe und die Arbeit der anderen wurde immer zitiert. Die Arbeit lag in gleicher oder ahnlicher Form noch keiner anderen Prufungsbehorde vor. II Contents III. CONTENTS I. DEDICATION / WIDMUNG……………...............................................................I II. ERKLÄRUNG / DECLARATION .…………………….........................................II III.
    [Show full text]
  • Identification of Genes That Affect Acetylcholine
    IDENTIFICATION OF GENES THAT AFFECT ACETYLCHOLINE SIGNALING AT THE C. ELEGANS NEUROMUSCULAR JUNCTION by Shrey Patel A thesis submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Honors Bachelor of Arts in Biological Sciences with Distinction Spring 2018 © 2018 Shrey Patel All Rights Reserved IDENTIFICATION OF GENES THAT AFFECT ACETYLCHOLINE SIGNALING AT THE C. ELEGANS NEUROMUSCULAR JUNCTION by Shrey Patel Approved: __________________________________________________________ Jessica Tanis, Ph.D. Professor in charge of thesis on behalf of the Advisory Committee Approved: __________________________________________________________ Donna Woulfe, Ph.D. Committee member from the Department of Biological Sciences Approved: __________________________________________________________ Carlton Cooper, Ph.D. Committee member from the Board of Senior Thesis Readers Approved: __________________________________________________________ Paul Laux, Ph.D. Director, University Honors Program ACKNOWLEDGMENTS I would like to first thank Dr. Jessica Tanis for giving me the opportunity to conduct research towards a senior thesis. Her guidance, support, and encouragement throughout the process have been invaluable. Her mentorship has changed my views on research, helped me grow professionally and personally, and opened doors previously unimagined. I could not be more grateful. I would not be where I am without the assistance of the Tanis Lab team: Kirsten Kervin, Elaine Miller, Andy Lam, Michael Clupper, Amanda Addiego, Denis Touroutine, and Alyssa Reed. Thank you for help with laboratory techniques, input on my presentations, and for being great team members. I would like to specially thank Amanda, Kirsten, and Elaine for their contributions to this project, which has made significant progress in just one year. I could not have wished to be in another lab, for the enriching, collaborative, and friendly environment cannot be replicated.
    [Show full text]
  • Economic Cost of Invasive Non-Native Species on Great Britain F
    The Economic Cost of Invasive Non-Native Species on Great Britain F. Williams, R. Eschen, A. Harris, D. Djeddour, C. Pratt, R.S. Shaw, S. Varia, J. Lamontagne-Godwin, S.E. Thomas, S.T. Murphy CAB/001/09 November 2010 www.cabi.org 1 KNOWLEDGE FOR LIFE The Economic Cost of Invasive Non-Native Species on Great Britain Acknowledgements This report would not have been possible without the input of many people from Great Britain and abroad. We thank all the people who have taken the time to respond to the questionnaire or to provide information over the phone or otherwise. Front Cover Photo – Courtesy of T. Renals Sponsors The Scottish Government Department of Environment, Food and Rural Affairs, UK Government Department for the Economy and Transport, Welsh Assembly Government FE Williams, R Eschen, A Harris, DH Djeddour, CF Pratt, RS Shaw, S Varia, JD Lamontagne-Godwin, SE Thomas, ST Murphy CABI Head Office Nosworthy Way Wallingford OX10 8DE UK and CABI Europe - UK Bakeham Lane Egham Surrey TW20 9TY UK CABI Project No. VM10066 2 The Economic Cost of Invasive Non-Native Species on Great Britain Executive Summary The impact of Invasive Non-Native Species (INNS) can be manifold, ranging from loss of crops, damaged buildings, and additional production costs to the loss of livelihoods and ecosystem services. INNS are increasingly abundant in Great Britain and in Europe generally and their impact is rising. Hence, INNS are the subject of considerable concern in Great Britain, prompting the development of a Non-Native Species Strategy and the formation of the GB Non-Native Species Programme Board and Secretariat.
    [Show full text]
  • Microrna Co-Expression Networks Exhibit Increased Complexity in Pancreatic Ductal Compared to Vater’S Papilla Adenocarcinoma
    www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 62), pp: 105320-105339 Research Paper MicroRNA co-expression networks exhibit increased complexity in pancreatic ductal compared to Vater’s papilla adenocarcinoma Tommaso Mazza1, Massimiliano Copetti2, Daniele Capocefalo1,8, Caterina Fusilli1, Tommaso Biagini1, Massimo Carella3, Antonio De Bonis4, Nicola Mastrodonato4, Ada Piepoli5, Valerio Pazienza5, Evaristo Maiello6, Fabio Francesco di Mola7, Pierluigi di Sebastiano7, Angelo Andriulli5 and Francesca Tavano5 1Unit of Bioinformatics, Research Hospital, San Giovanni Rotondo 71013, Italy 2Unit of Biostatistics, Research Hospital, San Giovanni Rotondo 71013, Italy 3Medical Genetics Unit, Research Hospital, San Giovanni Rotondo 71013, Italy 4Department of Surgery, Research Hospital, San Giovanni Rotondo 71013, Italy 5Division of Gastroenterology and Research Laboratory, San Giovanni Rotondo 71013, Italy 6Department of Oncology IRCCS “Casa Sollievo della Sofferenza”, Research Hospital, San Giovanni Rotondo 71013, Italy 7Division of Surgical Oncology “SS Annunziata” Hospital, Chieti 66100, Italy 8Department of Cellular Biotechnologies and Haematology, Sapienza University of Rome, Rome 00161, Italy Correspondence to: Francesca Tavano, email: [email protected] Keywords: microRNA; pancrearic ductal adenocarcinoma; ampullary carcinoma Received: December 06, 2016 Accepted: July 11, 2017 Published: October 31, 2017 Copyright: Mazza et al. This is an open-access article distributed under the terms of the Creative Commons Attribution
    [Show full text]