Plasmopara Viticola
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Integrated Carrots
Integrated management of Pythium diseases of carrots E Davison and A McKay Department of Agriculture, Western Australia Project Number: VG98011 VG98011 This report is published by Horticulture Australia Ltd to pass on information concerning horticultural research and development undertaken for the vegetable industry. The research contained in this report was funded by Horticulture Australia Ltd with the financial support of the vegetable industry. All expressions of opinion are not to be regarded as expressing the opinion of Horticulture Australia Ltd or any authority of the Australian Government. The Company and the Australian Government accept no responsibility for any of the opinions or the accuracy of the information contained in this report and readers should rely upon their own enquiries in making decisions concerning their own interests. ISBN 0 7341 0333 6 Published and distributed by: Horticultural Australia Ltd Level 1 50 Carrington Street Sydney NSW 2000 Telephone: (02) 8295 2300 Fax: (02) 8295 2399 E-Mail: [email protected] © Copyright 2001 Horticulture Australia FINAL REPORT HORTICULTURE AUSTRALIA PROJECT VG98011 INTEGRATED MANAGEMENT OF PYTHIUM DISEASES OF CARROTS E. M. Davison and A. G. McKay Department of Agriculture, Western Australia DEPARTMENT OF Agriculture Horticulture Australia September 2001 HORTICULTURE AUSTRALIA PROJECT VG 98011 Principal Investigator Elaine Davison Research Officer, Crop Improvement Institute, Department of Agriculture, Locked Bag 4, Bentley Deliver Centre, Western Australia 6983 Australia Email: edavisonfSjagric.wa.gov.au This is the final report of project VG 98011 Integrated management of Pythium diseases of carrots. It covers research into the cause(s) of cavity spot and related diseases in carrot production areas in Australia, together with information on integrated disease control. -
Crystal Structure of the Primary Pirna Biogenesis Factor Zucchini Reveals Similarity to the Bacterial PLD Endonuclease Nuc
Downloaded from rnajournal.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press LETTER TO THE EDITOR Crystal structure of the primary piRNA biogenesis factor Zucchini reveals similarity to the bacterial PLD endonuclease Nuc FRANKA VOIGT,1 MICHAEL REUTER,2,3 ANISA KASARUHO,2,3 EIKE C. SCHULZ,1 RAMESH S. PILLAI,2,3,4 and ORSOLYA BARABAS1,4 1European Molecular Biology Laboratory, 69117 Heidelberg, Germany 2European Molecular Biology Laboratory, 38042 Grenoble, France 3CNRS-UJF-EMBL International Unit (UMI 3265) for Virus Host Cell Interactions (UVHCI), 38042 Grenoble, France ABSTRACT Piwi-interacting RNAs (piRNAs) are a gonad-specific class of small RNAs that associate with the Piwi clade of Argonaute proteins and play a key role in transposon silencing in animals. Since biogenesis of piRNAs is independent of the double- stranded RNA-processing enzyme Dicer, an alternative nuclease that can process single-stranded RNA transcripts has been long sought. A Phospholipase D-like protein, Zucchini, that is essential for piRNA processing has been proposed to be a nuclease acting in piRNA biogenesis. Here we describe the crystal structure of Zucchini from Drosophila melanogaster and show that it is very similar to the bacterial endonuclease, Nuc. The structure also reveals that homodimerization induces major conforma- tional changes assembling the active site. The active site is situated on the dimer interface at the bottom of a narrow groove that can likely accommodate single-stranded nucleic acid substrates. Furthermore, biophysical analysis identifies protein segments essential for dimerization and provides insights into regulation of Zucchini’s activity. Keywords: Zucchini; piRNA; Piwi; nuclease; phospholipase; PLD6; MitoPLD INTRODUCTION stranded (ss) RNAs (Brennecke et al. -
Rpv Mediated Defense Responses in Grapevine Offspring Resistant to Plasmopara Viticola
plants Technical Note Rpv Mediated Defense Responses in Grapevine Offspring Resistant to Plasmopara viticola Tyrone Possamai 1 , Daniele Migliaro 2,* , Massimo Gardiman 2 , Riccardo Velasco 2 and Barbara De Nardi 2 1 Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze 206, 33100 Udine, Italy; [email protected] 2 CREA - Research Centre for Viticulture and Enology, viale XXVIII Aprile 26, 31015 Conegliano (TV), Italy; [email protected] (M.G.); [email protected] (R.V.); [email protected] (B.D.N.) * Correspondence: [email protected] Received: 30 May 2020; Accepted: 20 June 2020; Published: 22 June 2020 Abstract: Downy mildew, caused by the biotrophic oomycete Plasmopara viticola, is one of the most serious grapevine diseases. The development of new varieties, showing partial resistance to downy mildew, through traditional breeding provides a sustainable and effective solution for disease management. Marker-assisted-selection (MAS) provide fast and cost-effective genotyping methods, but phenotyping remains necessary to characterize the host–pathogen interaction and assess the effective resistance level of new varieties as well as to validate MAS selection. In this study, the Rpv mediated defense responses were investigated in 31 genotypes, encompassing susceptible and resistant varieties and 26 seedlings, following inoculation of leaf discs with P. viticola. The offspring differed in Rpv loci inherited (none, one or two): Rpv3-3 and Rpv10 from Solaris and Rpv3-1 and Rpv12 from Kozma 20-3. To improve the assessment of different resistance responses, pathogen reaction (sporulation) and host reaction (necrosis) were scored separately as independent features. -
Regulatory Micrornas in Brown, Brite and White Adipose Tissue
cells Review Regulatory microRNAs in Brown, Brite and White Adipose Tissue Seley Gharanei 1,2, Kiran Shabir 3 , James E. Brown 3,4, Martin O. Weickert 1,2,5 , 1,2 1,2,3, 1,2,3, , Thomas M. Barber , Ioannis Kyrou y and Harpal S. Randeva * y 1 Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK; [email protected] (S.G.); [email protected] (M.O.W.); [email protected] (T.M.B.); [email protected] (I.K.) 2 Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK 3 Aston Medical Research Institute, Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; [email protected] (K.S.); [email protected] (J.E.B.) 4 School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK 5 Centre of Applied Biological & Exercise Sciences, Faculty of Health & Life Sciences, Coventry University, Coventry CV1 5FB, UK * Correspondence: [email protected] Joint senior authors; contributed equally to the manuscript. y Received: 30 September 2020; Accepted: 13 November 2020; Published: 16 November 2020 Abstract: MicroRNAs (miRNAs) constitute a class of short noncoding RNAs which regulate gene expression by targeting messenger RNA, inducing translational repression and messenger RNA degradation. This regulation of gene expression by miRNAs in adipose tissue (AT) can impact on the regulation of metabolism and energy homeostasis, particularly considering the different types of adipocytes which exist in mammals, i.e., white adipocytes (white AT; WAT), brown adipocytes (brown AT; BAT), and inducible brown adipocytes in WAT (beige or brite or brown-in-white adipocytes). -
A Novel Arabidopsis Pathosystem Reveals Cooperation of Multiple
www.nature.com/scientificreports OPEN A novel Arabidopsis pathosystem reveals cooperation of multiple hormonal response-pathways in host resistance against the global crop destroyer Macrophomina phaseolina Mercedes M. Schroeder1, Yan Lai1,2, Miwa Shirai1, Natalie Alsalek1,3, Tokuji Tsuchiya 4, Philip Roberts5 & Thomas Eulgem 1* Dubbed as a “global destroyer of crops”, the soil-borne fungus Macrophomina phaseolina (Mp) infects more than 500 plant species including many economically important cash crops. Host defenses against infection by this pathogen are poorly understood. We established interactions between Mp and Arabidopsis thaliana (Arabidopsis) as a model system to quantitatively assess host factors afecting the outcome of Mp infections. Using agar plate-based infection assays with diferent Arabidopsis genotypes, we found signaling mechanisms dependent on the plant hormones ethylene, jasmonic acid and salicylic acid to control host defense against this pathogen. By profling host transcripts in Mp-infected roots of the wild-type Arabidopsis accession Col-0 and ein2/jar1, an ethylene/jasmonic acid-signaling defcient mutant that exhibits enhanced susceptibility to this pathogen, we identifed hundreds of genes potentially contributing to a diverse array of defense responses, which seem coordinated by complex interplay between multiple hormonal response-pathways. Our results establish Mp/Arabidopsis interactions as a useful model pathosystem, allowing for application of the vast genomics-related resources of this versatile model plant to the systematic investigation of previously understudied host defenses against a major crop plant pathogen. Te broad host-spectrum pathogen Macrophomina phaseolina (Mp) is a devastating soil-borne fungus that infects more than 500 plant species1–5. Many of these hosts are economically important crop plants including maize, soybean, canola, cotton, peanut, sunfower and sugar cane5–10. -
Evidence of Resistance to the Downy Mildew Agent Plasmopara Viticola in the Georgian Vitis Vinifera Germplasm
Vitis 55, 121–128 (2016) DOI: 10.5073/vitis.2016.55.121-128 Evidence of resistance to the downy mildew agent Plasmopara viticola in the Georgian Vitis vinifera germplasm S. L. TOFFOLATTI1), G. MADDALENA1), D. SALOMONI1), D. MAGHRADZE2), P. A. BIANCO1) and O. FAILLA1) 1) Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Milano, Italy 2) Scientific – Research Center of Agriculture, Tbilisi, Georgia Summary ability during late spring and summer usually prevent the spread of the disease (VERCESI et al. 2010). The control of Grapevine downy mildew, caused by Plasmopara downy mildew on grapevine varieties requires regular appli- viticola, is one of the most important diseases at the inter- cation of fungicides. However, the intensive use of chemicals national level. The mainly cultivated Vitis vinifera varie- becomes more and more restrictive due to human health ties are generally fully susceptible to P. viticola, but little risk and negative environmental impact (BLASI et al. 2011). information is available on the less common germplasm. Damages due to P. viticola could be reduced by using The V. vinifera germplasm of Georgia (Caucasus) is char- resistant grapevine varieties. The breeding programs are acterized by a high genetic diversity and it is different usually carried out by crossing V. vinifera with resistant from the main European cultivars. Aim of the study is species and in particular with American Vitaceae that co- finding possible sources of resistance in the Georgian evolved with the pathogen. The first generation hybrids, autochthonous varieties available in a field collection in obtained from the end of the XIXth to the beginning of the northern Italy. -
The Effects of Pathogen Infection on Nitrogen Remobilization in Arabidopsis Thaliana
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 12-2006 The Effects of Pathogen Infection on Nitrogen Remobilization in Arabidopsis thaliana Michelle Ann Boercker University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Ecology and Evolutionary Biology Commons Recommended Citation Boercker, Michelle Ann, "The Effects of Pathogen Infection on Nitrogen Remobilization in Arabidopsis thaliana. " Master's Thesis, University of Tennessee, 2006. https://trace.tennessee.edu/utk_gradthes/1506 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Michelle Ann Boercker entitled "The Effects of Pathogen Infection on Nitrogen Remobilization in Arabidopsis thaliana." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Ecology and Evolutionary Biology. James Fordyce, Major Professor We have read this thesis and recommend its acceptance: Nathan Sanders, Joe Williams Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) To the Graduate Council: I am submitting herewith a thesis written by Michelle Ann Boercker entitled “The Effects of Pathogen Infection on Nitrogen Remobilization in Arabidopsis thaliana.” I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirement for the degree of Master of Science, with a major in Ecology and Evolutionary Biology. -
Rice Hoja Blanca: a Complex Plant–Virus–Vector Pathosystem F.J
CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 2010 5, No. 043 Review Rice hoja blanca: a complex plant–virus–vector pathosystem F.J. Morales* and P.R. Jennings Address: International Centre for Tropical Agriculture, AA 6713, Cali, Colombia. *Correspondence: F.J. Morales. E-mail: [email protected] Received: 30 April 2010 Accepted: 24 June 2010 doi: 10.1079/PAVSNNR20105043 The electronic version of this article is the definitive one. It is located here: http://www.cabi.org/cabreviews g CAB International 2009 (Online ISSN 1749-8848) Abstract Rice hoja blanca (RHB; white leaf) devastated rice (Oryza sativa) plantings in tropical America for half a century, before scientists could either identify its causal agent or understand the nature of its cyclical epidemics. The association of the planthopper Tagosodes orizicolus with RHB outbreaks, 20 years after its emergence in South America, suggested the existence of a viral pathogen. However, T. orizicolus could also cause severe direct feeding damage (hopperburn) to rice in the absence of hoja blanca, and breeders promptly realized that the genetic basis of resistance to these problems was different. Furthermore, it was observed that the causal agent of RHB could only be trans- mitted by a relatively low proportion of the individuals in any given population of T. orizicolus and that the pathogen was transovarially transmitted to the progeny of the planthopper vectors, affecting their normal biology. An international rice germplasm screening effort was initiated in the late 1950s to identify sources of resistance against RHB and the direct feeding damage caused by T. -
Elicitation of Grapevine Defense Responses Against Plasmopara Viticola , the Causal Agent of Downy Mildew
Elicitation of grapevine defense responses against Plasmopara viticola , the causal agent of downy mildew Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Naturwissenschaftlichen Fachbereiche der Justus-Liebig-Universität Gießen Durchgeführt am Institut für Phytopathologie und Angewandte Zoologie Vorgelegt von M.Sc. Moustafa Selim aus Kairo, Ägypten Dekan: Prof. Dr. Peter Kämpfer 1. Gutachter: Prof. Dr. Karl-Heinz Kogel 2. Gutachterin: Prof. Dr. Tina Trenczek Dedication / Widmung I. DEDICATION / WIDMUNG: Für alle, die nach Wissen streben Und ihren Horizont erweitern möchten bereit sind, alles zu geben Und das Unbekannte nicht fürchten Für alle, die bereit sind, sich zu schlagen In der Wissenschaftsschlacht keine Angst haben Wissen ist Macht **************** For all who seek knowledge And want to expand their horizon Who are ready to give everything And do not fear the unknown For all who are willing to fight In the science battle Who have no fear Because Knowledge is power I Declaration / Erklärung II. DECLARATION I hereby declare that the submitted work was made by myself. I also declare that I did not use any other auxiliary material than that indicated in this work and that work of others has been always cited. This work was not either as such or similarly submitted to any other academic authority. ERKLÄRUNG Hiermit erklare ich, dass ich die vorliegende Arbeit selbststandig angefertigt und nur die angegebenen Quellen and Hilfsmittel verwendet habe und die Arbeit der anderen wurde immer zitiert. Die Arbeit lag in gleicher oder ahnlicher Form noch keiner anderen Prufungsbehorde vor. II Contents III. CONTENTS I. DEDICATION / WIDMUNG……………...............................................................I II. ERKLÄRUNG / DECLARATION .…………………….........................................II III. -
Identification of Genes That Affect Acetylcholine
IDENTIFICATION OF GENES THAT AFFECT ACETYLCHOLINE SIGNALING AT THE C. ELEGANS NEUROMUSCULAR JUNCTION by Shrey Patel A thesis submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Honors Bachelor of Arts in Biological Sciences with Distinction Spring 2018 © 2018 Shrey Patel All Rights Reserved IDENTIFICATION OF GENES THAT AFFECT ACETYLCHOLINE SIGNALING AT THE C. ELEGANS NEUROMUSCULAR JUNCTION by Shrey Patel Approved: __________________________________________________________ Jessica Tanis, Ph.D. Professor in charge of thesis on behalf of the Advisory Committee Approved: __________________________________________________________ Donna Woulfe, Ph.D. Committee member from the Department of Biological Sciences Approved: __________________________________________________________ Carlton Cooper, Ph.D. Committee member from the Board of Senior Thesis Readers Approved: __________________________________________________________ Paul Laux, Ph.D. Director, University Honors Program ACKNOWLEDGMENTS I would like to first thank Dr. Jessica Tanis for giving me the opportunity to conduct research towards a senior thesis. Her guidance, support, and encouragement throughout the process have been invaluable. Her mentorship has changed my views on research, helped me grow professionally and personally, and opened doors previously unimagined. I could not be more grateful. I would not be where I am without the assistance of the Tanis Lab team: Kirsten Kervin, Elaine Miller, Andy Lam, Michael Clupper, Amanda Addiego, Denis Touroutine, and Alyssa Reed. Thank you for help with laboratory techniques, input on my presentations, and for being great team members. I would like to specially thank Amanda, Kirsten, and Elaine for their contributions to this project, which has made significant progress in just one year. I could not have wished to be in another lab, for the enriching, collaborative, and friendly environment cannot be replicated. -
Economic Cost of Invasive Non-Native Species on Great Britain F
The Economic Cost of Invasive Non-Native Species on Great Britain F. Williams, R. Eschen, A. Harris, D. Djeddour, C. Pratt, R.S. Shaw, S. Varia, J. Lamontagne-Godwin, S.E. Thomas, S.T. Murphy CAB/001/09 November 2010 www.cabi.org 1 KNOWLEDGE FOR LIFE The Economic Cost of Invasive Non-Native Species on Great Britain Acknowledgements This report would not have been possible without the input of many people from Great Britain and abroad. We thank all the people who have taken the time to respond to the questionnaire or to provide information over the phone or otherwise. Front Cover Photo – Courtesy of T. Renals Sponsors The Scottish Government Department of Environment, Food and Rural Affairs, UK Government Department for the Economy and Transport, Welsh Assembly Government FE Williams, R Eschen, A Harris, DH Djeddour, CF Pratt, RS Shaw, S Varia, JD Lamontagne-Godwin, SE Thomas, ST Murphy CABI Head Office Nosworthy Way Wallingford OX10 8DE UK and CABI Europe - UK Bakeham Lane Egham Surrey TW20 9TY UK CABI Project No. VM10066 2 The Economic Cost of Invasive Non-Native Species on Great Britain Executive Summary The impact of Invasive Non-Native Species (INNS) can be manifold, ranging from loss of crops, damaged buildings, and additional production costs to the loss of livelihoods and ecosystem services. INNS are increasingly abundant in Great Britain and in Europe generally and their impact is rising. Hence, INNS are the subject of considerable concern in Great Britain, prompting the development of a Non-Native Species Strategy and the formation of the GB Non-Native Species Programme Board and Secretariat. -
Microrna Co-Expression Networks Exhibit Increased Complexity in Pancreatic Ductal Compared to Vater’S Papilla Adenocarcinoma
www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 62), pp: 105320-105339 Research Paper MicroRNA co-expression networks exhibit increased complexity in pancreatic ductal compared to Vater’s papilla adenocarcinoma Tommaso Mazza1, Massimiliano Copetti2, Daniele Capocefalo1,8, Caterina Fusilli1, Tommaso Biagini1, Massimo Carella3, Antonio De Bonis4, Nicola Mastrodonato4, Ada Piepoli5, Valerio Pazienza5, Evaristo Maiello6, Fabio Francesco di Mola7, Pierluigi di Sebastiano7, Angelo Andriulli5 and Francesca Tavano5 1Unit of Bioinformatics, Research Hospital, San Giovanni Rotondo 71013, Italy 2Unit of Biostatistics, Research Hospital, San Giovanni Rotondo 71013, Italy 3Medical Genetics Unit, Research Hospital, San Giovanni Rotondo 71013, Italy 4Department of Surgery, Research Hospital, San Giovanni Rotondo 71013, Italy 5Division of Gastroenterology and Research Laboratory, San Giovanni Rotondo 71013, Italy 6Department of Oncology IRCCS “Casa Sollievo della Sofferenza”, Research Hospital, San Giovanni Rotondo 71013, Italy 7Division of Surgical Oncology “SS Annunziata” Hospital, Chieti 66100, Italy 8Department of Cellular Biotechnologies and Haematology, Sapienza University of Rome, Rome 00161, Italy Correspondence to: Francesca Tavano, email: [email protected] Keywords: microRNA; pancrearic ductal adenocarcinoma; ampullary carcinoma Received: December 06, 2016 Accepted: July 11, 2017 Published: October 31, 2017 Copyright: Mazza et al. This is an open-access article distributed under the terms of the Creative Commons Attribution