Mouse Setx Conditional Knockout Project (CRISPR/Cas9)

Total Page:16

File Type:pdf, Size:1020Kb

Mouse Setx Conditional Knockout Project (CRISPR/Cas9) https://www.alphaknockout.com Mouse Setx Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Setx conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Setx gene (NCBI Reference Sequence: NM_198033 ; Ensembl: ENSMUSG00000043535 ) is located on Mouse chromosome 2. 26 exons are identified, with the ATG start codon in exon 3 and the TAG stop codon in exon 26 (Transcript: ENSMUST00000061578). Exon 4 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Setx gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-50I2 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Mice homozygous for a knock-out allele exhibit male infertility due to arrested male meiosis and reduced female fertility. Exon 4 starts from about 2.27% of the coding region. The knockout of Exon 4 will result in frameshift of the gene. The size of intron 3 for 5'-loxP site insertion: 3116 bp, and the size of intron 4 for 3'-loxP site insertion: 3531 bp. The size of effective cKO region: ~711 bp. The cKO region does not have any other known gene. Page 1 of 7 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele gRNA region 5' gRNA region 3' 1 4 26 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Exon of mouse Setx Homology arm cKO region loxP site Page 2 of 7 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis. Overview of the GC Content Distribution Window size: 300 bp Sequence 12 Summary: Full Length(7211bp) | A(27.43% 1978) | C(20.14% 1452) | T(31.34% 2260) | G(21.09% 1521) Note: The sequence of homologous arms and cKO region is analyzed to determine the GC content. No significant high GC-content region is found. So this region is suitable for PCR screening or sequencing analysis. Page 3 of 7 https://www.alphaknockout.com BLAT Search Results (up) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chr2 + 29126931 29129930 3000 browser details YourSeq 489 351 928 3000 94.9% chr2 - 29101947 29102541 595 browser details YourSeq 471 951 1713 3000 89.1% chr5 + 100076711 100077313 603 browser details YourSeq 454 952 1713 3000 88.8% chr18 - 67179648 67180236 589 browser details YourSeq 420 949 1660 3000 91.7% chr9 - 90052437 90053283 847 browser details YourSeq 408 738 1324 3000 89.6% chr15 + 102550345 102551048 704 browser details YourSeq 386 884 1629 3000 90.0% chr19 - 4077201 4078252 1052 browser details YourSeq 384 778 1713 3000 85.6% chr11 - 119011606 119012205 600 browser details YourSeq 348 951 1598 3000 91.9% chr19 - 40909206 40910059 854 browser details YourSeq 343 949 1579 3000 92.2% chr5 - 65315549 65316355 807 browser details YourSeq 334 842 1324 3000 91.4% chr2 - 3497471 3498353 883 browser details YourSeq 328 454 1320 3000 87.4% chr11 - 54743414 54743877 464 browser details YourSeq 324 949 1532 3000 92.0% chr6 + 112583352 112584018 667 browser details YourSeq 322 453 1324 3000 87.7% chr14 - 78951764 78952462 699 browser details YourSeq 319 449 1715 3000 86.4% chr17 - 73168287 73168729 443 browser details YourSeq 315 950 1713 3000 87.6% chr3 + 35700270 35700844 575 browser details YourSeq 312 949 1532 3000 90.0% chrX - 152426308 152426911 604 browser details YourSeq 312 949 1324 3000 92.3% chr15 - 85225267 85225659 393 browser details YourSeq 311 949 1532 3000 91.3% chrX + 152497405 152498012 608 browser details YourSeq 311 923 1324 3000 91.5% chr5 + 21770348 21771153 806 Note: The 3000 bp section upstream of Exon 4 is BLAT searched against the genome. No significant similarity is found. BLAT Search Results (down) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN -------------------------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chr2 + 29130642 29133641 3000 browser details YourSeq 235 356 1112 3000 91.3% chr10 + 71378338 72000916 622579 browser details YourSeq 155 315 522 3000 90.2% chr11 + 60423625 60423833 209 browser details YourSeq 153 323 519 3000 89.0% chr9 + 59465147 59465332 186 browser details YourSeq 152 323 520 3000 88.5% chr7 + 114119572 114119764 193 browser details YourSeq 149 326 527 3000 84.0% chr2 - 121014167 121014359 193 browser details YourSeq 148 323 518 3000 85.8% chr8 + 84282330 84282512 183 browser details YourSeq 147 321 520 3000 86.9% chr2 - 90872783 90872971 189 browser details YourSeq 147 322 501 3000 91.1% chr2 + 51454896 51455083 188 browser details YourSeq 146 323 506 3000 89.5% chrX + 162559776 162559954 179 browser details YourSeq 146 246 487 3000 89.5% chr3 + 129999964 130000500 537 browser details YourSeq 145 323 519 3000 89.6% chr7 - 49543602 49543794 193 browser details YourSeq 144 323 959 3000 81.2% chr2 + 101929625 101930019 395 browser details YourSeq 143 323 497 3000 91.4% chr9 - 32662791 32662967 177 browser details YourSeq 142 317 492 3000 91.0% chr18 - 20923687 20924169 483 browser details YourSeq 142 944 1185 3000 81.8% chr11 + 105910684 105910899 216 browser details YourSeq 141 947 1112 3000 92.8% chr3 - 32579678 32579846 169 browser details YourSeq 141 348 519 3000 93.3% chr14 + 60970300 60970664 365 browser details YourSeq 140 323 497 3000 90.3% chrX - 56876111 56876286 176 browser details YourSeq 140 322 487 3000 92.2% chr4 - 148163014 148163179 166 Note: The 3000 bp section downstream of Exon 4 is BLAT searched against the genome. No significant similarity is found. Page 4 of 7 https://www.alphaknockout.com Gene and protein information: Setx senataxin [ Mus musculus (house mouse) ] Gene ID: 269254, updated on 6-Oct-2019 Gene summary Official Symbol Setx provided by MGI Official Full Name senataxin provided by MGI Primary source MGI:MGI:2443480 See related Ensembl:ENSMUSG00000043535 Gene type protein coding RefSeq status VALIDATED Organism Mus musculus Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha; Muroidea; Muridae; Murinae; Mus; Mus Also known as AOA2; Als4; Sen1; SCAR1; AW060766; mKIAA0625; A130090N03; A930037J23Rik Expression Broad expression in testis adult (RPKM 26.8), CNS E11.5 (RPKM 4.6) and 19 other tissues See more Orthologs human all Genomic context Location: 2; 2 B See Setx in Genome Data Viewer Exon count: 30 Annotation release Status Assembly Chr Location 108 current GRCm38.p6 (GCF_000001635.26) 2 NC_000068.7 (29123588..29182471) Build 37.2 previous assembly MGSCv37 (GCF_000001635.18) 2 NC_000068.6 (28980512..29037991) Chromosome 2 - NC_000068.7 Page 5 of 7 https://www.alphaknockout.com Transcript information: This gene has 5 transcripts Gene: Setx ENSMUSG00000043535 Description senataxin [Source:MGI Symbol;Acc:MGI:2443480] Gene Synonyms A930037J23Rik, Als4 Location Chromosome 2: 29,124,181-29,182,471 forward strand. GRCm38:CM000995.2 About this gene This gene has 5 transcripts (splice variants), 187 orthologues, 12 paralogues, is a member of 1 Ensembl protein family and is associated with 18 phenotypes. Transcripts Name Transcript ID bp Protein Translation ID Biotype CCDS UniProt Flags Setx- ENSMUST00000061578.8 10970 2646aa ENSMUSP00000051492.2 Protein coding CCDS38090 A2AKX3 TSL:5 201 GENCODE basic APPRIS P1 Setx- ENSMUST00000145422.1 1141 381aa ENSMUSP00000119176.1 Protein coding - F6R186 CDS 5' and 3' 204 incomplete TSL:5 Setx- ENSMUST00000129544.7 525 81aa ENSMUSP00000119521.1 Protein coding - A0A0A0MQJ0 CDS 3' incomplete 202 TSL:3 Setx- ENSMUST00000154910.1 538 No - Retained - - TSL:3 205 protein intron Setx- ENSMUST00000135992.1 577 No - lncRNA - - TSL:5 203 protein 78.29 kb Forward strand Genes (Comprehensive set... Setx-202 >protein coding Setx-203 >lncRNA Setx-201 >protein coding Setx-205 >retained intron Setx-204 >protein coding Contigs AL845267.2 > AL772379.11 > Regulatory Build Reverse strand 78.29 kb Regulation Legend CTCF Enhancer Open Chromatin Promoter Promoter Flank Transcription Factor Binding Site Gene Legend Protein Coding Ensembl protein coding merged Ensembl/Havana Non-Protein Coding RNA gene processed transcript Page 6 of 7 https://www.alphaknockout.com Transcript: ENSMUST00000061578 57.48 kb Forward strand Setx-201 >protein coding ENSMUSP00000051... MobiDB lite Low complexity (Seg) Coiled-coils (Ncoils) Superfamily P-loop containing nucleoside triphosphate hydrolase Pfam DNA2/NAM7 helicase, AAA domain DNA2/NAM7 helicase-like, AAA domain PANTHER PTHR10887:SF382 PTHR10887 Gene3D 3.40.50.300 CDD cd18042 cd18808 All sequence SNPs/i... Sequence variants (dbSNP and all other sources) Variant Legend inframe insertion inframe deletion missense variant synonymous variant Scale bar 0 400 800 1200 1600 2000 2646 We wish to acknowledge the following valuable scientific information resources: Ensembl, MGI, NCBI, UCSC. Page 7 of 7.
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Role of Senataxin in RNA: DNA Hybrids Resolution at DNA Double
    Role of senataxin in RNA : DNA hybrids resolution at DNA double strand breaks Sarah Cohen To cite this version: Sarah Cohen. Role of senataxin in RNA : DNA hybrids resolution at DNA double strand breaks. Cellular Biology. Université Paul Sabatier - Toulouse III, 2019. English. NNT : 2019TOU30125. tel-02930730 HAL Id: tel-02930730 https://tel.archives-ouvertes.fr/tel-02930730 Submitted on 4 Sep 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ����� ���� ������������������ ������������������������������������ ��������� ���!������"������ �� "��#�$�% ��� � ���� %��"���������"� ��� ��� � � � &������ ������������ ������� ����'������"�� � (����� �"�� ���"�� �������"�&)�����"����*���� (�+ "" ��"��� ��������"�����!��� ������������������,�,�$�,����-��.�� ���.�,����+&����-��" �������������,����/�������������� �������������������� �,�0�%�$�� ��� ���������,����-������� � �������0���+ � ����� ������'������� ������'������������ %����1�� ����� ����������������� /��������/�,�� ��� ���������� ������������������� ������������������������������ �� �����������������
    [Show full text]
  • Burden of Rare Variants in ALS and Axonal Hereditary Neuropathy Genes Influence Survival In
    International Journal of Molecular Sciences Article Burden of Rare Variants in ALS and Axonal Hereditary Neuropathy Genes Influence Survival in ALS: Insights from a Next Generation Sequencing Study of an Italian ALS Cohort Stefania Scarlino 1, Teuta Domi 1, Laura Pozzi 1 , Alessandro Romano 1, Giovanni Battista Pipitone 2, Yuri Matteo Falzone 1,3, Lorena Mosca 4, Silvana Penco 4, Christian Lunetta 5, Valeria Sansone 5,6, Lucio Tremolizzo 7, Raffaella Fazio 3, Federica Agosta 8, 3,8,9,10 2 1,3, , 1, Massimo Filippi , Paola Carrera , Nilo Riva * y and Angelo Quattrini y 1 Experimental Neuropathology Unit, Institute of Experimental Neurology (INSPE), Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy; [email protected] (S.S.); [email protected] (T.D.); [email protected] (L.P.); [email protected] (A.R.); [email protected] (Y.M.F.); [email protected] (A.Q.) 2 Laboratory of Clinical Molecular Biology, Unit of Genomics for Human Disease Diagnosis, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milan, Italy; [email protected] (G.B.P.); [email protected] (P.C.) 3 Neurology Unit, San Raffaele Scientific Institute, 20132 Milan, Italy; fazio.raff[email protected] (R.F.); fi[email protected] (M.F.) 4 Medical Genetic Unit, Department of Laboratory Medicine, Niguarda Hospital, 20132 Milan, Italy; [email protected] (L.M.); [email protected] (S.P.) 5 NEuroMuscular Omnicentre (NEMO), Fondazione Serena Onlus, Milan 20132, Italy; [email protected]
    [Show full text]
  • Nº Ref Uniprot Proteína Péptidos Identificados Por MS/MS 1 P01024
    Document downloaded from http://www.elsevier.es, day 26/09/2021. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited. Nº Ref Uniprot Proteína Péptidos identificados 1 P01024 CO3_HUMAN Complement C3 OS=Homo sapiens GN=C3 PE=1 SV=2 por 162MS/MS 2 P02751 FINC_HUMAN Fibronectin OS=Homo sapiens GN=FN1 PE=1 SV=4 131 3 P01023 A2MG_HUMAN Alpha-2-macroglobulin OS=Homo sapiens GN=A2M PE=1 SV=3 128 4 P0C0L4 CO4A_HUMAN Complement C4-A OS=Homo sapiens GN=C4A PE=1 SV=1 95 5 P04275 VWF_HUMAN von Willebrand factor OS=Homo sapiens GN=VWF PE=1 SV=4 81 6 P02675 FIBB_HUMAN Fibrinogen beta chain OS=Homo sapiens GN=FGB PE=1 SV=2 78 7 P01031 CO5_HUMAN Complement C5 OS=Homo sapiens GN=C5 PE=1 SV=4 66 8 P02768 ALBU_HUMAN Serum albumin OS=Homo sapiens GN=ALB PE=1 SV=2 66 9 P00450 CERU_HUMAN Ceruloplasmin OS=Homo sapiens GN=CP PE=1 SV=1 64 10 P02671 FIBA_HUMAN Fibrinogen alpha chain OS=Homo sapiens GN=FGA PE=1 SV=2 58 11 P08603 CFAH_HUMAN Complement factor H OS=Homo sapiens GN=CFH PE=1 SV=4 56 12 P02787 TRFE_HUMAN Serotransferrin OS=Homo sapiens GN=TF PE=1 SV=3 54 13 P00747 PLMN_HUMAN Plasminogen OS=Homo sapiens GN=PLG PE=1 SV=2 48 14 P02679 FIBG_HUMAN Fibrinogen gamma chain OS=Homo sapiens GN=FGG PE=1 SV=3 47 15 P01871 IGHM_HUMAN Ig mu chain C region OS=Homo sapiens GN=IGHM PE=1 SV=3 41 16 P04003 C4BPA_HUMAN C4b-binding protein alpha chain OS=Homo sapiens GN=C4BPA PE=1 SV=2 37 17 Q9Y6R7 FCGBP_HUMAN IgGFc-binding protein OS=Homo sapiens GN=FCGBP PE=1 SV=3 30 18 O43866 CD5L_HUMAN CD5 antigen-like OS=Homo
    [Show full text]
  • Genomic Portrait of a Sporadic Amyotrophic Lateral Sclerosis Case in a Large Spinocerebellar Ataxia Type 1 Family
    Journal of Personalized Medicine Article Genomic Portrait of a Sporadic Amyotrophic Lateral Sclerosis Case in a Large Spinocerebellar Ataxia Type 1 Family Giovanna Morello 1,2, Giulia Gentile 1 , Rossella Spataro 3, Antonio Gianmaria Spampinato 1,4, 1 2 3 5, , Maria Guarnaccia , Salvatore Salomone , Vincenzo La Bella , Francesca Luisa Conforti * y 1, , and Sebastiano Cavallaro * y 1 Institute for Research and Biomedical Innovation (IRIB), Italian National Research Council (CNR), Via Paolo Gaifami, 18, 95125 Catania, Italy; [email protected] (G.M.); [email protected] (G.G.); [email protected] (A.G.S.); [email protected] (M.G.) 2 Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy; [email protected] 3 ALS Clinical Research Center and Neurochemistry Laboratory, BioNeC, University of Palermo, 90127 Palermo, Italy; [email protected] (R.S.); [email protected] (V.L.B.) 4 Department of Mathematics and Computer Science, University of Catania, 95123 Catania, Italy 5 Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Rende, Italy * Correspondence: [email protected] (F.L.C.); [email protected] (S.C.); Tel.: +39-0984-496204 (F.L.C.); +39-095-7338111 (S.C.); Fax: +39-0984-496203 (F.L.C.); +39-095-7338110 (S.C.) F.L.C. and S.C. are co-last authors on this work. y Received: 6 November 2020; Accepted: 30 November 2020; Published: 2 December 2020 Abstract: Background: Repeat expansions in the spinocerebellar ataxia type 1 (SCA1) gene ATXN1 increases the risk for amyotrophic lateral sclerosis (ALS), supporting a relationship between these disorders.
    [Show full text]
  • Dissecting the Genetics of Human Communication
    DISSECTING THE GENETICS OF HUMAN COMMUNICATION: INSIGHTS INTO SPEECH, LANGUAGE, AND READING by HEATHER ASHLEY VOSS-HOYNES Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Epidemiology and Biostatistics CASE WESTERN RESERVE UNIVERSITY January 2017 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We herby approve the dissertation of Heather Ashely Voss-Hoynes Candidate for the degree of Doctor of Philosophy*. Committee Chair Sudha K. Iyengar Committee Member William Bush Committee Member Barbara Lewis Committee Member Catherine Stein Date of Defense July 13, 2016 *We also certify that written approval has been obtained for any proprietary material contained therein Table of Contents List of Tables 3 List of Figures 5 Acknowledgements 7 List of Abbreviations 9 Abstract 10 CHAPTER 1: Introduction and Specific Aims 12 CHAPTER 2: Review of speech sound disorders: epidemiology, quantitative components, and genetics 15 1. Basic Epidemiology 15 2. Endophenotypes of Speech Sound Disorders 17 3. Evidence for Genetic Basis Of Speech Sound Disorders 22 4. Genetic Studies of Speech Sound Disorders 23 5. Limitations of Previous Studies 32 CHAPTER 3: Methods 33 1. Phenotype Data 33 2. Tests For Quantitative Traits 36 4. Analytical Methods 42 CHAPTER 4: Aim I- Genome Wide Association Study 49 1. Introduction 49 2. Methods 49 3. Sample 50 5. Statistical Procedures 53 6. Results 53 8. Discussion 71 CHAPTER 5: Accounting for comorbid conditions 84 1. Introduction 84 2. Methods 86 3. Results 87 4. Discussion 105 CHAPTER 6: Hypothesis driven pathway analysis 111 1. Introduction 111 2. Methods 112 3. Results 116 4.
    [Show full text]
  • Whole-Exome Sequencing Supports Genetic Heterogeneity in Childhood
    Worthey et al. Journal of Neurodevelopmental Disorders 2013, 5:29 http://www.jneurodevdisorders.com/content/5/1/29 RESEARCH Open Access Whole-exome sequencing supports genetic heterogeneity in childhood apraxia of speech Elizabeth A Worthey1,2, Gordana Raca3, Jennifer J Laffin4, Brandon M Wilk2, Jeremy M Harris2, Kathy J Jakielski5, David P Dimmock1,2, Edythe A Strand6 and Lawrence D Shriberg7* Abstract Background: Childhood apraxia of speech (CAS) is a rare, severe, persistent pediatric motor speech disorder with associated deficits in sensorimotor, cognitive, language, learning and affective processes. Among other neurogenetic origins, CAS is the disorder segregating with a mutation in FOXP2 in a widely studied, multigenerational London family. We report the first whole-exome sequencing (WES) findings from a cohort of 10 unrelated participants, ages 3 to 19 years, with well-characterized CAS. Methods: As part of a larger study of children and youth with motor speech sound disorders, 32 participants were classified as positive for CAS on the basis of a behavioral classification marker using auditory-perceptual and acoustic methods that quantify the competence, precision and stability of a speaker’s speech, prosody and voice. WES of 10 randomly selected participants was completed using the Illumina Genome Analyzer IIx Sequencing System. Image analysis, base calling, demultiplexing, read mapping, and variant calling were performed using Illumina software. Software developed in-house was used for variant annotation, prioritization and interpretation to identify those variants likely to be deleterious to neurodevelopmental substrates of speech-language development. Results: Among potentially deleterious variants, clinically reportable findings of interest occurred on a total of five chromosomes (Chr3, Chr6, Chr7, Chr9 and Chr17), which included six genes either strongly associated with CAS (FOXP1 and CNTNAP2) or associated with disorders with phenotypes overlapping CAS (ATP13A4, CNTNAP1, KIAA0319 and SETX).
    [Show full text]
  • A Cell-Specific Regulatory Region of the Human ABO Blood Group Gene
    www.nature.com/scientificreports OPEN A cell‑specifc regulatory region of the human ABO blood group gene regulates the neighborhood gene encoding odorant binding protein 2B Rie Sano1*, Yoichiro Takahashi1, Haruki Fukuda1, Megumi Harada1, Akira Hayakawa1, Takafumi Okawa1, Rieko Kubo1, Haruo Takeshita2, Junichi Tsukada3 & Yoshihiko Kominato1 The human ABO blood group system is of great importance in blood transfusion and organ transplantation. ABO transcription is known to be regulated by a constitutive promoter in a CpG island and regions for regulation of cell‑specifc expression such as the downstream + 22.6‑kb site for epithelial cells and a site in intron 1 for erythroid cells. Here we investigated whether the + 22.6‑kb site might play a role in transcriptional regulation of the gene encoding odorant binding protein 2B (OBP2B), which is located on the centromere side 43.4 kb from the + 22.6‑kb site. In the gastric cancer cell line KATOIII, quantitative PCR analysis demonstrated signifcantly reduced amounts of OBP2B and ABO transcripts in mutant cells with biallelic deletions of the site created using the CRISPR/Cas9 system, relative to those in the wild‑type cells, and Western blotting demonstrated a corresponding reduction of OBP2B protein in the mutant cells. Moreover, single‑molecule fuorescence in situ hybridization assays indicated that the amounts of both transcripts were correlated in individual cells. These fndings suggest that OBP2B could be co‑regulated by the + 22.6‑kb site of ABO. Te human ABO blood group system is of great importance in blood transfusion and organ transplantation. Te carbohydrate structures of ABO blood group antigens are produced by the A- and B-transferases encoded by the A and B alleles, respectively1.
    [Show full text]
  • A Yeast-Based Model for Hereditary Motor and Sensory Neuropathies: a Simple System for Complex, Heterogeneous Diseases
    International Journal of Molecular Sciences Review A Yeast-Based Model for Hereditary Motor and Sensory Neuropathies: A Simple System for Complex, Heterogeneous Diseases Weronika Rzepnikowska 1, Joanna Kaminska 2 , Dagmara Kabzi ´nska 1 , Katarzyna Bini˛eda 1 and Andrzej Kocha ´nski 1,* 1 Neuromuscular Unit, Mossakowski Medical Research Centre Polish Academy of Sciences, 02-106 Warsaw, Poland; [email protected] (W.R.); [email protected] (D.K.); [email protected] (K.B.) 2 Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland; [email protected] * Correspondence: [email protected] Received: 19 May 2020; Accepted: 15 June 2020; Published: 16 June 2020 Abstract: Charcot–Marie–Tooth (CMT) disease encompasses a group of rare disorders that are characterized by similar clinical manifestations and a high genetic heterogeneity. Such excessive diversity presents many problems. Firstly, it makes a proper genetic diagnosis much more difficult and, even when using the most advanced tools, does not guarantee that the cause of the disease will be revealed. Secondly, the molecular mechanisms underlying the observed symptoms are extremely diverse and are probably different for most of the disease subtypes. Finally, there is no possibility of finding one efficient cure for all, or even the majority of CMT diseases. Every subtype of CMT needs an individual approach backed up by its own research field. Thus, it is little surprise that our knowledge of CMT disease as a whole is selective and therapeutic approaches are limited. There is an urgent need to develop new CMT models to fill the gaps.
    [Show full text]
  • Genic Intolerance to Functional Variation and the Interpretation of Personal Genomes
    Genic Intolerance to Functional Variation and the Interpretation of Personal Genomes Slave´ Petrovski1,2*, Quanli Wang1, Erin L. Heinzen1,3, Andrew S. Allen1,4, David B. Goldstein1* 1 Center for Human Genome Variation, Duke University, School of Medicine, Durham, North Carolina, United States of America, 2 Departments of Medicine, The University of Melbourne, Austin Health and Royal Melbourne Hospital, Melbourne, Victoria, Australia, 3 Department of Medicine, Section of Medical Genetics, Duke University, School of Medicine, Durham, North Carolina, United States of America, 4 Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina, United States of America Abstract A central challenge in interpreting personal genomes is determining which mutations most likely influence disease. Although progress has been made in scoring the functional impact of individual mutations, the characteristics of the genes in which those mutations are found remain largely unexplored. For example, genes known to carry few common functional variants in healthy individuals may be judged more likely to cause certain kinds of disease than genes known to carry many such variants. Until now, however, it has not been possible to develop a quantitative assessment of how well genes tolerate functional genetic variation on a genome-wide scale. Here we describe an effort that uses sequence data from 6503 whole exome sequences made available by the NHLBI Exome Sequencing Project (ESP). Specifically, we develop an intolerance scoring system that assesses whether genes have relatively more or less functional genetic variation than expected based on the apparently neutral variation found in the gene. To illustrate the utility of this intolerance score, we show that genes responsible for Mendelian diseases are significantly more intolerant to functional genetic variation than genes that do not cause any known disease, but with striking variation in intolerance among genes causing different classes of genetic disease.
    [Show full text]
  • Hypoxia-Induced SETX Links Replication Stress with the Unfolded Protein Response
    ARTICLE https://doi.org/10.1038/s41467-021-24066-z OPEN Hypoxia-induced SETX links replication stress with the unfolded protein response Shaliny Ramachandran1,7, Tiffany S. Ma 1,7, Jon Griffin 2,3, Natalie Ng1, Iosifina P. Foskolou 1, Ming-Shih Hwang1, Pedro Victori 1, Wei-Chen Cheng1, Francesca M. Buffa 1, Katarzyna B. Leszczynska 1,6, ✉ Sherif F. El-Khamisy 2,4, Natalia Gromak 5 & Ester M. Hammond 1 Tumour hypoxia is associated with poor patient prognosis and therapy resistance. A unique 1234567890():,; transcriptional response is initiated by hypoxia which includes the rapid activation of numerous transcription factors in a background of reduced global transcription. Here, we show that the biological response to hypoxia includes the accumulation of R-loops and the induction of the RNA/DNA helicase SETX. In the absence of hypoxia-induced SETX, R-loop levels increase, DNA damage accumulates, and DNA replication rates decrease. Therefore, suggesting that, SETX plays a role in protecting cells from DNA damage induced during transcription in hypoxia. Importantly, we propose that the mechanism of SETX induction in hypoxia is reliant on the PERK/ATF4 arm of the unfolded protein response. These data not only highlight the unique cellular response to hypoxia, which includes both a replication stress-dependent DNA damage response and an unfolded protein response but uncover a novel link between these two distinct pathways. 1 Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK. 2 Department of Molecular Biology and Biotechnology, Healthy Lifespan and Neuroscience Institute, Firth Court, University of Sheffield, Sheffield, UK.
    [Show full text]
  • Senataxin Mutation Reveals How R-Loops Promote Transcription by Blocking DNA Methylation at Gene Promoters
    Article Senataxin Mutation Reveals How R-Loops Promote Transcription by Blocking DNA Methylation at Gene Promoters Graphical Abstract Authors Christopher Grunseich, Isabel X. Wang, Jason A. Watts, ..., Barbara Crain, Kenneth H. Fischbeck, Vivian G. Cheung Correspondence fi[email protected] (K.H.F.), [email protected] (V.G.C.) In Brief Grunseich and colleagues found that patients’ cells with a senataxin mutation have fewer R-loops. They showed that having fewer R-loops decreases BAMBI expression and consequently increases TGFb signaling. Nascent RNAs form R- loops in gene promoters that facilitate transcription by disrupting DNA methylation in more than 1,200 human genes. Highlights d ALS4 patients with the heterozygous senataxin mutation L389S have fewer R-loops d Fewer R-loops decreases BAMBI expression, which in turn increases TGF-b signaling d R-loops decrease promoter methylation and thus promote transcription of human genes Grunseich et al., 2018, Molecular Cell 69, 426–437 February 1, 2018 ª 2017 Elsevier Inc. https://doi.org/10.1016/j.molcel.2017.12.030 Molecular Cell Article Senataxin Mutation Reveals How R-Loops Promote Transcription by Blocking DNA Methylation at Gene Promoters Christopher Grunseich,1,11 Isabel X. Wang,2,11 Jason A. Watts,3 Joshua T. Burdick,2 Robert D. Guber,1 Zhengwei Zhu,2 Alan Bruzel,2 Tyler Lanman,1 Kelian Chen,1 Alice B. Schindler,1 Nancy Edwards,4 Abhik Ray-Chaudhury,4 Jianhua Yao,5 Tanya Lehky,6 Grzegorz Piszczek,7 Barbara Crain,8 Kenneth H. Fischbeck,1,* and Vivian G. Cheung2,9,10,12,* 1Neurogenetics
    [Show full text]