CHAPTER 1 Multiple Transport Processes in Solid Oxide Fuel Cells

Total Page:16

File Type:pdf, Size:1020Kb

CHAPTER 1 Multiple Transport Processes in Solid Oxide Fuel Cells CHAPTER 1 Multiple transport processes in solid oxide fuel cells P.-W. Li, L. Schaefer & M.K. C hyu Department of Mechanical Engineering, University of Pittsburgh, USA. Abstract In this topic, three important issues are discussed which concern the theoretical fundamentals and practical operation of a solid oxide fuel cell. The thermodynamic and electrochemical fundamentals of a fuel cell are reviewed in the Section 2. These fundamentals concern the ideal efficiency and energy distribution of a fuel cell’s conversion of chemical energy directly into electrical energy through the oxidation of a fuel. Issues of the chemical equilibrium for a solid oxide fuel cell with internal reforming and shift reactions (in case of methane or natural gas being used as the fuel), are also discussed in detail in this section. The losses of electrical potential in the practical operation of a fuel cell are elucidated in the third section, which includes a discussion about activation polarization, Ohmic loss, and the losses due to mass transport resistance. In the fourth section, the coupled processes of flow, heat/mass transfer, chemical reaction, and electrochemistry, which influence the performance of a fuel cell, are analyzed, and modeling and numerical computation for the fields of flow, temperature, and species concentration, which collectively determine the local and overall electromotive force in a solid oxide fuel cell, are examined in detail. 1 Introduction A fuel cell is a device that converts the chemical energy of a fuel oxidation reaction directly into electricity. It is substantially different from a conventional thermal power plant, where the fuel is oxidized in a combustion process and a thermal- mechanical-electrical energy conversion process is employed. Therefore, unlike heat engines that are subjected to the Carnot cycle efficiency limitation, fuel cells can have energy conversion efficiencies generally higher than that of heat engines [1]. WIT Transactions on State of the Art in Science and Engineering, Vol 10, © 2005 WIT Press www.witpress.com, ISSN 1755-8336 (on-line) doi:10.2495/1-85312-840-6/01 2 Transport Phenomena in Fuel Cells Figure 1: Principle of operation of a SOFC. Ideally, the Gibbs free energy change of fuel oxidation is directly converted into electricity [1, 2] in a fuel cell. As is common in many kinds of fuel cells, the core component of a solid oxide fuel cell (SOFC) is a thin gas-tight ion conducting electrolyte layer sandwiched by a porous anode and cathode, as shown in Fig. 1. For a SOFC, this electrolyte is a solid oxide material that only allows the passage of charge-carrying oxide ions. To produce useful electrical work, free electrons released in the oxidation of a fuel at the anode must travel to the cathode through an external load/circuit. Therefore, the electrolyte must conduct ions while preventing electrons released at the anode from returning back to the cathode by the same route. The oxide ions are driven across the electrolyte by the chemical potential difference on the two sides of the electrolyte, which is due to the oxidation of fuel at the anode. This difference in the chemical potential is proportional to the electromotive force across the electrolyte, which, therefore, sets up a terminal voltage across the external load/circuit. The solid oxide electrolyte has sufficient ion conductivity only at high tempera- tures (from 600–1000 ◦C). The high operating temperature of a SOFC also ensures rapid fuel-side reaction kinetics without requiring an expensive catalyst. In addi- tion, the high temperature exhaust from a SOFC can be directed to a gas turbine (GT); thus, using a SOFC-GT hybrid system, one can achieve an efficiency of at least 66.3% based on the lower heating value (LHV, which means that the electro- chemical product, water, is in a gaseous state) of the SOFC [3–6]. Since it operates via transport of oxide ions rather than that of fuel-derived ions, in principle, a SOFC can be used to oxidize a number of gaseous fuels. In particular, a SOFC can consume CO as well as hydrogen as its fuel, and therefore can be fueled with reformer gas containing a mix of CO and H2 [7, 8]. Recently, ammonia has also been reported as a fuel for SOFCs [9]. Since a SOFC operates under high temperatures, its energy conversion efficiency and component safety are both of concern to industry. In the following sections, the issues to be discussed will include: (1) the thermodynamic and electrochemi- cal fundamentals of the energy conversion and species variation, (2) the potential losses in practical operation, (3) the influence of fluid flow and heat and mass transfer on operational efficiency and safety, and (4) the creation of a numerical model to simulate the performance and the fields of flow, temperature, and species concentration. WIT Transactions on State of the Art in Science and Engineering, Vol 10, © 2005 WIT Press www.witpress.com, ISSN 1755-8336 (on-line) Multiple transport processes in solid oxide fuel cells 3 2 Thermodynamic and electrochemical fundamentals for solid oxide fuel cells To study the energy conversion efficiency and distribution of the conversion pro- cesses in a fuel cell, one must understand the basic principles.The chemical potential and, thereof, electromotive force across the electrolyte involve the interrelation of thermodynamics, electrochemistry, ion/electron conduction, and heat/mass trans- fer. In this section, the fundamentals of thermodynamics and the electrochemistry for a solid oxide fuel cell system are reviewed. The isothermal oxidation of a fuel A with oxidant B can be expressed by the following equation: aA + bB +···→xX + yY +···. (1) The systematic changes of enthalpy, Gibbs free energy, and entropy production in the reaction are related by H = TS + G. (2) In a solid oxide fuel cell, the operating temperature is from 600 ◦C to 1000 ◦C and the pressure of gases is relatively not high. Thus, the gas species of reactants and products can be treated as ideal gases, which allows the chemical enthalpy change to be expressed as: H = (xhX + yhY +···) − (ahA + bhB +···), (3) where the h is the specific enthalpy. When a gas is pure, ideal, and at 1 atm, it is said to be in its standard state. The standard state is designated by writing a superscript 0 after the symbol of interest [10]. The Gibbs free energy which pertains to one mole of a chemical species is called the chemical potential. For an ideal gas at temperature of T and pressure of p, the chemical potential is expressed as: p g = g0 + RT ln , (4) p0 where R is the gas constant and p0 is the standard pressure of 1 atm. One may omit the p0 in the denominator of the logarithm in eqn (4), but in such a case, the pressure p must be measured in atm. The systematic change of the Gibbs free energy in eqn (1) can be expressed in terms of the standard state Gibbs free energy and the partial pressures of the reactants and products: G = (xgX + ygY +···) − (agA + bgB +···) (p /p0)x(p /p0)y ··· = [xg0 + yg0 +···] − [ag0 + bg0 +···] + RT ln X Y X Y A B 0 a 0 b (pA/p ) (pB/p ) ··· (p /p0)x(p /p0)y ··· = G0 + RT ln X Y , (5) 0 a 0 b (pA/p ) (pB/p ) ··· WIT Transactions on State of the Art in Science and Engineering, Vol 10, © 2005 WIT Press www.witpress.com, ISSN 1755-8336 (on-line) 4 Transport Phenomena in Fuel Cells where 0 = 0 + 0 +··· − 0 + 0 +··· G (xgX ygY ) (agA bgB ), (6) which is the Gibbs free energy change of the standard reaction at temperature T (i.e., with each reactant supplied and each product removed at the standard atmospheric pressure, p0 = 1 atm). The theoretical electromotive force (EMF) induced from the chemical potential (G) is the Nernst potential: −G −G0 RT (p /p0)a(p /p0)b ··· E = = + A B ln 0 x 0 y , (7) neF neF neF (pX /p ) (pY /p ) ··· where F(=96486.7 C/mol) is Faraday’s constant. The first part of the right- hand side of the standard reaction is also called the ideal potential, which is denoted by: −G0 E0 = , (8) neF where ne is the number of electrons derived from a molecules of the fuel, when the fuel is oxidized in the reaction of eqn (1). While the Gibbs free energy change, −G, converts to electrical power, the entropy production, −TS, is the thermal energy that is released in the electrochemical oxidation of the fuel. Both the h and g0 are solely functions of temperature for ideal gases, which are given in Tables 1(a) and 1(b) for the gas species involved in the reactions of a SOFC. While the electromotive force in a fuel cell is determinable from the chemical potentials as discussed above, the current to be withdrawn from a fuel cell, denoted by I, is directly related to the molar consumption rate of fuel and oxidant through the following expressions: I I mfuel = ; mO = , (9) fuel 2 O2 ne F ne F O2 where ne is for oxygen, and is the number of electrons per b molecules of oxygen fuel obtained in the electrochemical reaction (in eqn (1)), and ne is the number of electrons derived per a molecules of the fuel. 2.1 Operation with hydrogen fuel If a SOFC operates on hydrogen gas, the oxidation of hydrogen is the only electro- chemical reaction in the fuel cell, which may be expressed by the following chemical equation: 1 H + O = H O (gas). (10) 2 2 2 2 WIT Transactions on State of the Art in Science and Engineering, Vol 10, © 2005 WIT Press www.witpress.com, ISSN 1755-8336 (on-line) Multiple transport processes in solid oxide fuel cells 5 Table 1(a): Enthalpy and standard state Gibbs free energy of species.
Recommended publications
  • Residential Solid Oxide Fuel Cell Generator Fuelled by Ethanol
    Residential Solid Oxide Fuel Cell Generator Fuelled by Ethanol: Cell, Stack, and System Modelling with a Preliminary Experiment Andrea Lanzini, Massimo Santarelli, Gianmichele Orsello To cite this version: Andrea Lanzini, Massimo Santarelli, Gianmichele Orsello. Residential Solid Oxide Fuel Cell Generator Fuelled by Ethanol: Cell, Stack, and System Modelling with a Preliminary Experiment. Fuel Cells, Wiley-VCH Verlag, 2010, 10 (4), pp.654. 10.1002/fuce.201000004. hal-00552373 HAL Id: hal-00552373 https://hal.archives-ouvertes.fr/hal-00552373 Submitted on 6 Jan 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Fuel Cells Residential Solid Oxide Fuel Cell Generator Fuelled by Ethanol: Cell, Stack, and System Modelling with a Preliminary Experiment For Peer Review Journal: Fuel Cells Manuscript ID: fuce.201000004.R1 Wiley - Manuscript type: Original Research Paper Date Submitted by the 30-Mar-2010 Author: Complete List of Authors: Lanzini, Andrea; Politecnico di Torino, Energetics Santarelli, Massimo; Politecnico di Torino, Energetics Orsello, Gianmichele;
    [Show full text]
  • Appendix A: Solid Oxide Fuel Cell Primer
    Appendix A: Solid Oxide Fuel Cell Primer This section is not a comprehensive discussion of all potential components and applications of SOFCs; rather, it is intended to provide a conceptual overview of the basic components and functions of a SOFC supporting a vocabulary within which policymakers can debate and formulate policy decisions. A SOFC is an electrochemical device that generates electricity by oxidizing fuel such as natural gas or synthetic gas produced from coal. When commercialization of SOFCs is achieved, they can become a desirable and significant source of electricity in the United States and the world because they are efficient, reliable, adaptable, and produce low levels of emissions. When the fuel is hydrogen the only byproducts are water and heat, which can be used to support heat and power systems. In a SOFC, electricity is generated through an electrochemical reaction and not through a combustion process. The operating principles of fuel cells are similar to those of batteries, given they produce electricity without combustion or emissions. Unlike batteries, SOFCs do not run down or need to recharge; they only require a constant source of fuel and oxygen. A single fuel cell consists of three basic components1: (1) an anode, (2) a cathode, and (3) an electrolyte that separates them (see Figure 1). Bipolar plates on either side of the cell distribute gases and serve as current conductors. The Anode is the negative electrode that releases electrons to the external circuit and oxidizes fuel during the electrochemical reaction. The Cathode is the positive electrode that acquires electrons from the external circuit and is reduced during the electrochemical reaction.
    [Show full text]
  • Current State and Future Prospects for Electrochemical Energy Storage and Conversion Systems
    energies Review Current State and Future Prospects for Electrochemical Energy Storage and Conversion Systems Qaisar Abbas 1 , Mojtaba Mirzaeian 2,3,*, Michael R.C. Hunt 1, Peter Hall 2 and Rizwan Raza 4 1 Centre for Materials Physics, Department of Physics, Durham University, Durham DH1 3LE, UK; [email protected] (Q.A.); [email protected] (M.R.H.) 2 School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK; [email protected] 3 Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Al-Farabi Avenue, 71, Almaty 050040, Kazakhstan 4 Clean Energy Research Lab (CERL), Department of Physics, COMSATS University Islamabad, Lahore 54000, Pakistan; [email protected] * Correspondence: [email protected] Received: 30 September 2020; Accepted: 26 October 2020; Published: 9 November 2020 Abstract: Electrochemical energy storage and conversion systems such as electrochemical capacitors, batteries and fuel cells are considered as the most important technologies proposing environmentally friendly and sustainable solutions to address rapidly growing global energy demands and environmental concerns. Their commercial applications individually or in combination of two or more devices are based on their distinguishing properties e.g., energy/power densities, cyclability and efficiencies. In this review article, we have discussed some of the major electrochemical energy storage and conversion systems and encapsulated their technological advancement in recent years. Fundamental working principles and material compositions of various components such as electrodes and electrolytes have also been discussed. Furthermore, future challenges and perspectives for the applications of these technologies are discussed.
    [Show full text]
  • Development of Solid Oxide Fuel Cell Electrodes with High Conductivity and Enhanced Redox Stability Brandon H
    Bucknell University Bucknell Digital Commons Master’s Theses Student Theses 2010 Development of Solid Oxide Fuel Cell Electrodes with High Conductivity and Enhanced Redox Stability Brandon H. Smith Bucknell University Follow this and additional works at: https://digitalcommons.bucknell.edu/masters_theses Recommended Citation Smith, Brandon H., "Development of Solid Oxide Fuel Cell Electrodes with High Conductivity and Enhanced Redox Stability" (2010). Master’s Theses. 32. https://digitalcommons.bucknell.edu/masters_theses/32 This Masters Thesis is brought to you for free and open access by the Student Theses at Bucknell Digital Commons. It has been accepted for inclusion in Master’s Theses by an authorized administrator of Bucknell Digital Commons. For more information, please contact [email protected]. I, Brandon Smith, do grant permission for my thesis to be photocopied. ii Acknowledgements Foremost I would like to thank Dr. Michael Gross, who has served as my advisor throughout the completion of this work. I am grateful for his excellent guidance, insight, and direction which have carried my research to a successful conclusion and for the friendship that has developed. I would also like to express my appreciation to the members of my thesis committee, Dr. Jeffrey Csernica and Dr. William Snyder, whose commitment to education has inspired and challenged me. Several of my colleagues have also contributed to this body of research. I would like to thank Addison Yee, Brian Smith, Scott Schreiber, Billy Holler, Kristin Bretscher, and Jacob Pedder for all of their hard work over the past two years. It has been a pleasure working alongside and getting to know each of them.
    [Show full text]
  • Start-Up of a Solid Oxide Fuel Cell System with a View to Materials Science-Related Aspects, Control and Thermo-Mechanical Stresses
    crystals Article Start-Up of a Solid Oxide Fuel Cell System with a View to Materials Science-Related Aspects, Control and Thermo-Mechanical Stresses Konrad W. Eichhorn Colombo * and Vladislav V. Kharton Institute of Solid State Physics Russian Academy of Sciences, Chernogolovka, 142432 Moscow, Russian; [email protected] * Correspondence: [email protected] Abstract: The start-up of a solid oxide fuel cell (SOFC) is investigated by means of numerical simulation with a view to material and operational constraints on a component and system level, as well as thermo-mechanical stresses. The applied multi-physics modeling approach couples thermal-, electrochemical, chemical-, and thermo-mechanical phenomena. In addition to constraints, emphasis is given to degrees of freedom with respect to manipulated and controlled variables of the system. Proper ramping during the start-up procedure keeps critical parameter values within a safe regime. Of particular interest are gradient in terms of temperature and chemical concentrations. Nevertheless, simulations show that thermo-mechanical stresses are relatively high during the initial start-up phase, the system is, thus, more susceptible to failure. The combination of multi-physics modeling in conjunction with practical control aspects for start-up of an SOFC, which is presented in this paper, is important for applications. Citation: Eichhorn Colombo, K.W.; Kharton, V.V. Start-Up of a Solid Keywords: solid oxide fuel cell system; start-up; multi-physics; mathematical modeling; constraints; Oxide Fuel Cell System with a View process control to Materials Science-Related Aspects, Control and Thermo-Mechanical Stresses. Crystals 2021, 11, 732. https://doi.org/10.3390/cryst11070732 1.
    [Show full text]
  • Advanced Sofcs and Li-Ion Batteries
    october amp features_am&p master template new QX6.qxt 9/23/2010 3:00 PM Page 20 Advanced SOFCs and Li-ion Batteries Successful development OFC technology dominates competing Effect of Surface Condition on the and deployment of fuel cell technologies because it uses Interfacial Strength of Oxide Scale and cost-effective clean Scurrently available fossil fuels, reducing SS441 Substrate Used in SOFC operating costs. Other fuel cell technologies Wenning Liu, Xin Sun, Elizabeth Stephens, energy systems require (e.g., molten carbonate, polymer electrolyte, and Mohammad Khaleel in-depth understanding phosphoric acid and alkali) require hydrogen as Pacific Northwest National Laboratory of the fundamental their fuel. Oxidation reaction of the metallic intercon - electrochemical Lithium-ion batteries are popular because nects in a typical SOFC working environment is they have a number of important advantages unavoidable. Oxide scale can delaminate and processes, synthesis, over competing technologies including being eventual spall during stack cooling, which can identification, and lighter than other types of rechargeable batter - lead to serious cell performance degradation. In - development of novel ies of the same size, they hold their charge (a terfacial adhesion strength between the oxide materials, relevant lithium-ion battery pack loses only about 5% its scale and substrate is crucial to the reliability and thermodynamics and charge per month, compared to a 20% loss per durability of the metallic interconnect in SOFC month for NiMH batteries), have no memory operating environments. We investigated the ef - kinetics, knowledge of effect, and can handle hundreds of charge/ fect of the surface finish on the interfacial materials science discharge cycles.
    [Show full text]
  • Hydrogen Pathways Analysis for Solid Oxide Fuel Cell (SOFC) and Dark Fermentation
    II.A.1 Hydrogen Pathways Analysis for Solid Oxide Fuel Cell (SOFC) and Dark Fermentation – High temperature electrolysis using solid oxide Brian D. James (Primary Contact), electrolysis cells (SOEC). Daniel A. DeSantis, Jennie M. Moton, • Select additional hydrogen pathways, gather information Cassidy Houchins on those hydrogen pathways, and define those hydrogen Strategic Analysis, Inc. pathways for future case study development. 4075 Wilson Blvd., Suite 200 Arlington, VA 22203 Technical Barriers Phone: (703) 778-7114 Email: [email protected] This project addresses the following technical barriers from the Hydrogen Production section of the Fuel Cell DOE Manager Technologies Office Multi-Year Research, Development, and Eric Miller Demonstration Plan: Phone: (202) 287-5829 Email: [email protected] Hydrogen Generation by Water Electrolysis Contract Number: DE-EE0006231 (F) Capital Cost Project Start Date: March 15, 2013 (G) System Efficiency and Electricity Cost Project End Date: March 14, 2016 (K) Manufacturing Fermentative Hydrogen Production Overall Objectives (AX) Hydrogen Molar Yield The objectives of this project are to: (AY) Feedstock Costs • Analyze hydrogen production and delivery (P&D) (AZ) Systems Engineering pathways to determine the most economical, environmentally benign and societally feasible paths for Technical Target the P&D of hydrogen fuel for fuel cell electric vehicles This project conducts cost modeling to attain realistic (FCEVs). cost estimates for the production and delivery of hydrogen • Identify key technical and economic barriers to the fuel for FCEVs. These values can help inform future success of these pathways, primary cost drivers, and technical targets. remaining R&D challenges. • U.S. DOE P&D cost goals <$4/gge of H2 (dispensed, • Assess technical progress, benefits and limitations, untaxed) by 2020 levelized hydrogen costs, and potential to meet U.S.
    [Show full text]
  • Carbonomics the Rise of Clean Hydrogen
    EQUITY RESEARCH | July 8, 2020 | 11:34PM BST Carbonomics The Rise of Clean Hydrogen Clean hydrogen has a major role to play in the path towards net zero carbon, providing de-carbonization solutions in the most challenging parts of the Carbonomics cost curve - including long-haul transport, steel, chemicals, heating and long-term power storage. Clean hydrogen cost competitiveness is also closely linked to cost deflation and large scale developments in renewable power and carbon capture (two key technologies to produce it), creating three symbiotic pillars of de-carbonization. Clean hydrogen is gaining strong political and business momentum, emerging as a major component in governments' net zero plans such as the European Green Deal. This is why we believe that the hydrogen value chain deserves serious focus after three false starts in the past 50 years. Hydrogen is very versatile, both in its production and consumption: it is light, storable, has high energy content per unit mass and can be readily produced at an industrial scale. The key challenge comes from the fact that hydrogen (in its ambient form as a gas) is the lightest element and so has a low energy density per unit of volume, making long-distance transportation and storage complex and costly. In this report we analyze the clean hydrogen company ecosystem, the cost competitiveness of green and blue hydrogen in key applications and its key role in Carbonomics: the green engine of economic recovery. Michele Della Vigna, CFA Zoe Stavrinou Alberto Gandolfi +44 20 7552-9383 +44 20 7051-2816 +44 20 7552-2539 [email protected] [email protected] alberto.gandolfi@gs.com Goldman Sachs International Goldman Sachs International Goldman Sachs International Goldman Sachs does and seeks to do business with companies covered in its research reports.
    [Show full text]
  • Development of Power Generation by Durect Ethanol Fuel Cell
    FUEL CELL SYSTEMS S. Basu New Delhi Department of Chemical Engineering Indian Institute of Technology Delhi INDIA e- Load Water 1. Fuel chamber 2. Oxidant chamber 1 4 2 3. Anode (Pt) 4. Electrolyte Fuel 3 5 Oxidant 5. Cathode (Pt/C) (H ) 2 O2/Air + - H2 2 H +2e (Anode) + - 2 H +1/2 O2 +2e H2O (Cathode) H2 + 1/2 O2 H2O (Overall) 9 Automobile 9 Efficient Power Generation 9 Distributed Power Gen. 9 Environmental Friendly 9 Portable Electronics Eqpt. Fuel Cell Families Phosphoric Acid Cathode Anode o H+ 220 C Solid Polymer Cathode Anode o o H+ 30 C- 80 C Alkaline Air Cathode - Anode Fuel 50 oC- 200 oC OH Molten Carbonates o Cathode = Anode 650 C CO3 Solid Oxides Cathode Anode o o O= 700 C – 1000 C Alkaline Fuel Cell ALKALINE FUEL CELL Alkaline electrolyte - - Anode H2 + 2OH Æ 2H2O + 2e - - Cathode 1/2O2 + H2O + 2e Æ 2OH Overall H2 + 1/2O2 Æ H2O + electrical Energy +heat Poisoning: - 2- CO2 +2OH (CO3) + H2O ¾ Depletion of KOH ¾ Poisoning of cathode surface with carbonates Myth ! 9Kordesch, K. et al., (1999), Intermittent Use of a Low-Cost Alkaline Fuel Cell-hybrid System for Electric Vehicles, J. Power Sources, Vol. 80, pp. 9McLean, G. F. et al. (2002) An assessment of alkaline fuel cell technology, Int. J. Hydrogen Energy 27 507 9Gülzow, E., and Schulze, M. (2003), Long-Term Operation of AFC Electrodes With CO2- Containing Gases, J. Power Sources, Polymer Electrolyte Membrane Fuel Cell (PEMFC) Hydrogen Fuel Cell Direct Alcohol Fuel Cell (DAFC) Fuel Processor Fuel Cleaning System Fuel Pure H2 Electricity Fuel Cell Direct Methanol Fuel Cell Direct Ethanol Fuel Cell (DMFC) (DEFC) Reduce CO adsorption on Pt at High Temp Higher power density at high temperature Easy breakage C-C bond in DEFC at High Temp.
    [Show full text]
  • Recent Advance in Direct Ethanol Fuel Cell for Sustainable Energyproduction
    Bioenergetics: Open Access Editorial Recent Advance in Direct Ethanol Fuel Cell for Sustainable EnergyProduction L An The* Hong Kong Polytechnic University, 11 Yuk Choi Rd, China INTRODUCTION Direct Ethanol Fuel Cells (DEFC), which promise to be a Different type of fuel cells namely Solid Polymer Fuel clean and efficient energy production technology, have Cell (SPFC), Direct Meth-anol Fuel Cell (DMFC), Phosphoric recently attracted worldwide attention, primarily because Acid Fuel Cell (PAFC), solid oxide fuel cell (SOFC) and Molten ethanol is a carbon-neutral, sustainable fuel and possesses Carbonate Fuel Cell (MCFC) were also described. The choice of many unique physicochemical properties including high fuel and fuel infrastructure for the fuel cell powered buses and energy density and ease of transportation, storage as well as light duty vehicles were also discussed. Fuel cell functions to handling. However, conventional DEFCs, which use acid efficiently convert oxidant and chemical energy accumulated in proton exchange membranes and precious metal catalysts, the fuel directly into DC electric, with the by- products of heat result in rather low performance. In our research, we use and water. Fuel cells, which are known as effective alkaline anion exchange membranes as the solid electrolyte in electrochemical converters, and electricity generation technology DEFCs. It is demonstrated that the change from the acid has gained attention due to the need for clean energy, the membrane to an alkaline one leads to a significant limitation of fossil fuel resources and the capability of a fuel cell performance boost. Recent developments into technology to generateelectricity without involving any moving mechanical of Proton exchange Membrane Fuel Cells (PEMFC) now part.
    [Show full text]
  • Solid Oxide Fuel Cell Program
    SOLID OXIDE FUEL CELL PROGRAM NATIONAL ENERGY TECHNOLOGY LABORATORY OVERVIEW The primary mission of the U.S. Department of Energy’s Office of Fossil Energy (FE) is to ensure the nation can continue to rely on its indigenous fossil fuel resources for clean, secure, and affordable energy. Contributing to that mission is the Solid Oxide Fuel Cell (SOFC) Program, administered by FE’s National Energy Technology Laboratory (NETL). The SOFC Program focuses on the research, development, and demonstration (RD&D) to enable the generation of highly efficient, cost-effective electricity from coal and natural gas with near-zero atmospheric emissions of carbon dioxide (CO2) and criteria pollutants and minimal water consumption. Albany, OR • Anchorage, AK • Morgantown, WV • Pittsburgh, PA • Houston, TX NETL implements this effort as part of DOE’s Advanced Energy Systems Program. Program 133, March 2021 SOLID OXIDE FUEL CELL www.NETL.DOE.gov PROGRAM SOFC technology is inherently modular and fuel flexible. Thus, BACKGROUND cell and stack designs demonstrated at kW-MW scale can The Department of Energy’s (DOE) SOFC program is directly be scaled and aggregated into modules that serve conducted under the Clean Coal and Carbon Management as the building blocks for utility-scale SOFC power systems. Research Program (CCCMRP). Ensuring that the nation The SOFC’s ability to internally reform methane allows for a can continue to rely on clean, affordable energy from ample common module design for use with either natural gas or domestic fossil fuel resources is the principal mission of coal-derived synthesis gas (syngas). Capitalizing on these DOE FE’s research programs.
    [Show full text]
  • Coal Gasification Integration with Solid Oxide Fuel Cell and Chemical
    Applied Energy 146 (2015) 298–312 Contents lists available at ScienceDirect Applied Energy journal homepage: www.elsevier.com/locate/apenergy Coal gasification integration with solid oxide fuel cell and chemical looping combustion for high-efficiency power generation with inherent CO2 capture ⇑ Shiyi Chen a, Noam Lior b, , Wenguo Xiang a a Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China b Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104-6315, USA highlights A novel power system integrating coal gasification with SOFC and chemical looping combustion. The plant net power efficiency reaches 49.8% with complete CO2 separation. Energy and exergy analysis of the entire plant is conducted. Sensitivity analysis shows a nearly constant power output when SOFC temperature and pressure vary. NiO oxygen carrier shows higher plant efficiency than using Fe2O3 and CuO. article info abstract Article history: Since solid oxide fuel cells (SOFC) produce electricity with high energy conversion efficiency, and chemi- Received 14 August 2014 cal looping combustion (CLC) is a process for fuel conversion with inherent CO2 separation, a novel com- Received in revised form 13 January 2015 bined cycle integrating coal gasification, solid oxide fuel cell, and chemical looping combustion was Accepted 26 January 2015 configured and analyzed. A thermodynamic analysis based on energy and exergy was performed to inves- tigate the performance of the integrated system and its sensitivity to major operating parameters. The major findings include that (1) the plant net power efficiency reaches 49.8% with 100% CO2 capture Keywords: for SOFC at 900 °C, 15 bar, fuel utilization factor = 0.85, fuel reactor temperature = 900 °C and air reactor Coal gasification temperature = 950 C, using NiO as the oxygen carrier in the CLC unit.
    [Show full text]