High Resolution Study of NF-Kb - DNA Interactions Imtiaz Nisar Lone

Total Page:16

File Type:pdf, Size:1020Kb

High Resolution Study of NF-Kb - DNA Interactions Imtiaz Nisar Lone High Resolution study of NF-kB - DNA Interactions Imtiaz Nisar Lone To cite this version: Imtiaz Nisar Lone. High Resolution study of NF-kB - DNA Interactions. Molecular biology. Ecole normale supérieure de lyon - ENS LYON, 2013. English. NNT : 2013ENSL0802. tel-00947251 HAL Id: tel-00947251 https://tel.archives-ouvertes.fr/tel-00947251 Submitted on 15 Feb 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE En vue d’obtention du grade de Docteur de l’Ecole Normale Supérieure de Lyon-Université de Lyon Discipline: Biologie Laboratoire de Biologie Moléculaire de la Cellule, LBMC Ecole Doctorale de Biologie Moléculaire Intégrative et Cellulaire, BMIC Présentée et soutenue publiquement le 14 Fevrier 2013 par Imtiaz Nisar LONE High Resolution study of NF-kB – DNA Interactions Directeur de thèse: Dr. Dimitar ANGUELOV Apres l’avis de: Dr. Marco BIANCHI Dr. Malcolm BUCKLE Devant la commission d’examen formée de: Dr. Dimitar ANGUELOV Directeur de thèse, ENS de Lyon Dr. Marco BIANCHI Rapporteur, San Rafael, Milan Dr. Malcolm BUCKLE Rapporteur, ENS Cachan Dr. Stefan DIMITROV Examinateur, UJF/IAB, Grenoble Dr. Ali HAMICHE Examinateur, IGBMC, Strasbourg Dr. Gael YVERT Président, ENS de Lyon Thèse préparée au sein du Laboratoire de Biologie Moléculaire de la Cellule École Normale Supérieure 46 allée d'Italie 69364 Lyon cedex 07, FRANCE To my parents Acknowledgements ″Man cannot discover new oceans unless he has the courage to lose sight of the shore. (Andre Gide). This odyssey to discover new oceans requires guidance, support and assistance of others. There are a number of people who I would like to acknowledge for their kind support and encouragement throughout my studies. First and foremost, I would like to thank my supervisor Dr. Dimitar Angelov for providing me an opportunity and space to work in the lab.Dimitar deserves a special recognition because of his wholehearted support to this project and his precious advices. Most critical to the overall effort was the enormous infusion of guidance, encouragement and inspiration contributed by him. I would also like to thank Dr. Stefan Dimitrove for introducing me to Dimitar Angelov and for encouraging and guiding me time to time. I would like to thank my thesis committee members Prof. Hans Geiselman and Dr. Marie Josephe for monitoring my work and for helpful discussions. I would like to extend my gratitude to all the members of Angelov group, past and present. In particular, I would like to thank Dr. Charles Richard for making my stay in Lyon so wonderful. My special thanks to Lama Soueidan - “The Stress buster” for making the lab environment wonderful and also for all the translations she had to do for me. My thanks to Ogi, Ram and Elsa for all the help and for the wonderful time we shared in Angelov team. One of the special advantages I have had is my access to the extraordinary community of research scholars at ENS, Lyon. More often than not, the help I needed to tie down a loose end was right at hand. In this regard, I am especially indebted to Dr. Maria Sirakov for her help and positive criticism and also for giving me an opportunity to collaborate with her. You have been an amazing friend, a constant source of encouragement and of course a wonderful cook. My special thanks to all my best buddies -Dane Georgess, Esber, Mubarak, Jeelani, Faiyaz and Bilal for their friendship. I would specially like to thank “Page layout artist” Mubarak for helping me with the final editing of the manuscript. For chiseling and carving my overall personality my family, especially my parents, my sister and my brother deserve the special mention. They are the special people of my life. My deepest gratitude goes to them as they have always been concerned about me and wished me success and happiness forever in my enterprises. I am particularly thankful to them for patiently putting up with my long absence and for their buoyancy. Imtiaz Nisar i Contents INTRODUCTION ......................................................................................................... 2 1 Introduction ............................................................... Error! Bookmark not defined. 1.1 Specificity of protein-DNA interactions ................................................................... 4 1.2 Tools for determining the specificity of protein-DNA interactions ......................... 5 1.3 Kinetics of DNA-protein interactions ....................................................................... 6 1.4 Accessibility of binding sites ..................................................................................... 8 1.5 Chromatin: The beginning ....................................................................................... 8 1.6 DNA packing and nuclear architecture .................................................................... 9 1.6.1 Nucleosome ...........................................................................................................12 1.6.2 Core Histones ........................................................................................................12 1.6.3 The histone octamer ...............................................................................................13 1.6.4 Nucleosome Core particle ......................................................................................14 1.6.5 Linker Histone .......................................................................................................15 1.6.6 Binding of linker histone to nucleosomes ...............................................................16 1.7 Chromatin structure: ...............................................................................................17 1.7.1 Primary structure: ..................................................................................................18 1.7.2 Secondary Structure: ..............................................................................................18 1.7.3 Tertiary structure ...................................................................................................19 1.8 Chromatin dynamics and its regulation ..................................................................20 1.8.1 Sequence determinants of chromatin accessibility ..................................................20 1.8.2 Chromatin remodeling and DNA accessibility ........................................................24 1.8.3 Chromatin remodeler families ................................................................................25 1.8.4 Mechanism of chromatin remodeling .....................................................................27 1.8.5 Influence of core histone variants ...........................................................................30 1.8.6 Histone modifications and transcription .................................................................32 1.9 Nucleosomes as transcription barriers ....................................................................34 1.9.1 Dynamics of DNA–histone interactions as a mechanism of nucleosome accessibility 35 1.10 NF-κB .......................................................................................................................35 1.10.1 Structures of the NF-κB: DNA complexes ..........................................................38 1.10.2 Selective transactivation by NF-κB ....................................................................39 1.10.3 Selective DNA binding by NF-κB dimers ..........................................................41 1.10.4 Why to study binding specificity of NF-κB ........................................................44 1.10.5 NF-κB and chromatin.........................................................................................45 ii 1.10.6 Binding of NF-κB to nucleosomes .....................................................................46 1.10.7 Linker histones and transcription ........................................................................47 1.11 Techniques used .......................................................................................................48 1.11.1 Electrophoretic mobility shift assay (EMSA)......................................................48 1.11.2 DNase footprinting ............................................................................................48 1.11.3 Hydroxyl radical footprinting .............................................................................49 1.11.4 The UV laser footprinting ..................................................................................49 1.11.5 UV laser footprinting of NF-κB-DNA complexes ...............................................50 1.11.6 Advantages of the UV laser footprinting technique .............................................52 2 Manuscript 1 High resolution study of NF-κB-DNA interactions Objective…………………………………………………………………………………55 Materials and Methods ............................................................................................. 566 2.1 Basis of sequence selection for this study ................................................................56
Recommended publications
  • Supplemental Materials
    SUPPLEMENTAL MATERIALS Simple biochemical features underlie transcriptional activation domain diversity and dynamic, fuzzy binding to Mediator Adrian L. Sanborn,1,2,* Benjamin T. Yeh,2 Jordan T. Feigerle,1 Cynthia V. Hao,1 Raphael J. L. Townshend,2 Erez Lieberman Aiden,3,4 Ron O. Dror,2 Roger D. Kornberg1,*,+ 1Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA 2Department of Computer Science, Stanford University, Stanford, CA 94305, USA 3The Center for Genome Architecture, Baylor College of Medicine, Houston, USA 4Center for Theoretical Biological Physics, Rice University, Houston, USA *Correspondence: [email protected], [email protected] +Lead Contact 1 A B Empty GFP Count Count Count VP16 AD mCherry mCherry GFP C G Count 2 AD tiles 10 Random sequences 2 12 10 10 Gcn4 AD 8 1 10 1 6 10 Z-score Activation 4 Count 2 0 Activation, second library 0 10 0 10 Gal4 Gln3 Hap4 Ino2 Ino2 Msn2 Oaf1 Pip2 VP16 VP64 r = 0.952 Pho4 AD 147 104 112 1 108 234 995 944 0 1 2 Synonymously encoded control ADs 10 10 10 Activation, first library Count H 102 GFP 101 D E Empty VP16 activation 100 80% Mean positional VP16 AD 0 200 400 600 800 1000 1200 60% Position in Adr1 protein 40% By FACS GFP By sequencing I 20% 50% 0% Percent of cells 1 2 3 4 5 6 7 8 mCherry mCherry 25% 80% Gcn4 AD 60% Empty VP16 0% 40% AD at position with Percent of proteins 0.0 0.2 0.4 0.6 0.8 1.0 20% Position on protein, normalized 0% Percent of cells 100% 1 2 3 4 5 6 7 8 100% 80% 75% 75% Pho4 AD / mCherry ratio GFP 60% GFP GFP 50% 50% 40% 20% 25% 25% C-term ADs 0% ADs Percent of Percent of cells Other ADs 0% 1 2 3 4 5 6 7 8 0% 1 2 F 25 50 75 100 125 10 10 Gcn4 hydrophobic mutants (cumulative distribution) GFP bin number 1 AD length Activation J 1.0 0 0.8 0.6 0.4 −1 (log2 change vs wild-type) 0.2 Frequency of aTF expression 5 10 15 TFs without ADs falling within sorted mCh range Hydrophobic content 0.0 TFs with ADs Cumulative fraction of TFs (kcal/mol) 0.0 0.2 0.4 0.6 0.8 1.0 Fraction of genes regulated by TF that are activating Figure S1.
    [Show full text]
  • Chromatin Dynamics in The
    TRANSCRIPTION AND CHROMATIN DYNAMICS IN THE NOTCH SIGNALLING RESPONSE Zoe Pillidge Churchill College Department of Physiology, Development and Neuroscience University of Cambridge This dissertation is submitted for the degree of Doctor of Philosophy September 2018 TRANSCRIPTION AND CHROMATIN DYNAMICS IN THE NOTCH SIGNALLING RESPONSE During normal development, different genes are expressed in different cell types, often directed by cell signalling pathways and the pre-existing chromatin environment. The highly-conserved Notch signalling pathway is involved in many cell fate decisions during development, activating different target genes in different contexts. Upon ligand binding, the Notch receptor itself is cleaved, allowing the intracellular domain to travel to the nucleus and activate gene expression with the transcription factor known as Suppressor of Hairless (Su(H)) in Drosophila melanogaster. It is remarkable how, with such simplicity, the pathway can have such diverse outcomes while retaining precision, speed and robustness in the transcriptional response. The primary goal of this PhD has been to gain a better understanding of this process of rapid transcriptional activation in the context of the chromatin environment. To learn about the dynamics of the Notch transcriptional response, a live imaging approach was used in Drosophila Kc167 cells to visualise the transcription of a Notch-responsive gene in real time. With this technique, it was found that Notch receptor cleavage and trafficking can take place within 15 minutes to activate target gene expression, but that a ligand-receptor interaction between neighbouring cells may take longer. These experiments provide new data about the dynamics of the Notch response which could not be obtained with static time-point experiments.
    [Show full text]
  • Structure and Evolution of Four POU Domain Genes Expressed in Mouse Brain (POU Bnain-/POU Brain-2/POU Brain4/POU Scip/Homeobox) YOSHINOBU HARA*, ALESSANDRA C
    Proc. Natl. Acad. Sci. USA Vol. 89, pp. 3280-3284, April 1992 Neurobiology Structure and evolution of four POU domain genes expressed in mouse brain (POU Bnain-/POU Brain-2/POU Brain4/POU Scip/homeobox) YOSHINOBU HARA*, ALESSANDRA C. ROVESCALLI, YONGSOK KIM, AND MARSHALL NIRENBERG Laboratory of Biochemical Genetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892 Contributed by Marshall Nirenberg, January 6, 1992 ABSTRACT Four mouse POU domain genomic DNA acid sequences of the proteins are related to one another and clones-Brain-i, Brain-2, Brain-4, and Scip-and Bran-2 suggests that the genes originated by duplication of an cDNA, which are expressed in adult brain, were cloned and the ancestral class III POU domain gene.t coding and noncoding regions ofthe genes were sequenced. The amino acid sequences of the four PoU domains are highly conserved; sequences in other regions of the proteins also are MATERIALS AND METHODS conserved but to a lesser extent. The absence of introns from DNA Coming and Sequencing. Our objective was to clone the coding regions of the four POU domain genes and the POU domain genes expressed in mouse brain. Mixtures of similarity of amino acid sequences of the corresponding pro- oligodeoxynucleotides that correspond to highly conserved teins suggest that the coding region of the ancestral class HI amino acid sequences in POU domains were used as primers POU domain gene lacked introns and therefore may have for amplification ofadult mouse brain POU domain cDNA by originated by reverse transcription of a molecule of POU PCR, and the amplified DNA fragments were cloned.
    [Show full text]
  • Intrinsic Specificity of DNA Binding and Function of Class II Bhlh
    INTRINSIC SPECIFICITY OF BINDING AND REGULATORY FUNCTION OF CLASS II BHLH TRANSCRIPTION FACTORS APPROVED BY SUPERVISORY COMMITTEE Jane E. Johnson Ph.D. Helmut Kramer Ph.D. Genevieve Konopka Ph.D. Raymond MacDonald Ph.D. INTRINSIC SPECIFICITY OF BINDING AND REGULATORY FUNCTION OF CLASS II BHLH TRANSCRIPTION FACTORS by BRADFORD HARRIS CASEY DISSERTATION Presented to the Faculty of the Graduate School of Biomedical Sciences The University of Texas Southwestern Medical Center at Dallas In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY The University of Texas Southwestern Medical Center at Dallas Dallas, Texas December, 2016 DEDICATION This work is dedicated to my family, who have taught me pursue truth in all forms. To my grandparents for inspiring my curiosity, my parents for teaching me the value of a life in the service of others, my sisters for reminding me of the importance of patience, and to Rachel, who is both “the beautiful one”, and “the smart one”, and insists that I am clever and beautiful, too. Copyright by Bradford Harris Casey, 2016 All Rights Reserved INTRINSIC SPECIFICITY OF BINDING AND REGULATORY FUNCTION OF CLASS II BHLH TRANSCRIPTION FACTORS Publication No. Bradford Harris Casey The University of Texas Southwestern Medical Center at Dallas, 2016 Jane E. Johnson, Ph.D. PREFACE Embryonic development begins with a single cell, and gives rise to the many diverse cells which comprise the complex structures of the adult animal. Distinct cell fates require precise regulation to develop and maintain their functional characteristics. Transcription factors provide a mechanism to select tissue-specific programs of gene expression from the shared genome.
    [Show full text]
  • BRN2 Is a Transcriptional Repressor of CDH13 (T-Cadherin)
    Laboratory Investigation (2012) 92, 1788–1800 & 2012 USCAP, Inc All rights reserved 0023-6837/12 $32.00 BRN2 is a transcriptional repressor of CDH13 (T-cadherin) in melanoma cells Lisa Ellmann1, Manjunath B Joshi2,3, Therese J Resink2, Anja K Bosserhoff1 and Silke Kuphal1 T-cadherin (cadherin 13, H-cadherin, gene name CDH13) has been proposed to act as a tumor-suppressor gene as its expression is significantly diminished in several types of carcinomas, including melanomas. Allelic loss and promoter hypermethylation have been proposed as mechanisms for silencing of CDH13. However, they do not account for loss of T-cadherin expression in all carcinomas, and other genetic or epigenetic alterations can be presumed. The present study investigated transcriptional regulation of CDH13 in melanoma. Bioinformatical analysis pointed to the presence of known BRN2 (also known as POU3F2 and N-Oct-3)-binding motifs in the CDH13 promoter sequence. We found an inverse correlation between BRN2 and T-cadherin protein and transcript expression. Reporter gene analysis and electrophoretic mobility shift assays in melanoma cells demonstrated that CDH13 is a direct target of BRN2 and that BRN2 is a functional transcriptional repressor of CDH13 promoter activity. The regulatory binding element of BRN2 was located À 219 bp of the CDH13 promoter proximal to the start codon and was identified as 50-CATGCAAAA-30. Ectopic expression of BRN2 in BRN2-negative/T-cadherin-positive melanoma cells resulted in suppression of CDH13 promoter activity, whereas BRN2 knockdown in BRN2-positive/T-cadherin-negative melanoma cells resulted in re-expression of T-cadherin transcripts and protein.
    [Show full text]
  • POU Domain Family Values: Flexibility, Partnerships, and Developmental Codes
    Downloaded from genesdev.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW POU domain family values: flexibility, partnerships, and developmental codes Aimee K. Ryan and Michael G. Rosenfeld 1 Howard Hughes Medical Institute, Department and School of Medicine, University of California at San Diego, La Jolla, Califiornia 92093-0648 USA Transcription factors serve critical roles in the progres- primary focus of this review. Crystallization of the Oct-1 sive development of general body plan, organ commit- and Pit-1 POU domains on DNA and in vitro studies ment, and finally, specific cell types. It has been the hope examining the specificity of POU domain cofactor inter- of most developmental biologists that comparison of the actions suggest that the flexibility with which the POU biological roles of a series of individual members within domain recognizes DNA-binding sites is a critical com- a family will permit at least some predictive generaliza- ponent of its ability to regulate gene expression. The tions regarding the developmental events that are likely implications of these data with respect to the mecha- to be regulated by a particular class of transcription fac- nisms utilized by the POU domain family of transcrip- tors. Here, we present an overview of the developmental tion factors to control developmental events will also be functions of the family of transcription factors charac- discussed. terized by the POU DNA-binding motif afforded by re- cent in vivo studies. Conformation of the POU domain on DNA The POU domain family of transcription factors was defined following the observation that the products of High-affinity site-specific DNA binding by POU domain three mammalian genes, Pit-l, Oct-l, and Oct-2 and the transcription factors requires both the POU-specific do- protein encoded by the Caenorhabditis elegans gene main and the POU homeodomain (Sturm and Herr 1988; unc-86 shared a region of homology, known as the POU Ingraham et al.
    [Show full text]
  • An Activation-Specific Role for Transcription Factor TFIIB in Vivo (Sua7͞pho4͞pho5͞transcriptional Control)
    Proc. Natl. Acad. Sci. USA Vol. 96, pp. 2764–2769, March 1999 Biochemistry An activation-specific role for transcription factor TFIIB in vivo (SUA7yPho4yPHO5ytranscriptional control) WEI-HUA WU AND MICHAEL HAMPSEY* Department of Biochemistry, Division of Nucleic Acids Enzymology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854-5635 Edited by Robert G. Roeder, The Rockefeller University, New York, NY, and approved January 20, 1999 (received for review November 9, 1998) ABSTRACT A yeast mutant was isolated encoding a sin- a study of PIC formation and transcriptional activity demon- gle amino acid substitution [serine-53 3 proline (S53P)] in strated that PIC assembly occurs by at least two steps and that transcription factor TFIIB that impairs activation of the the TATA box and TFIIB also can affect transcription subse- PHO5 gene in response to phosphate starvation. This effect is quent to PIC assembly (11). Thus, processes other than factor activation-specific because S53P did not affect the uninduced recruitment are potential activator targets. level of PHO5 expression, yet is not specific to PHO5 because TFIIB is recruited to the PIC by the acidic activator VP16 Adr1-mediated activation of the ADH2 gene also was impaired and the proline-rich activator CTF1 (3, 12). VP16 directly by S53P. Pho4, the principal activator of PHO5, directly targets TFIIB (3) and this interaction is required for activation interacted with TFIIB in vitro, and this interaction was (13, 14). Interestingly, VP16 induces a conformational change impaired by the S53P replacement. Furthermore, Pho4 in- in TFIIB that disrupts the intramolecular interaction between duced a conformational change in TFIIB, detected by en- the N- and C-terminal domains in solution (15).
    [Show full text]
  • Significance of Wilms' Tumor Gene 1 As a Biomarker in Acute Leukemia and Solid Tumors
    UMEÅ UNIVERSITY MEDICAL DISSERTATIONS New Series No. 1799 ISSN 0346-6612 ISBN 978-91-7601-458-5 Significance of Wilms’ Tumor Gene 1 as a Biomarker in Acute Leukemia and Solid Tumors Charlotta Andersson Department of Medical Biosciences, Clinical Chemistry and Pathology Umeå University, Sweden Umeå 2016 Copyright © 2016 Charlotta Andersson ISBN: 978-91-7601-458-5 ISSN: 0346-6612 Printed by: Print & Media Umeå, Sweden, 2016 In memory of Aihong Li Table of Contents Table of Contents i Abstract iii Abbreviations iv List of Papers v Introduction 1 WT1 structure 1 WT1 target genes 3 WT1 protein partners 5 WT1 in normal and abnormal development 5 Hematopoiesis and WT1 7 WT1 as a tumor suppressor gene 7 WT1 as an oncogene or a chameleon gene 7 Acute leukemia (AL) and WT1 in AL 8 Renal cell carcinoma (RCC) and WT1 in RCC 13 Ovarian carcinoma (OC) and WT1 in OC 15 Aims of the Thesis 20 Materials and Methods 21 Patients and tissue samples (Papers I-IV) 21 Classification and risk group stratification in AL (Papers I and IV) 22 ccRCC grade and stage (Paper II) 22 OC classification, grade and stage (Paper III) 22 Genomic DNA preparation, RNA extraction and cDNA preparation (Papers I, II and IV) 23 Quantitative assessment of WT1 transcript expression with real-time quantitative PCR (RQ-PCR) (Papers I and II) 23 Sequencing analysis of the WT1 gene (Papers II and IV) 24 Immunohistochemistry (IHC) (Paper III) 24 Enzyme-linked immunosorbent assay (ELISA) (Paper III) 25 Statistical analysis 25 Results and Discussion 27 Paper I 27 Paper II 31 Paper III 35 Paper IV 38 Conclusions 42 Acknowledgments 44 References 47 i ii Abstract Wilms’ tumor gene 1 (WT1) is a zinc finger transcriptional regulator with crucial functions in embryonic development.
    [Show full text]
  • The HLH-6 Transcription Factor Regulates C
    The HLH-6 Transcription Factor Regulates C. elegans Pharyngeal Gland Development and Function Ryan B. Smit1, Ralf Schnabel2, Jeb Gaudet1,3* 1 Genes and Development Research Group, Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada, 2 Institut fu¨r Genetik, Technische Universita¨t Braunschweig, Braunschweig, Germany, 3 Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada Abstract The Caenorhabditis elegans pharynx (or foregut) functions as a pump that draws in food (bacteria) from the environment. While the ‘‘organ identity factor’’ PHA-4 is critical for formation of the C. elegans pharynx as a whole, little is known about the specification of distinct cell types within the pharynx. Here, we use a combination of bioinformatics, molecular biology, and genetics to identify a helix-loop-helix transcription factor (HLH-6) as a critical regulator of pharyngeal gland development. HLH-6 is required for expression of a number of gland-specific genes, acting through a discrete cis-regulatory element named PGM1 (Pharyngeal Gland Motif 1). hlh-6 mutants exhibit a frequent loss of a subset of glands, while the remaining glands have impaired activity, indicating a role for hlh-6 in both gland development and function. Interestingly, hlh-6 mutants are also feeding defective, ascribing a biological function for the glands. Pharyngeal pumping in hlh-6 mutants is normal, but hlh-6 mutants lack expression of a class of mucin-related proteins that are normally secreted by pharyngeal glands and line the pharyngeal cuticle. An interesting possibility is that one function of pharyngeal glands is to secrete a pharyngeal lining that ensures efficient transport of food along the pharyngeal lumen.
    [Show full text]
  • Wilms' Tumor Gene 1 in Different Types of Cancer
    UMEÅ UNIVERSITY MEDICAL DISSERTATIONS New Series No.1717 ISSN 0346-6612 ISBN 978-91-7601-263-5 Wilms’ tumor gene 1 in different types of cancer Xingru Li Department of Medical Biosciences, Clinical Chemistry Umeå University, Sweden Umeå 2015 Copyright © 2015 Xingru Li ISBN: 978-91-7601-263-5 ISSN: 0346-6612 Printed by: Print & Media Umeå, Sweden, 2015 To my family Table of Contents Abstract .......................................................................................................... 1 Original Articles ............................................................................................. 2 Abbreviations ................................................................................................. 3 Introduction .................................................................................................... 4 WT1 (Wilms’ tumor gene 1) ...................................................................... 4 Structure of WT1 ..................................................................................... 4 WT1, the transcription factor ................................................................. 5 WT1 and its interacting partners ............................................................ 5 WT1 function .......................................................................................... 8 The tumor suppressor ........................................................................ 8 An oncogene ...................................................................................... 8 Mutations and
    [Show full text]
  • Highlighting the Potential Utility of MBP Crystallization Chaperone For
    www.nature.com/scientificreports OPEN Highlighting the potential utility of MBP crystallization chaperone for Arabidopsis BIL1/BZR1 transcription factor‑DNA complex Shohei Nosaki1, Tohru Terada2, Akira Nakamura1, Kei Hirabayashi1, Yuqun Xu1, Thi Bao Chau Bui1, Takeshi Nakano3,4, Masaru Tanokura1* & Takuya Miyakawa1* The maltose‑binding protein (MBP) fusion tag is one of the most commonly utilized crystallization chaperones for proteins of interest. Recently, this MBP‑mediated crystallization technique was adapted to Arabidopsis thaliana (At) BRZ‑INSENSITIVE‑LONG (BIL1)/BRASSINAZOLE‑RESISTANT (BZR1), a member of the plant‑specifc BZR TFs, and revealed the frst structure of AtBIL1/BZR1 in complex with target DNA. However, it is unclear how the fused MBP afects the structural features of the AtBIL1/BZR1‑DNA complex. In the present study, we highlight the potential utility of the MBP crystallization chaperone by comparing it with the crystallization of unfused AtBIL1/BZR1 in complex with DNA. Furthermore, we assessed the validity of the MBP‑fused AtBIL1/BZR1‑DNA structure by performing detailed dissection of crystal packings and molecular dynamics (MD) simulations with the removal of the MBP chaperone. Our MD simulations defne the structural basis underlying the AtBIL1/ BZR1‑DNA assembly and DNA binding specifcity by AtBIL1/BZR1. The methodology employed in this study, the combination of MBP‑mediated crystallization and MD simulation, demonstrates promising capabilities in deciphering the protein‑DNA recognition code. Maltose-binding protein (MBP) is the most useful and successful crystallization chaperone for challeng- ing proteins1–4, as MBP maintains the solubility of fusion proteins and is used as an afnity tag for protein purifcation5–8.
    [Show full text]
  • The Oct1 Homolog Nubbin Is a Repressor of NF-Κb-Dependent Immune Gene Expression That Increases the Tolerance to Gut Microbiota
    Dantoft et al. BMC Biology 2013, 11:99 http://www.biomedcentral.com/1741-7007/11/99 RESEARCH ARTICLE Open Access The Oct1 homolog Nubbin is a repressor of NF-κB-dependent immune gene expression that increases the tolerance to gut microbiota Widad Dantoft1, Monica M Davis1, Jessica M Lindvall2, Xiongzhuo Tang1, Hanna Uvell1,3, Anna Junell1, Anne Beskow1,4 and Ylva Engström1* Abstract Background: Innate immune responses are evolutionarily conserved processes that provide crucial protection against invading organisms. Gene activation by potent NF-κB transcription factors is essential both in mammals and Drosophila during infection and stress challenges. If not strictly controlled, this potent defense system can activate autoimmune and inflammatory stress reactions, with deleterious consequences for the organism. Negative regulation to prevent gene activation in healthy organisms, in the presence of the commensal gut flora, is however not well understood. Results: We show that the Drosophila homolog of mammalian Oct1/POU2F1 transcription factor, called Nubbin (Nub), is a repressor of NF-κB/Relish-driven antimicrobial peptide gene expression in flies. In nub1 mutants, which lack Nub-PD protein, excessive expression of antimicrobial peptide genes occurs in the absence of infection, leading to a significant reduction of the numbers of cultivatable gut commensal bacteria. This aberrant immune gene expression was effectively blocked by expression of Nub from a transgene. We have identified an upstream regulatory region, containing a cluster of octamer sites, which is required for repression of antimicrobial peptide gene expression in healthy flies. Chromatin immunoprecipitation experiments demonstrated that Nub binds to octamer-containing promoter fragments of several immune genes.
    [Show full text]